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Abstract

This paper deals with the optimal scheduling of prosumers equipped with energy storage
facilities within renewable energy communities, and proposes a novel strategy for opti-
mizing storage usage within a price–volume demand response framework. The problem
is formulated as a scalable, low-complexity mixed-integer linear program. Furthermore,
a heuristic procedure is introduced to ensure redistribution of demand response rewards
among participants according to their contribution to achieving demand–response goals.
The proposed approach is designed to enhance the benefits for prosumers operating within
a community compared to running independently.

Keywords: renewable energy communities; energy storage systems; optimization;
demand response

1. Introduction

In order to reduce the environmental impact of energy systems and support the shift
to net-zero CO2 emissions, renewable energy communities (RECs) and demand response
(DR) have been recognized as effective solutions.

An REC is formed by a collective of entities (producers, consumers, and prosumers)
that participate in energy exchange through the grid [1]. The core objective of an REC is
to generate social, economic, and environmental value through optimal renewable energy
management, thereby minimizing energy losses and enhancing grid stability. Although na-
tional regulations typically define the structure and operation of RECs [2], each autonomous
community maintains some flexibility in determining its operational strategies. A key goal
of such strategies is to maximize collective welfare by ensuring a fair redistribution of
benefits, thus ensuring participation in the REC is always advantageous for all members [3].

On the other hand, DR has proven effective in achieving a balance between generation
and demand and in optimizing energy dispatch. Participants in DR programs are economi-
cally incentivized to adjust their energy consumption patterns in response to grid operator
requests, thus reducing peak demand and improving grid stability [4–7]. In the so-called
price–volume DR model, participants receive monetary incentives for adjusting their con-
sumption below certain thresholds during defined time periods. This model of DR has
been applied in diverse areas, including, e.g., load forecasting [8,9], smart buildings [10,11],
and electric vehicle charging station management [12]. Besides shaping load profiles,
optimal management of energy storage systems (ESSs) plays a key role in achieving DR
objectives [13,14]. In particular, RECs equipped with ESSs have proven to be a valuable
source of DR flexibility [15]. In this context, a common approach is to employ a shared
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BESS, i.e., a single BESS serving multiple prosumers. Such an approach has been proven
to enhance efficiency through resource pooling and optimized energy management under
specific incentive schemes [16–19]. However, the use of individual BESSs deployed at each
prosumer’s premises remains a widespread architecture in the context of renewable energy
communities, due to its alignment with prosumer autonomy and local incentives [20–23].
Collaborative use of shared energy resources has been explored in several contexts, such
as [24,25].

This paper deals with the incorporation of incentive-based DR into the operational
strategy of RECs [26], under the assumption that no centralized ESS is present and storage
facilities are deployed at the participants’ premises. As is commonly done, we assume that
the management of physical grid constraints is entrusted to the distribution system operator
(DSO) or other external players. The DSO, in order to help satisfy power flow constraints,
grid stability, and other services, can define DR programs to be submitted to the REC. In
contrast to prior studies, which primarily investigated load profile optimization [27–29],
our research demonstrates how DR objectives can be achieved through optimized operation
of ESSs. For the special case of all REC entities being pure producers, the problem was
addressed in [30], where a strategy for redistributing DR incentives among participants
was also proposed. In this paper, we consider the more general case in which the REC is
composed of prosumers (i.e., entities that qualify as producers, consumers, or both). This
framework calls for a different formulation of the ESS optimization strategy, as well as for
a new reward redistribution policy. The proposed method ensures increased economic
benefits for prosumers joining the REC compared to standalone operation. The resulting
optimization problem turns out to be a low-complexity mixed-integer linear program (MILP)
with few binary variables, thus making it computationally feasible to manage large REC
memberships. A fairness-oriented heuristics for redistributing the community DR rewards
among members tailored to this general case is also developed. Performance evaluation was
carried out via numerical simulations on a prototype REC comprising 30 prosumers.

Novelty and Contribution

The main contribution of the paper can be summarized as follows:

• A novel optimization framework is developed for scheduling the operation of dis-
tributed storage systems owned by individual prosumers in an REC. The framework
accounts for the presence of price–volume signals sent by an external entity (e.g., the
distribution system operator) in order to achieve community-level DR objectives. The
resulting optimization problem is formulated as a low-complexity MILP.

• As a key theoretical contribution, a rigorous proof is provided that the nonlinear
complementarity constraints that arise in order to avoid simultaneous energy im-
port/export and ESS charge/discharge at each individual REC entity are redundant
at the optimum. This result allows casting the optimization problem as an MILP with
a number of binary variables independent of the REC size, thus making the approach
scalable and amenable to the management of large communities.

• The DR reward model proposed in this work extends the one adopted in previous
studies such as [30], where a simple saturated ramp function was used to determine
the community reward based on the net energy injected into the grid. In contrast, a
more realistic trapezoidal reward function that accounts for both under- and over-
supply is considered. This extension reflects typical DR program designs, in which
over-delivery beyond the specified limits is neither required nor incentivized, and
may even be discouraged. As such, the proposed model aligns more closely with
practical incentive mechanisms and promotes accurate and effective community-level
DR participation.
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• A heuristic reward redistribution algorithm is introduced to allocate the DR incentives
among REC members. This mechanism ensures that all prosumers receive shares
of DR rewards based on their individual contributions to achieving the DR targets
and, most importantly, that no prosumer is economically disadvantaged compared to
operating independently.

Extensive simulation results are provided to validate the proposed approach, demonstrating
its effectiveness in increasing both community-level and individual economic gains.

The paper is organized as follows: the employed REC and DR models are introduced
in Section 2. The BESS optimization strategy, as well as a DR reward distribution policy
among REC members, are developed in Section 3. Numerical simulations are reported in
Section 4, while the conclusions are drawn in Section 5. The symbols used throughout the
paper are summarized in Table 1.

Table 1. Nomenclature.

Symbol Description Unit

Sets and Indices
U Set of prosumers/entities in the REC –
u Index for prosumers/entities –
j Index for demand response (DR) requests –
t Index for time intervals –
T Number of time intervals in the optimization horizon –
Ts Duration of each time interval h
I(tj, tj) Time window of j-th DR request –
R DR program, R = {R1, . . . ,RR} –

Optimization Variables
J∗u Total profit of prosumer u under coordinated REC operation with DR €

Ψ∗
u Profit of prosumer u in REC without DR reward allocation €

J∗u,0 Optimal profit of prosumer u in standalone operation €

γj Reward for DR request Rj €

γ Total reward for DR program R €

ξ∗ Total DR reward earned by the REC €

ξ∗u Portion of DR reward allocated to prosumer u €

ξ̂∗u Minimum DR reward to ensure J∗u ≥ J∗u,0 €

ξ∗r Remaining DR reward after satisfying feasibility €

δu Extra profit for prosumer u from joining REC vs. standalone operation €

σu Redistribution weight for prosumer u –
Ec

u(t) Charging energy into BESS of prosumer u at time t kWh
Ed

u(t) Discharging energy from BESS of prosumer u at time t kWh
Su(t) Stored energy in BESS of u at time t kWh
Eg

u(t) Energy sold to the grid by prosumer u at time t kWh
Eb

u(t) Energy bought from the grid by prosumer u at time t kWh
Eu(t) Energy generated by prosumer u at time t kWh
EDR

j Total net REC energy reduction during DR request j kWh
Ep(t) Energy provided by non-scheduled prosumers kWh
El(t) Energy consumed by non-scheduled loads kWh
En(t) Net REC energy injection into the grid kWh
zr,1, zr,2, zr,3, zr,4, zr,5 Binary variables –
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Table 1. Cont.

Parameters
E

c
u Max charging rate of BESS of u kWh

E
d
u Max discharging rate of BESS of u kWh

Su Total BESS capacity of u kWh
ηc

u Charging efficiency of BESS of u –
ηd

u Discharging efficiency of BESS of u –
E

g
u Max grid selling rate for prosumer u kWh

E
b
u Max grid buying rate for prosumer u kWh

Emax
u Maximum generation by prosumer u at time t kWh

Ee
u Energy demanded by prosumer u at time t kWh

Êmax
u Forecast of maximum generation by prosumer u at time t kWh

Êe
u Forecast of energy demanded by prosumer u at time t kWh

π
g
u(t) Selling price to the grid for prosumer u at time t €/kWh

πb
u(t) Buying price from the grid for prosumer u at time t €/kWh

πs
u Unit degradation cost of BESS usage for prosumer u €/kWh

γj Max DR reward for fully satisfying request j €

EDR
j,0 Lower energy threshold for DR reward ramp-up kWh

EDR
j,1 Upper energy threshold for DR reward ramp-up kWh

EDR
j,2 Lower energy threshold for DR reward ramp-down kWh

EDR
j,3 Upper energy threshold for DR reward ramp-down kWh

ε
j
u Max discharge energy from BESS of u during DR request j kWh

tj Start time index of DR request j –
tj End time index of DR request j –

2. Problem Formulation and Modeling

The REC model considered in this paper consists of a set of participants, collectively
referred to as U . Each participant is a prosumer equipped with a renewable energy gener-
ator (e.g., a PV plant) and a BESS, which may or may not include a load. All entities can
perform energy exchanges with the main grid. The role of the REC manager is to schedule
the operation of these systems through a centralized energy controller. The REC may also
include prosumers not equipped with a BESS, as well as entities represented by pure loads.
Such entities influence the REC energy balance but are not subject to scheduling.

2.1. REC Model

The REC scheduling system is assumed to run at discrete time instants t with sampling
time Ts. Let T = {0, . . . , T − 1} denote the time horizon over which operation is to be
optimized, e.g., a whole day. Let Eu(t) ≤ Emax

u (t) be the (controlled) energy amount
generated by entity u ∈ U in time slot t ∈ T , i.e., in the absolute time frame [tTs, (t + 1)Ts),
where Emax

u (t) denotes the maximum allowed generation at time t, which depends on
the installed power and weather conditions. Similarly, denote with Ec

u(t) and Ed
u(t) the

command variables representing the energy charged into and discharged from the entity
BESS, respectively. The state of each BESS is represented by the stored energy level Su(t) at
the beginning of time slot t. The dynamics of S(t) can be written as

Su(t + 1) = Su(t) + ηc
uEc

u(t)−
1

ηd
u

Ed
u(t), (1)
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where 0 < ηc
u < 1 and 0 < ηd

u < 1 are the BESS charging and discharging efficiencies, re-
spectively. The command variables Ec

u(t) and Ed
u(t) are bounded by actuation constraints as

0 ≤ Ec
u(t) ≤ E

c
u, 0 ≤ Ed

u(t) ≤ E
d
u, (2)

where E
c
u and E

d
u represent the maximum charging and discharging energy per time slot,

respectively, while Su(t) is bounded by the storage capacity S̄u, i.e.,

0 ≤ Su(t) ≤ S̄u. (3)

For each entity u, let us denote by Eg
u(t) and Eb

u(t) the energy sold to and purchased from
the grid in time slot t, respectively. Such quantities are assumed to be bounded as follows:

0 ≤ Eg
u(t) ≤ E

g
u, 0 ≤ Eb

u(t) ≤ E
b
u. (4)

Moreover, let Ee
u(t) represent the energy demanded by entity u in time slot t. Thus, the

energy balance for entity u at any given time slot is then given by

Eg
u(t)− Eb

u(t) = Eu(t)− Ee
u(t)− Ec

u(t) + Ed
u(t). (5)

The energy amount Eg
u(t) is sold according to a unitary pricing signal π

g
u(t), while Eb

u(t) is
purchased at a price πb

u(t), both of which are assumed to be known in advance. Moreover,
as commonly happens in energy markets, such prices satisfy

π
g
u(t) ≤ πb

u(t). (6)

Assuming that entities may either sell or buy energy at any given time (but not both), the
following complementarity constraint is in order:

Eg
u(t)Eb

u(t) = 0. (7)

Additionally, the BESS is assumed to incur a unitary operation cost πs
u. Then, the net

revenue Ju,0 of entity u over the time horizon T is expressed as the energy sales revenue,
minus the cost for purchased energy and BESS usage, i.e.,

Ju,0 = ∑
t∈T

[
π

g
u(t)Eg

u(t)− πb
u(t)Eb

u(t)− πs
u
(
ηc

uEc
u(t) +

1
ηd

u
Ed

u(t)
)]

. (8)

Finally, the total energy provided to the REC by non-scheduled prosumers is denoted by
Ep(t), while the overall non-scheduled loads are indicated with El(t), so that the net energy
injected into the grid by the REC in time slot t reads

En(t) = ∑
u∈U

[
Eg

u(t)− Eb
u(t)

]
+ Ep(t)− El(t). (9)

2.2. Demand Response Model

A price–volume DR model is considered in this work. A DR program R = {Rj, j =
1, . . . , R} is composed of a sequence of requests Rj sent by an external entity, e.g., the
distribution system operator, to the REC manager. Each request consists of a time horizon,
i.e., a subset of the time frame T , and a monetary reward function. If the net energy injected
into the grid by the REC within the specified time horizon lies within specified bounds,
then the REC is granted a suitable monetary reward.
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Let I(tj, tj) = [tj, tj] ⊆ T represent the time horizon related to j-th DR request, and let

EDR
j = ∑

t∈I(tj ,tj)

En(t) (10)

be the net energy injected into the grid by the REC in such time interval. For the purposes
of this work, a DR request Rj is defined by the tuple

Rj =
{
I(tj, tj), γj, EDR

j,0 , EDR
j,1 , EDR

j,2 , EDR
j,3

}
, (11)

where γj plays the role of the maximum achievable reward and EDR
j,0 , EDR

j,1 , EDR
j,2 , EDR

j,3 are
the energy thresholds that define a piecewise-linear trapezoidal reward function, see
Figure 1. As depicted, the function γj(EDR

j ) increases linearly between EDR
j,0 and EDR

j,1 ,

remains constant at γj between EDR
j,1 and EDR

j,2 , and decreases linearly to zero between EDR
j,2

and EDR
j,3 . Therefore, the reward granted to the REC related to Rj is given by

γj =





0 if EDR
j ≤ EDR

j,0

EDR
j − EDR

j,0

EDR
j,1 − EDR

j,0
γj if EDR

j,0 < EDR
j ≤ EDR

j,1

γj if EDR
j,1 < EDR

j ≤ EDR
j,2

EDR
j,3 − EDR

j

EDR
j,3 − EDR

j,2
γj if EDR

j,2 < EDR
j ≤ EDR

j,3

0 if EDR
j > EDR

j,3

(12)

E
DR
j,0

γj

0
E

DR
j

γj

E
DR
j,1 E

DR
j,2 E

DR
j,3

Figure 1. Reward function γj pertaining to DR request Rj.

This trapezoidal structure reflects typical incentive-based DR mechanisms, where com-
pensation varies with load reduction to balance grid stability and economic efficiency [31].

Remark 1. The trapezoidal structure adopted for the DR compensation function γj is inspired by
real-world DR programs in which compensation increases with the amount of flexibility provided, up
to a saturation point. For example, Italy’s UVAM (Mixed Enabled Virtual Units) program operated
by Terna provides tiered remuneration for flexible capacity, with higher marginal incentives for the
first blocks of curtailed energy and a capped payment beyond a defined threshold [32]. Similarly, PJM
in the United States implements capacity and energy payments in its DR market, with performance-
based adjustments that effectively yield a trapezoidal reward profile [33]. In France, the NEBEF
(Notification d’Échanges de Blocs d’Énergie de Flexibilité) mechanism also provides higher marginal
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rates for initial reductions, then flattens payments for larger curtailments [34]. These examples
reflect the economic rationale behind trapezoidal schemes, i.e., valuing smaller, reliable-flexibility
contributions rather than arbitrarily larger reductions.

The next result allows reformulating the reward policy (12) associated with each DR
request Rj as a set of linear inequalities involving five binary variables, and follows from
the standard big−M argument in optimization.

Proposition 1. EDR
j and γj satisfy (12) if and only if there exist zj,1, zj,2, zj,3, zj,4, zj,5 such that

zj,1, zj,2, zj,3, zj,4, zj,5 ∈ {0, 1}, (13)

zj,1 + zj,2 + zj,3 + zj,4 + zj,5 = 1, (14)

− Mzj,1 + EDR
j,0 zj,2 + EDR

j,1 zj,3 + EDR
j,2 zj,4 + EDR

j,3 zj,5 ≤ EDR
j , (15)

EDR
j ≤ EDR

j,0 zj,1 + EDR
j,1 zj,2 + EDR

j,2 zj,3 + EDR
j,3 zj,4 + Mzj,5, (16)

− M(1 − zj,1) ≤ γj ≤ M(1 − zj,1), (17)

− M(1 − zj,2) ≤ γj −
EDR

j − EDR
j,0

EDR
j,1 − EDR

j,0
γj ≤ M(1 − zj,2), (18)

− M(1 − zj,3) ≤ γj − γj ≤ M(1 − zj,3), (19)

− M(1 − zj,4) ≤ γj −
EDR

j,3 − EDR
j

EDR
j,3 − EDR

j,2
γj ≤ M(1 − zj,4), (20)

− M(1 − zj,5) ≤ γj ≤ M(1 − zj,5), (21)

where M ≫ 0 denotes a constant large enough to avoid inconsistencies in the formulation.

It is assumed that the REC manager retains a fraction (1 − α), 0 < α < 1, of the total
DR reward

γ =
R

∑
j=1

γj

to cover for the profit of the REC manager itself and for the reward to be granted to other
REC participants, i.e., pure loads and non-schedulable prosumers. Therefore,

ξ = αγ

represents the portion of the overall reward γ to be redistributed among the entities in U

according to the policy introduced later on.

3. Optimal REC Management Under DR

In this section, we present the main contribution of this work: the design of an optimal
scheduling framework for the operation of BESS resources within an REC under a DR
program. This scheduling strategy, to be implemented by the REC manager, aims to
maximize a suitable performance index, while satisfying model constraints. Additionally,
we propose a fairness-based policy for redistributing DR rewards among participants. The
proposed design ensures that participation in the REC is always beneficial for all entities in
U , i.e., it guarantees that each participant’s total profit from joining the REC is at least as
large as the maximum achievable profit stemming from optimally managing their BESS
resources in an independent fashion.
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3.1. Optimal BESS Management

Given a scheduling time horizon T , the proposed procedure involves three consecutive
steps:

1. Calculate the optimal revenue J∗u,0 that each entity u ∈ U can obtain from energy sales
individually, i.e., without participating in the REC DR program.

2. Compute the optimal scheduling of BESS control variables across the REC to maximize
the performance index, while ensuring the total community profit is at least

J∗0 = ∑
u∈U

J∗u,0. (22)

3. Redistribute the DR rewards from Step 2 among participants according to a fairness-
oriented heuristics, guaranteeing that each participant’s total revenue (energy sales
plus DR rewards) is at least J∗u ≥ J∗u,0.

Let us define

Ψu = ∑
t∈T

[
π

g
u(t)Eg

u(t)− πb
u(t)Eb

u(t)− πs
u
(
ηc

uEc
u(t) +

1
ηd

u
Ed

u(t)
)]

, (23)

which represents the net operation profit of entity u over the time horizon T arising from
energy sales. Moreover, for each entity u, let Êmax

u (t) and Êe
u(t), t ∈ T , denote forecasts of

maximum renewable energy generation and demand, respectively, assumed to be available
at the beginning of T . The first step of the procedure can be accomplished by solving for
each u ∈ U the following optimization problem involving the set of decision variables:

Θu =
{
{Eg

u(t), Eb
u(t), Ec

u(t), Ed
u(t), Eu(t), Su(t), t ∈ T }, Su(T)

}
. (24)

Problem 1.

J∗u,0 = max
Θu

Ψu

subjected to

0 ≤ Ec
u(t) ≤ E

c
u, 0 ≤ Ed

u(t) ≤ E
d
u, (25)

0 ≤ Eg
u(t) ≤ E

g
u, 0 ≤ Eb

u(t) ≤ E
b
u, (26)

0 ≤ Eu(t) ≤ Êmax
u (t), (27)

Su(t + 1) = Su(t) + ηc
uEc

u(t)−
1

ηd
u

Ed
u(t), (28)

0 ≤ Su(t) ≤ Su, ∀t ∈ T (29)

Eg
u(t)− Eb

u(t) = Eu(t)− Êe
u(t)− Ec

u(t) + Ed
u(t), (30)

Ec
u(t) ≤ Eu(t), (31)

Su(0) = S0
u, Su(T) = ST

u , (32)

Ec
u(t)Ed

u(t) = 0, (33)

Eg
u(t)Eb

u(t) = 0. (34)

In Problem 1, constraints (25)–(30) are derived from the models in Section 2.1, where
the forecast time series Êmax

u (t) and Êe
u(t) replace the maximum generation Emax

u (t) and
demand Ee

u(t), respectively. Constraints (32) set the initial and final storage energy levels to
prescribed values (e.g., S0

u = ST
u for cyclic operation). Constraints (31) and (33) avoid BESS

charging from the grid and simultaneous BESS charging/discharging. Finally, (34) prevents
selling and buying energy at the same time. Notice that all constraints in Problem 1 are
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linear, except (33) and (34). However, the latter turn out to be redundant, as shown by the
following result.

Theorem 1. Constraints (33) and (34) in Problem 1 are redundant, i.e., they can be relaxed without
altering the optimal solution.

Proof. First, let us focus on (34). It suffices to prove that any optimal solution of the problem
obtained by relaxing (34) in Problem 1 is such that Eg

u(t)Eb
u(t) = 0, ∀t ∈ T . Let Θ∗

u be an
optimal solution of the relaxed problem (whose variables are denoted by the superscript ∗)
and assume by contradiction that there exists τ ∈ T such that Eg∗

u (τ) > 0 and Eb∗
u (τ) > 0.

Let Ẽg = Eg∗
u (τ)− min{Eg∗

u (τ), Eb∗
u (τ)} and Ẽb = Eb∗

u (τ)− min{Eg∗
u (τ), Eb∗

u (τ)}, which
yields ẼgẼb = 0. Consider the set of decision variables Θ′

u obtained from Θ∗
u by only

substituting Eg
u(τ) = Ẽg, Eb

u(τ) = Ẽb. It is easy to see that (26) still holds. Moreover, since
Ẽg − Ẽb = Eg∗

u (τ) − Eb∗
u (τ), constraint (30) is also satisfied, and hence Θ′

u is a feasible
solution. By (6), it follows that Θ′

u yields a higher value of the functional (23) than Θ∗
u,

which is a contradiction.
A similar argument can be used for constraint (33). Let Θ∗

u be an optimal solution
with (33) removed. Suppose there exists τ ∈ T , such that Ec∗

u (τ) > 0 and Ed∗
u (τ) > 0. Let

us define

β = min



ηdEc∗

u (τ),
1
ηc Ed∗

u (τ),
E∗

u(τ)(
1

ηd − ηc
)



.

By (31), one has E∗
u(τ) ≥ Ec∗

u (τ) > 0 and hence β > 0. Let us define

Ẽc = Ec∗
u (τ)−

1
ηd β , Ẽd = Ed∗

u (τ)− ηcβ , Ẽ = E∗
u(τ)−

(
1

ηd − ηc
)

β.

Build a candidate solution Θ′′
u by setting Ec

u(τ), Ed
u(τ), Eu(τ) to Ẽc, Ẽd, Ẽ, respectively, and

keeping all other variables as in Θ∗
u. Constraints (25) and (27) follow directly and since

ηcẼc − 1
ηd Ẽd = ηcEc∗

u (τ)− 1
ηd Ed∗

u (τ), (28) and (29) also hold. Moreover, since Ẽ− Ẽc + Ẽd =

E∗
u(τ)− Ec∗

u (τ) + Ed∗
u (τ), constraint (30) is satisfied, and hence Θ′′

u is feasible. Again by (6),
Θ′′

u yields a higher objective value than Θ∗
u, a contradiction.

By Theorem 1, it follows that Problem 1 can be cast as a linear program by removing
(33) and (34).

Remark 2. The computation of J∗u,0 in Problem 1 relies on the assumption that each entity
u ∈ U truthfully discloses its forecast load (Êe

u(t)), generation (Êu(t)), and BESS parameters

(e.g., Su, E
c
u, E

d
u, ηc

u, ηd
u) to the REC manager. This assumption is supported by regulatory frame-

works, such as the EU Renewable Energy Directive (RED II) [35], which encourage data sharing
through contractual agreements, to ensure efficient energy management and compliance with grid re-
quirements. However, this assumption warrants critical examination due to potential incentives for
entities to misreport data to maximize their individual profits, e.g., by inflating generation forecasts
or BESS capacities to increase their baseline profit J∗u,0, which could impair reward distribution. To
mitigate the risk of misreporting, the REC manager can implement robust verification mechanisms.
For instance, smart meter data can be used to validate load and generation profiles [31], while
third-party audits or manufacturer certifications can verify BESS parameters [36]. Technologies
such as blockchain can further enhance transparency and security in data sharing by providing an
immutable record of reported parameters and energy transactions [37]. Additionally, contractual
agreements within the REC can include penalties for misreporting, such as reduced DR reward
allocations or exclusion from future DR programs, thereby aligning individual incentives with
collective goals.
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In what follows, it is assumed without loss of generality that the REC entities are
dimensioned, so that Problem 1 is always feasible for all u ∈ U . For instance, this is the
case if the maximum load does not exceed the maximum power that can be provided by

the grid, i.e., maxt∈T Êe
u(t) ≤ E

b
u, ∀u ∈ U , which is a common design requirement.

Once the optimal solution of Problem 1 has been computed for all entities, the sought
optimal storage scheduling strategy is obtained via the solution of the following optimiza-
tion problem, where the set of decision variables is defined as

Θ =
{

Θu, γj, zj,1, zj,2, zj,3, zj,4, zj,5, ∀u ∈ U , ∀j = 1, . . . , R
}

. (35)

Problem 2.

J∗ = max
Θ

∑
u∈U

Ψu + α
R

∑
j=1

γj

subjected to

(25) − (32), ∀u ∈ U , ∀t ∈ T (36)

(9), (10), (13) − (21), ∀j = 1, . . . , R (37)

with Ψu as in (23).

In Problem 2, the objective function to be maximized represents the overall REC
profit (net operation profit plus DR rewards), while (36) defines the operating constraints
in the same fashion as Problem 1, and (37) enforces the DR rewarding policy. To avoid
complicating the notation, constraint (9) in Problem 2 is assumed to be evaluated for Ep(t)
and El(t) equal to suitable forecasts Êp(t) and Êl(t) of the respective variables.

The following result establishes the existence of a feasible solution to Problem 2.
Moreover, it shows that the optimal total profit J∗ obtained by solving Problem 2 is no less
than the cumulative profit J∗0 in (22) attained by optimally operating each individual entity
in an autonomous fashion via Problem 1.

Theorem 2. Problem 2 is feasible. Moreover, the optimal solution satisfies J∗ ≥ J∗0 .

Proof. For each entity u ∈ U , let Θ∗
u be the optimal solution of Problem 1, with objective

J∗u,0. Let us consider a candidate solution to Problem 2 of the form

Θ̃ =
{

Θ̃u, γ̃j, z̃j,1, z̃j,2, z̃j,3, z̃j,4, z̃j,5, ∀u ∈ U , ∀j = 1, . . . , R
}

,

where Θ̃u = Θ∗
u, ∀u ∈ U , while γ̃j, z̃j,1, z̃j,2, z̃j,3, z̃j,4, z̃j,5, ∀j = 1, . . . , R are to be defined.

Since Θ∗
u satisfies (25)–(32), constraints in (36) hold. Let us consider the j-th DR request.

Since Θ̃u is given, the energy injected into the grid EDR
j is obtained through (9)–(10).

Defining EDR
j,−1 = −∞, EDR

j,4 = ∞, from the DR program definition (11), it follows that there

exists k ∈ {1, 2, 3, 4, 5} such that EDR
j,k−2 < EDR

j ≤ EDR
j,k−1. For each j = 1, . . . , R, set z̃j,k = 1

and z̃j,w = 0, w ̸= k, and correspondingly γ̃j according to (12) in Θ̃. The resulting candidate
solution Θ̃ yields Ψu = J∗u,0, and moreover γ̃j ≥ 0, j = 1, . . . , R, then by (22) it follows that
the objective function J̃ corresponding to Θ̃ is such that J̃ ≥ J∗0 , and hence J∗ ≥ J̃ ≥ J∗0 .
Moreover, it is easy to check that (13)–(21) are also satisfied, and therefore Θ̃ is a feasible
solution of Problem 2.

The optimal solution Θ∗ of Problem 2 defines the optimal scheduling of the REC storage
resources of all entities u ∈ U . Note that, for each entity u, the value Ψ∗

u of Ψu at the optimum
of Problem 2 represents the net operation profit under the optimal scheduling, while the
overall optimal DR reward, which is to be shared among all entities in U , is given by
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ξ∗ = α
R

∑
j=1

γ∗
j , (38)

where γ∗
j denotes γj at the optimum of Problem 2.

Remark 3. In Problem 2, the complementary constraints in (33) and (34) are omitted, since they
are redundant. Such a property can be easily proved by following a similar argument as in the
proof of Theorem 1. As a consequence, Problem 2 turns out to be a MILP with 5R binary variables
(see Proposition 1). Notably, the number of binary variables is independent of the cardinality of
U , which makes the complexity of Problem 2 scale well with the REC size, as also shown in the
numerical simulations in Section 4. More specifically, the computational complexity is polynomial in
the cardinality of U and in general exponential in R. Since one and only one zj,i is equal to 1 for a given
j (see (14)), an instance of Problem 2 involves the solution of 5R LPs in the worst case (though modern
MILP solvers exploit the complementarity constraint more efficiently). In practical DR programs,
however, R is typically a few units, due to grid operator constraints and operational feasibility.

3.2. Reward Distribution Policy

Now, let us focus on the policy for sharing the DR reward ξ∗ among the prosumers.
For this purpose, let ξ∗u denote an allocation of ξ∗ among the entities of U , i.e.,

ξ∗ = ∑
u∈U

ξ∗u, ξ∗u ≥ 0, (39)

so that the total profit of entity u ∈ U in the presence of DR amounts to J∗u = Ψ∗
u + ξ∗u. Such

a redistribution is deemed feasible if the total profit of every prosumer amounts to no less
than the optimal profit when acting individually, that is

J∗u ≥ J∗u,0, ∀u ∈ U . (40)

To guarantee (40), at least the quantity ξ̂∗u = J∗u,0 − Ψ∗
u needs be assigned to all prosumers.

The remaining reward amount
ξ∗r = ξ∗ − ∑

u∈U
ξ̂∗u (41)

must then be distributed according to a suitable fairness-oriented heuristics. To this purpose,
let us define for all j = 1, . . . , R and u ∈ U

ε
j
u = min








tj−1

∑
t=0

min{Eu(t), E
c
u}


−

j−1

∑
k=0

εk
u, (tj − tj)E

d
u, Su



, (42)

where ε0
u = 0 is additionally assumed. Then, we propose to partition ξ∗r according to the

weights σu defined as

σu =
R

∑
j=1


ε

j
u ·

γj

E
DR
j − EDR

j


, ∀u ∈ U . (43)

Therefore, the total amount of DR reward assigned to u ∈ U is given by

ξ∗u = ξ̂∗u +
σu

∑k∈U σk
ξ∗r , (44)

and the extra profit obtained by entity u from joining the REC with respect to optimal
standalone operation amounts to
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δu = J∗u − J∗u,0 =
σu

∑k∈U σk
ξ∗r .

The reward distribution heuristic outlined above is aimed at guaranteeing higher benefits to
the entities which contribute the most to achieving the community DR reward by suitably
managing their BESS. The rationale behind such a policy is as follows: First, the quantity ξ̂∗u
is assigned to all entities to satisfy (40) at equality. Then, the remaining profit ξ∗r is shared
among prosumers to guarantee an individual extra profit proportional to the potential
expenditure of BESS usage on achieving the REC-wide reward over the entire DR program.
To see that this is indeed the case with the proposed redistribution policy, consider the
first DR request R1: the quantity ε1

u in (42) represents the maximum energy that can be
discharged from the BESS into the grid during the DR time window I(t1, t1), which in turn
equals the minimum among the generation up to time t1, the maximum energy which can
be discharged in the first DR period considering the BESS discharging rate, and the total
BESS capacity. For every subsequent DR request Rj, a similar computation is performed,

the only difference being the nonzero term −∑
j−1
k=0 εk

u in (42), which guarantees that ε
j
u only

accounts for the energy availability during I(tj, tj). Then, the redistribution weights σu,
u ∈ U , are computed as weighted sums of εi

u over all DR requests, as in (43). Since DR
requests may differ by both the total reward and the involved energy levels, each εi

u in (43)

is normalized by the ratio γj/(E
DR
j − EDR

j ).

Remark 4. The reward distribution policy ensures that prosumers that sacrifice individual energy
sales profit (Ψ∗

u) to meet DR objectives are fully compensated, as the total profit J∗u = Ψ∗
u + ξ∗u is

guaranteed to be at least as large as the standalone profit J∗u,0 (40). The minimum reward ξ̂∗u =

J∗u,0 −Ψ∗
u compensates for any shortfall in Ψ∗

u due to BESS adjustments for DR, while the remaining
reward ξ∗r is allocated based on weights σu (43), which reflect each prosumer’s contribution to DR
through BESS discharge capacity (εj

u). This ensures that each participant prosumer is rewarded
according to their verified contributions to collective DR goals. To address potential bad faith
behavior, such as misreporting BESS capacity or generation forecasts to inflate ε

j
u or J∗u,0, the REC

manager can leverage verification mechanisms outlined in Remark 2, including smart meter data
validation [31], third-party audits [36], and blockchain technology [37]. Additionally, contractual
penalties within the REC framework, such as reduced reward allocations for misreporting, promote
the alignment of individual incentives with collective goals, thus discouraging bad faith actions.

4. Numerical Simulations

A simulation study, consisting of two examples, was conducted to evaluate the per-
formance and computational feasibility of the proposed method. The first example was
an illustrative toy example with three entities, designed to show the rationale behind the
reward redistribution procedure. The second example was a realistic example with 30
prosumers, which demonstrated the scalability and effectiveness of the method under
real-world conditions. Since we are focusing on BESS management, we explicitly con-
sidered only prosumers and producers equipped with an energy storage system, while
consumers, prosumers, and producers without BESS were treated in aggregated form
through an overall community load and generation profile. The time horizon used in
the optimization problems for both examples was set to one day, with a sampling time
of 15 min, i.e., T = {0, . . . , 95}. A total of 30 days, corresponding to the month of June,
were simulated. We assumed that reliable forecasts of generation and load profiles were
available. The generation profiles for the PV prosumers were derived from real data pro-
vided by the Photovoltaic Geographical Information System (PVGIS) [38], which offers
high-resolution solar irradiance and PV generation data for the European region, tailored
to the specified peak energy capacities Eu of each entity. The load profiles were based on
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typical residential and commercial consumption patterns from publicly available datasets
provided by the Italian transmission system operator, Terna [39]. For each entity u, the
initial and final energy stored in the BESS were set to S0

u = ST
u = 0, and the charging and

discharging efficiencies were ηc
u = ηd

u = 0.95. The energy selling price π
g
u(t) was obtained

from the Italian energy market [40] under the Ritiro Dedicato scheme defined by GSE [41].
The energy buying price πb

u(t), defined by the Servizio di Maggior Tutela from ARERA [42],
was also time varying, reflecting dynamic pricing for energy imported from the grid. The
operational cost of the storage system was πs = 0.01 €/kWh. This value represents an
average estimate of the ESS operational cost, accounting for battery degradation over its
cycle life, based on a review of recent literature [20,43,44].

Two DR requests were considered for each day, one in the morning and one in the
afternoon, with random start time and duration. This choice of R = 2 reflected a realistic
scenario, as practical DR programs, such as those in the Italian energy market [40], typically
limit daily DR requests to 1–4 due to grid operator constraints and operational feasibility.

The parameter α, set to 0.9 in this study, represents the portion of DR reward which
is redistributed among the prosumers in U , as dictated by the REC’s policy. This value
ensures that the majority of the DR reward is allocated to prosumers that actively contribute
to achieving DR objectives through their BESS, while the remaining fraction (1 − α) = 0.1
supports the REC’s operational sustainability. The energy bounds and rewards of DR
requests were dynamically computed on the basis of the load and generation profiles of
each day. Specifically, the lower bound EDR

j,0 was chosen as the energy injected into the
grid assuming no BESS operation. This guaranteed that DR rewards were granted only if
entities operated their batteries to reduce consumption with respect to the baseline.

4.1. Toy Example

To provide an intuitive explanation of the reward redistribution algorithm, we con-
sidered a simplified case with three PV producers equipped with BESS. The peak PV gen-
eration capacity Eu and BESS capacity Su of each producer were chosen as E1 = 22 kWh,
E2 = 18 kWh, E3 = 10 kWh, S1 = 24 kWh, S2 = 16 kWh, and S3 = 9 kWh.

In Figure 2 (top), we report the PV generation profiles of entities #1, #2, and #3 for
June 1. The middle panel shows the energy each entity sold to the grid over the day,
while the bottom panel depicts the BESS stored energy. The figure shows that during DR
periods, all entities discharged their BESS to help fulfill the DR request, taking advantage
of the higher reward opportunities. Figure 3 (top) compares the cumulative daily profit
in standalone operation versus REC participation. This illustrative case confirmed that
cooperation led to a higher total profit. The bottom panel shows the DR reward at the
community level compared to the theoretical maximum. Figure 4 (top) shows the cumula-
tive energy sold within DR periods by each entity, where entity #1 contributed the most
within DR intervals, followed by entity #2 and then #3, and the bottom panel reports the
corresponding extra profit δu, which was proportional to their potential DR contributions
as captured by σu. This example demonstrates the logic and outcome of the proposed
redistribution mechanism, which rewards higher contributors with great potential (e.g.,
large ESS), while still ensuring no participant is worse off than in the standalone case, thus
allowing all participants to benefit from collective coordination.
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Figure 2. Toy example: [Top] generation profile Eu(t) for entity #1 (red), #2 (blue) and #3 (black).
[Middle] Sold energy Eg

u(t) injected into the grid at REC level by entity #1 (red), #2 (blue) and #3
(black). [Bottom] Energy stored in the BESS Su(t) by entity #1 (red), #2 (blue) and #3 (black). Yellow
bars denote the time periods of DR requests.
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Figure 3. Toy example: [Top] cumulative daily profit of all entities operating independently J∗0 (blue)
and joining the REC J∗ (red). [Bottom] Daily DR reward at REC level (red), and maximum achievable
reward (black).
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Figure 4. Toy example: [Top] cumulative energy sold to the grid within DR periods for entity #1 (red),
#2 (blue) and #3 (black). [Bottom] Extra profit obtained by entity #1 (red), #2 (blue) and #3 (black).

4.2. Realistic Example

We then considered a realistic REC comprising 30 PV prosumers with BESS, of which
five are pure producers (i.e., with zero load). For simplicity, all entities are referred to as
prosumers. The peak PV generation capacity Eu and BESS capacity Su of each prosumer
are reported in Table 2.

For the first day of simulation, the total load and generation profiles of REC mem-
bers are shown in Figure 5 (top). The net energy En injected into the grid is illustrated
in Figure 5 (middle), while the overall energy stored in the batteries is depicted in
Figure 5 (bottom). The energy selling price π

g
u(t) is represented by the green time series in

Figure 5 (middle). From the latter figures, it is apparent that during DR periods, entities
strategically discharged their storage systems to inject additional energy into the grid. As a
result, the prosumers achieved higher profits compared to their baseline scenario, as can be
seen in Figure 6 (top), where the daily cumulative profit of all prosumers J∗ is compared
with that related to standalone operation J∗0 . Figure 6 (bottom) shows the total community
reward along with the maximum achievable one, i.e., ∑

R
j=1 γ̄j, for all simulation days. The

net energy injected into the grid during DR requests is reported in Figure 7, for all days.
Note that negative values mean that energy is drawn from the grid during DR requests.

Table 2. Values of parameters for each entity.

Entity 1 2 3 4 5 6 7 8 9 10

Eu [kWh] 29.2 46.4 34.6 19.5 12.8 28.8 62.4 27 26.4 26.8
Su [kWh] 44 120 72 30 20 58 140 56 44 56

Entity 11 12 13 14 15 16 17 18 19 20

Eu [kWh] 36 54.4 41.6 13.7 10 52.8 14.4 31.2 74 28.8
Su [kWh] 70 80 60 8 12 88 24 52 92 48

Entity 21 22 23 24 25 26 27 28 29 30

Eu [kWh] 25.8 31.2 40.8 12 45 36 24 59.8 35.2 42.8
Su [kWh] 68 52 15 10 60 100 40 108 150 96
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Figure 5. Realistic example: [Top] overall load of non-scheduled entities El(t) (blue), overall gen-
eration of non-scheduled entities Ep(t) (red), overall load of entities with BESS (green), overall
generation of entities with BESS (black). [Middle] Net energy En(t) injected into the grid at REC
level (blue) and energy selling price π

g
u(t) (green). [Bottom] Total energy stored in the BESS by REC

entities. Yellow bars denote the time periods of DR requests.
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Figure 6. Realistic example: [Top] cumulative daily profit of all entities operating independently J∗0
(blue) and joining the REC J∗ (red). [Bottom] Daily DR reward at REC level (red), and maximum
achievable reward (black).
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Figure 7. Realistic example: cumulative daily net energy injected into the grid within DR periods

∑
R
j=1 EDR

j (red). Cumulative daily energy thresholds of DR requests ∑
R
j=1 EDR

j,0 (green), ∑
R
j=1 EDR

j,1

(black), ∑
R
j=1 EDR

j,2 (blue), and ∑
R
j=1 EDR

j,3 (orange).

The red and blue curves in each plot of Figure 8 represent the time series of energy
charged (Ec

u(t)) and discharged (Ed
u(t)), respectively, for BESS units #1 (top), #10 (middle),

and #20 (bottom), in the first day of simulation. It is worth noting that, despite a broad
range of PV variability, demand patterns, and dynamic price signals, the proposed optimal
BESS operation avoided simultaneous storage charging/discharging, i.e., the red and blue
curves were never both nonzero, as ensured by Theorem 1.

From a computational viewpoint, the simulation results show that the proposed
procedure was efficient even when handling a large number of prosumers. Specifically,
for R = 2 (10 binary variables), solving 30 instances of Problem 1 (LP) alongside a single
instance of Problem 2 (MILP) for an entire day (T = 96) required approximately 0.29 s
on average. (The proposed procedure was implemented in Python 3 and solved using
CPLEX 12 on an Intel i7-11700@3.60 GHz processor with 16 GB RAM. For a case with R = 4
(20 binary variables), the average solution time was 0.87 s per day).
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Figure 8. Realistic example: Energy charged (red) and discharged (blue) for entity #1 (top), #10
(Middle) and #20 (bottom), for a selected day. Yellow bars denote the time periods of DR requests.
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5. Conclusions

A procedure for the optimal management of the energy storage systems of prosumers
joining an REC under DR programs has been proposed. Such a procedure guarantees each
entity a total profit no less than that obtained by operating optimally outside the REC. This
method requires the solution of a linear program for each schedulable entity and of one
low-complexity MILP, thus guaranteeing an affordable computational burden, even for
large communities.

Future work will focus on the management of uncertainty in load and generation
profiles, exploring complementary approaches such as probabilistic models or robust
optimization, as well as incorporating nonlinear pricing structures to enhance applicability
in diverse market conditions, such as those with real-time pricing. Moreover, the proposed
approach will be specialized to a receding-horizon implementation accounting for real-
time pricing schemes. Future directions will also address the introduction of other kinds
of entities, such as electric vehicles or shared storage systems, and the extension of the
proposed framework to manage multiple energy carriers, such as electricity and heat,
jointly dispatched within a unified framework, as well as different energy demand models.
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