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discrete-time systems with l2 parametric

perturbations
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Abstract—This paper addresses the robust strict positive
realness (RSPR) problem for families of discrete-time poly-
nomials where the uncertainty is described via a l2 ball in
coefficient space. It is shown constructively that under the
only assumption that all the polynomials of the family are
Schur, the sought filter can be provided in closed form as
a polynomial or rational function with an a-priori bounded
degree. The proposed synthesis procedure is based on the
solution of a simple polynomial factorization problem.
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I. Introduction

The problem of robust strict positive realness (RSPR)
is of paramount importance in the framework of recur-
sive schemes for identification and adaptive control of un-
certain systems. In such schemes, providing robust local
convergence relies on the design of a filter which ensures
strict positive realness of a family of rational functions
associated with plant uncertainty [1],[2]. More specifi-
cally, given a set P of polynomials in the z−1 variable,
the RSPR problem amounts to determining a polynomial
or a rational filter F (z−1) such that each rational function
P (z−1)/F (z−1), P (z−1) ∈ P is strictly positive real. Sev-
eral approaches have been proposed to deal with the RSPR
problem in both the continuous- and discrete-time case for
different choices of the uncertainty set P. In [3],[4],[5] a
polyhedral set P in coefficient space is considered, while in
[6] the set P is described in terms of root location regions.
All the above results provide either sufficient or necessary
and sufficient conditions for the existence of the RSPR fil-
ter, and a few of them deal with filter synthesis. Notably,
necessary and sufficient conditions providing the filter in
closed form have not been given yet. In the recent paper
[7] the case of P being an ellipsoid in coefficient space has
been considered in the continuous-time framework. A con-
structive necessary and sufficient condition is given for the
existence of a solution to the RSPR problem, yielding a
closed form expression for the sought filter.

In this paper, the discrete-time counterpart of the prob-
lem dealt with in [7] is considered. Exploiting techni-
cal properties which pertain to discrete-time polynomials
and rational functions and which cannot be directly de-
rived from the continuous-time case in [7], a necessary and
sufficient condition for the existence of a solution to the
discrete-time RSPR problem with l2 parametric uncer-
tainty is derived. Moreover, a procedure for computing
F (z−1) in closed form is given. Such procedure is based
on the solution of a polynomial factorization problem and
yields a rational filter with bounded degree.
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The paper is organized as follows. Section 2 contains the
problem formulation. The main result is introduced in Sec-
tion 3 and the complete proof, which requires a few prelim-
inary lemmas, is reported in Section 4. Some application
examples are discussed in Section 5. Finally, Section 6 re-
ports some concluding comments.

Notation.
C: the complex plane;
z ∈ C: complex number;
Re[z], Im[z]: real and imaginary parts of z;
P (z−1): real polynomial in z−1;
Rn: real n-space;
v = (v1, . . . , vn)

′: vector of Rn (′ denotes transpose);
‖v‖2: 2-norm of v;
S: the set of Schur polynomials, i.e. the

set of all polynomials in z−1 whose
roots lie in |z| < 1;

Res[Φ, z0]: residue of function Φ(z−1) in z = z0;
u[x]: the unit step function;
a mod b: remainder of a/b.

II. Problem formulation and preliminary results

First, we need to recall the definition of positive realness
(PR) and strict positive realness (SPR) of a discrete-time
rational transfer function.
Definition 1: A discrete-time rational transfer function

Φ(z−1) is said to be positive real (PR) if
1. Φ(z−1) is analytic in |z| > 1;
2. Re[Φ(z−1)] ≥ 0 ∀z : |z| > 1.
Definition 2: A discrete-time rational transfer function

Φ(z−1) =
NΦ(z

−1)

DΦ(z−1)
is said to be strictly positive real

(SPR) if
1. NΦ(z

−1), DΦ(z
−1) ∈ S;

2. Re
[

Φ(e−jω)
]

> 0 ∀ω ∈ [0, 2π].
The following property pertains to PR discrete-time ratio-
nal transfer functions [10].
Lemma 1: The discrete-time rational transfer function

Φ(z−1) is PR if and only if
1. All poles z∗ of Φ(z−1) with |z∗| = 1 are simple;
2. Re[Φ(e−jω)] ≥ 0 for all ω ∈ [0, 2π] at which Φ(e−jω)
exists and is finite;
3. If z0 = ejω0 is a pole of Φ(z−1), then

e−jω0Res[Φ, z0] > 0.
The following result relates PR and SPR [10].
Lemma 2: Let Φ∗(z−1) be PR. Then, for sufficiently

small ε > 0,
Φ(z−1) = Φ∗((1− ε)z−1)

is SPR.
Consider the set of polynomials of degree m

Pρ :=

{

P (z−1) = P0(z
−1) +

n
∑

i=1

qiPi(z
−1) : ‖q‖2 ≤ ρ

}

where P0(z
−1) = 1 + a1z

−1 + . . . + amz−m, Pi(z
−1),

i = 1, . . . , n are given polynomials of degree m such that
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Pi(0) = 0, q = (q1 . . . qn)
′ ∈ Rn is the parameter vector,

and ρ is a positive scalar.
We can formulate the RSPR problem as follows.

RSPR problem. Given the set Pρ, determine, if it exists, a
polynomial or a rational function F (z−1) such that the ra-
tional function P (z−1)/F (z−1) is SPR for all P (z−1) ∈ Pρ.

Since the numerator of a strictly positive real rational ratio-
nal function is Schur by definition, we enforce the following
condition on Pρ.
Assumption 1: The nominal polynomial is Schur, i.e.,

P0(z
−1) ∈ S.

Let ρ∗ denote the l2 parametric stability margin of Pρ, i.e.,
the maximal ρ such that Pρ contains all Schur polynomials

ρ∗ = sup
Pρ⊂S

ρ.

In [3] it was shown that ρ < ρ∗ (i.e. the family contains
only Schur polynomials) is a necessary and sufficient con-
dition for the existence of a solution to the RSPR problem
when the polynomial family is a polyhedron in coefficient
space. In addition, a solution was provided in the form of
a series expansion, thus yielding in general a polynomial
filter of quite large and a-priori unknown degree.
In the present paper, we develop a procedure leading to
direct closed-form synthesis of a filter F (z−1), under the
only requirement ρ < ρ∗. In particular, the filter F (z−1)
is computed in the shape of polynomial o rational function
with degree bounded by a linear function of the degree m
of Pρ.
In this respect, we note that some of the results which char-
acterize the problem are straightforward extensions of the
continuous-time case in [7], and therefore, they will not be
worked out in deep detail. On the contrary, attention will
be devoted to the aspects of the problem which are pecu-
liar to the discrete-time case and indeed exploit technical
features of discrete-time systems.
Moreover, due to space limitations, we will not consider all
possible structures of Pρ, including non-generic ones, as it
was done in [7], but we will restrict to the generic case only,
in accordance with Assumption 2 in Section 3.
To proceed, let us introduce the following rational vector
function

G(z−1) = −
[

P1(z
−1)

P0(z−1)
, . . . ,

Pn(z
−1)

P0(z−1)

]′

(1)

and its real and imaginary parts evaluated along the unit
circle

R(ω) = Re[G(e−jω)]; I(ω) = Im[G(e−jω)].

It is easily verified that the RSPR problem amounts to the
computation of a SPR rational function Φ(z−1) such that

Re
[

Φ(e−jω)
(

1− q′G(e−jω)
)]

> 0 ∀ω ∈ [0, 2π] ∀q : ‖q‖2 ≤ ρ.

Once Φ(z−1) has been computed, F (z−1) is readily ob-
tained from the relation

F (z−1) =
P0(z

−1)

Φ(z−1)
.

Given a rational function Φ(z−1), define the following func-
tion of ω

γΦ(ω) =
Im[Φ(e−jω)]

Re[Φ(e−jω)]
.

The following result, which is a straightforward extension
of Lemma 3 in [7], further characterizes the solution of the
RSPR problem.
Lemma 3: Any filter solving the RSPR problem has the

form

F (z−1) =
P0(z

−1)

Φ(z−1)

where Φ(z−1) is a rational function such that
1. Φ(z−1) is SPR;
2. the inequality

‖R(ω)− γ(ω)I(ω)‖2 <
1

ρ
∀ω ∈ [0, 2π] (2)

holds for γ(ω) = γΦ(ω).

III. Main result

The following technical assumption on the structure of
Pρ is enforced.
Assumption 2: The set Pρ is such that I(ω) 6= 0 for all

ω ∈ (0, π) ∪ (π, 2π).
It is easily verified that Assumption 2 indeed represents
the generic case. The key observation is that each ω /∈
{0, π} for which I(ω) = 0 must be a common root of n
polynomials in ejω.
We are now ready to state the main result of the paper,
which yields the solution to the RSPR problem.
Theorem 1: Let ρ < ρ∗ and enforce Assumption 2. Con-

sider the polynomial

Π(z−1) =

n
∑

i=1

P0(z)Pi(z
−1)

[

P0(z
−1)Pi(z)− P0(z)Pi(z

−1)
]

.

(3)
Then,
1. Π(z−1) admits the following factorization

Π(z−1) = Az−k(1− z−1)r(1 + z−1)sΠ̄1(z)Π̄2(z
−1) (4)

where A is a real constant, k, r ≥ 1 and s ≥ 1 are inte-
gers and Π̄1(z

−1), Π̄2(z
−1) are uniquely determined monic

Schur polynomials.
2. For sufficiently small ε > 0, the rational function

Φ(z−1) = Φ∗((1− ε)z−1) (5)

where

Φ∗(z−1) =
σ(z−1)(−1)τr

z−(τr+τs)(1− z−1)r0σ(1)(1 + z−1)s0σ(−1)
Π̄1(z

−1)

Π̄2(z−1)
(6)

being
r0 = r mod 2, s0 = s mod 2,

κ =
r − r0

2
+

s− s0
2

+ k,
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σ(z−1) =
sgn A (−1)(r−r0)/2

z−κ
,

τr = r0u[−σ(1)], τs = s0u[−σ(−1)]
is SPR and such that γΦ(ω) satisfies (2), i.e., the filter

F (z−1) =
P0(z

−1)

Φ(z−1)
(7)

solves the RSPR problem.
Remark 1: Note that the expression of the filter F (z−1)

in (7) does not depend on ρ, i.e., (7) is the sought solution
for all ρ < ρ∗.
Remark 2: By simple inspection of (5) and (6) it is easily

verified that the degrees of the numerator and denominator
of the filter F (z−1) are bounded above by a linear function
of the degree m of the nominal polynomial P0(z

−1). In
particular, it can be shown that the degree of the numerator
is bounded by 3m+ 3.

IV. Proof of Theorem 1

We start with the consideration that inequality (2) en-
forces a constraint on γ(ω) of the form

γ(ω) < γ(ω) < γ(ω) ∀ω ∈ [0, 2π] (8)

where γ(ω) and γ(ω) are explicitly computable functions.
Therefore, any solution of the RSPR problem is given by a
SPR function Φ(z−1) such that γΦ(ω) lies within the band
(8). Let us introduce the function

γ∗(ω) = argmin
γ
‖R(ω)− γI(ω)‖2

which is at each ω the value of γ(ω) minimizing the left
hand side of (2).
Obviously, γ∗(ω) is contained in the band defined by γ(ω)

and γ(ω). We will proceed by first showing that Φ∗(z−1)
constructed as in (6) is PR and such that γΦ∗(ω) = γ∗(ω),
and then by proving that Φ∗(z−1) can be perturbed as in
(5) into a SPR function Φ(z−1) such that γΦ(ω) satisfies
(2).
Let us recall a fundamental result characterizing the l2
parametric stability margin of the class Pρ [9].
Lemma 4: Suppose Assumption 2 holds and let

ρ0 =
1

‖R(0)‖2
(9)

ρπ =
1

‖R(π)‖2
(10)

ρ̄ = inf
ω∈(0,π)∪(π,2π)

‖I(ω)‖2
[‖I(ω)‖22‖R(ω)‖22 − (R′(ω)I(ω))2]1/2

.

(11)
Then, the l2 parametric stability margin of Pρ is given by

ρ∗ = min{ρ0, ρπ, ρ̄}.
Next, we need to characterize the set Γ of all bounded
functions γ(ω) solving (2). The following result parallels
Lemma 4 in [7].

Lemma 5: Let ρ∗ be the l2 parametric stability margin
of Pρ and suppose ρ < ρ∗. Then, the following statements
hold.
1. Γ is the set of bounded continuous functions γ(ω) such
that

γ(ω) < γ(ω) < γ(ω) ∀ω ∈ [0, 2π]

where

γ(ω) = min

{

γ∗(ω)±
√
∆(ω)

‖I(ω)‖2
2

}

;

γ(ω) = max

{

γ∗(ω)±
√
∆(ω)

‖I(ω)‖2
2

}

being

γ∗(ω) =
R′(ω)I(ω)

‖I(ω)‖22
(12)

and

∆(ω) = [R′(ω)I(ω)]
2 − ‖I(ω)‖22

[

‖R(ω)‖22 −
1

ρ2

]

.

2. Γ is nonempty.
Proof: The proof is the same as that of Lemma 4 in

[7] with the set Ω̄0 replaced by {(0, π) ∪ (π, 2π)} and the
set Ω0 replaced by {0, π}.
The following lemma states two fundamental properties
of the polynomial Π(z−1) in (3) and its relationship with
γ∗(ω), which is of utmost importance for the development
of the main result.
Lemma 6: Let Assumption 2 hold. Then, the polyno-

mial Π(z−1) is such that
1.

Π(e−jω) = 2
[

P0(e
jω)P0(e

−jω)
]2·[I ′(ω)I(ω)− jR′(ω)I(ω)] ;

2.

Re
[

Π(e−jω)
]

≥ 0 ∀ω ∈ [0, 2π]
Re
[

Π(e−jω)
]

> 0 ∀ω ∈ (0, π) ∪ (π, 2π)
; (13)

3.

γ∗(ω) =
Im
[

Π(ejω)
]

Re [Π(ejω)]
.

Proof: Let Π(z−1) be rewritten as

Π(z−1) = P0(z)
[

−P0(z
−1)G(z−1)

]′

·
[

−P0(z
−1)P0(z)G(z) + P0(z)P0(z

−1)G(z−1)
]

=
[

P0(z)P0(z
−1)
]2

·
[

G′(z−1)G(z)−G′(z−1)G(z−1)
]

.

We get

Π(e−jω) = 2
[

P0(e
jω)P0(e

−jω)
]2

· [I ′(ω)I(ω)− jR′(ω)I(ω)] .
(14)

This proves statement 1. Statement 2 follows directly from
(14) and Assumption 2. Finally, from (14) and (12) we get
that statement 3 holds.
The first statement of Theorem 1 follows from (13) and the
fact that I(ω) = 0 only for ω ∈ {0, π} (Assumption 2).
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Now consider Φ∗(z−1) as in (6), we have the following re-
sult.
Lemma 7: The function Φ∗(z−1) has the following prop-

erties
1. Φ∗(z−1) is PR;
2. γΦ∗(ω) = γ∗(ω) ∀ω ∈ (0, π) ∪ (π, 2π).

Proof: We will first show that if two polynomials
Π1(z

−1) and Π2(z
−1) are such that

Π(z−1) = Π1(z)Π2(z
−1)

then, the rational function

Φ(z−1) =
Π1(z

−1)

Π2(z−1)

is such that
1.

Re[Φ(e−jω)] > 0 ∀ω ∈ (0, π) ∪ (π, 2π);

2.

γΦ(ω) = γ∗(ω).

Indeed, we have

Φ(e−jω) =
Π1(e

−jω)

Π2(e−jω)
=

Π1(e
−jω)Π1(e

jω)

Π2(e−jω)Π1(ejω)
=

=
‖Π1(e−jω)‖2
Π(e−jω)

=
‖Π1(e−jω)‖2

Π∗(ejω)
=
‖Π1(e−jω)‖2Π(ejω)

‖Π(e−jω)‖2 .

Hence, Re[Φ(e−jω)] > 0 ∀ω ∈ (0, π) ∪ (π, 2π) by Lemma
6, and moreover

γΦ(ω) =
Im[Φ(e−jω)]

Re[Φ(e−jω)]
=

Im[Π(ejω)]

Re[Π(ejω)]
= γ∗(ω).

Now, it is easy to check that Π(z−1) can be rewritten as

Π(z−1) = sgn A (−1)(r−r0)/2

·[|A|1/2(1− z)(r−r0)/2(1 + z)(s−s0)/2]Π̄1(z)
·[|A|1/2(1− z−1)(r−r0)/2(1 + z−1)(s−s0)/2]Π̄2(z

−1)
·(1− z−1)r0(1 + z−1)s0z−κ.

By observing that

(1− z−1)r0 = (1− z−1)r0u[σ(1)](1− z−1)r0u[−σ(1)]

= (1− z−1)r0u[σ(1)](−1)τrz−τr (1− z)r0u[−σ(1)]

(1 + z−1)s0 = (1 + z−1)s0u[σ(−1)](1 + z−1)s0u[−σ(−1)]

= (1 + z−1)s0u[σ(−1)]z−τs(1 + z)s0u[−σ(−1)]

we get
Π(z−1) = Π∗1(z)Π

∗
2(z

−1)

and

Φ∗(z−1) =
Π∗1(z

−1)

Π∗2(z
−1)

where

Π∗1(z) = sgn A (−1)(r−r0)/2 · |A|1/2(1− z)(r−r0)/2(1 + z)(s−s0)/2

·(−1)τr (1− z)r0u[−σ(1)] · (1 + z)s0u[−σ(−1)]Π̄1(z)

Π∗2(z
−1) = |A|1/2(1− z−1)(r−r0)/2(1 + z−1)(s−s0)/2

·(1− z−1)r0u[σ(1)](1 + z−1)s0u[σ(−1)] · z−κz−τrz−τsΠ̄2(z
−1).

Hence, γΦ∗(ω) = γ∗(ω) and Re[Φ∗(e−jω)] > 0 for all
ω ∈ (0, π) ∪ (π, 2π).
Since a rational function is PR if and only if its inverse is,
all we have to check is that Φ∗(z−1) is indeed PR by prov-
ing that either Φ∗(z−1) or its inverse have positive residues
in z = 1 and negative residues in z = −1. For the sake of
simplicity, we check this only for the case

r0 = s0 = 1, σ(1) = 1, σ(−1) = −1.

We get τr = 1, τs = −1, then

Φ∗(z−1) =
σ(z−1)(1 + z−1)

z−1(1− z−1)

Π̄1(z
−1)

Π̄2(z−1)
.

We have

Res[Φ∗, 1] = 2σ(1)
Π̄1(1)

Π̄2(1)
> 0

Res[Φ∗−1,−1] = 2

σ(−1)
Π̄2(−1)
Π̄1(−1)

< 0.

The other cases are handled the same way.

To prove the second part of Theorem 1, taking Lemma 3
into account, it suffices to show that Φ(z−1) in (5) is SPR
and that the inequality

‖R(ω)− γ(ω)I(ω)‖2 <
1

ρ
(15)

holds for γ(ω) = γΦ(ω) for all ω ∈ [0, 2π].
According to Lemma 7, Φ∗(z−1) is PR. Hence, Φ(z−1)
turns out to be SPR by Lemma 2.
By Lemma 5, Lemma 6 and Lemma 7, (15) is satisfied for
γ(ω) = γΦ∗(ω) for any ρ < ρ∗ and ω ∈ (0, π) ∪ (π, 2π).
Moreover, since γΦ(ω) depends continuously on ε, it turns
out that the left hand term of inequality (15) for γ(ω) =
γΦ(ω) is continuous with respect to ε. Hence, observing
that γΦ(0) = 0 and ρ < ρ∗, it follows that, for sufficiently
small ε, (15) holds for γ(ω) = γΦ(ω) for all ω ∈ [0, 2π].
This completes the proof of the main result.

Remark 3: In Theorem 1, the function Φ(z−1) is ob-
tained by performing a small perturbation z−1 → (1 −
ε)z−1 on Φ∗(z−1) in order to make it SPR. Indeed, it can
be easily seen that a function Φ(z−1) satisfying the same
properties can be found as well by applying such perturba-
tion only to the factors with zeroes on the unit circle (see
also the examples in the next section).

V. Examples

In this section we present some examples to illustrate the
proposed results.

Example 1: Consider the set

Pρ =
{

P (z−1) = (1− 0.5z−1)2 + q1z
−1 + q2z

−2 ; ‖q‖2 ≤ ρ
}
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It is easy to verify that the l2 parametric stability margin
is given by ρ∗ = 1/(4

√
2). Moreover, from (1) we have

G(z−1) =

[ −z−1

(1− 0.5z−1)2
,

−z−2

(1− 0.5z−1)2

]′

and from (3)

Π(z−1) = (1− 0.5z)2z−1[(1− 0.5z−1)2z − (1− 0.5z)2z−1]
+(1− 0.5z)2z−2[(1− 0.5z−1)2z2 − (1− 0.5z)2z−2]

= 7
4 (1 + z−1)(1− z−1)(1− 0.5z)2(1− 4

7z
−1 + 4

7z
−2).

It is easily shown that Assumption 2 holds and the factor-
ization 4 yields

A = 7/4; r = 1; s = 1;
Π̄1(z

−1) = (1− 0.5z−1)2; Π̄2(z
−1) = (1− 4

7z
−1 + 4

7z
−2);

r0 = 1, s0 = 1, κ = 0, σ(z−1) = 1, τr = τs = 1.

Therefore, from Theorem 1, we have that for sufficiently
small ε > 0, the function Φ(z−1) = Φ∗((1− ε)z−1) where

Φ∗(z−1) =
(1− 0.5z−1)2

(1 + z−1)(1− z−1)(1− 4
7z
−1 + 4

7z
−2)

yields a filter F (z−1) solving the RSPR problem for all
ρ < 1/(4

√
2). By Remark 3, a solution having a simpler

expression can be derived by perturbing only the factors of
Φ∗(z−1) with zeroes on the unit circle, yielding

Φ(z−1) =
(1− 0.5z−1)2

(1− 4
7z
−1 + 4

7z
−2)

· 1

(1 + (1− ε)z−1)(1− (1− ε)z−1)
.

The corresponding filter F (z−1) is given by

F (z−1) = (1+(1−ε)z−1)(1−(1−ε)z−1)(1− 4

7
z−1+

4

7
z−2).

Note that in this particular case the filter F (z−1) is a poly-
nomial. The plot of γΦ(ω) is depicted in Fig. 1(a) and the
Nyquist plot of Φ(z−1) is depicted in Fig. 1(b).

Example 2: Let

Pρ = {P (z−1) = (1− 0.5z−1)2 + q1z
−1 + q2(z

−1 + z−2)
; ‖q‖2 ≤ ρ}

we have
ρ∗ = 1/4

√
5.

Computing and factorizing Π(z−1) yields

Π(z−1) = (1− 0.5z)2(1 + z−1)(1− z−1)
·(z + 1.4565)(1 + 0.0435z−1 + 0.6866z−2)

hence, by Theorem 1 and Remark 3,

Φ(z−1) =
(1− 0.5z−1)2(1 + 0.6866z−1)

)(1 + 0.0435z−1 + 0.6866z−2)

· 1

(1− (1− ε)z−1)(1 + (1− ε)z−1)
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Fig. 1. Example 1. (a): Plot of γΦ(ω) (dashed), γ(ω), γ(ω) (solid).

(b): Nyquist plot of Φ(z−1)

and F (z−1) is then computed as

F (z−1) =
(1 + 0.0435z−1 + 0.6866z−2)

1 + 0.6866z−1
·(1− (1− ε)z−1)(1 + (1− ε)z−1)

Note that in this case, the obtained filter is not a polyno-
mial.

VI. Conclusion

The problem of designing discrete-time filters for robust
strict positive realness of an uncertain family of polyno-
mials (RSPR problem) has been considered in the case
of uncertainty being defined by an ellipsoid in coefficient
space. It has been shown that a necessary and sufficient
condition for a solution to exist is the stability of the poly-
nomial family. The sought filter was provided in the shape
of a polynomial or rational function with a-priori bounded
degree. Moreover, it has been shown that the solution can
be computed in closed form by solving a polynomial factor-
ization problem. Finally, some application examples have
been developed to illustrate the proposed results.
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