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Robust Output Feedback Variable-Horizon MPC
with Adaptive Terminal Constraints

Renato Quartullo, Gianni Bianchini, Andrea Garulli, Antonio Giannitrapani

Abstracit— This letter presents a robust output feedback
variable-horizon model predictive control scheme for sys-
tems in which the state is not directly available but is
estimated from noisy measurements. The control scheme
is designed to intercept a moving target with a known
trajectory while ensuring constraint satisfaction, recursive
feasibility and finite-time convergence in the presence of
bounded process disturbances and measurement noise.
A key novelty of the proposed approach is the online
adaptation of the terminal set, which reduces conservatism
and improves performance in terms of final distance to
the target, compared to existing tube-based methods. The
effectiveness of the proposed approach is demonstrated
on a numerical example concerning an orbital rendezvous
maneuver of a spacecraft with an uncontrolled rotating
object.

[. INTRODUCTION

Model predictive control (MPC) is widely used in con-
strained control problems due to its ability to optimize
performance while respecting system limitations. Traditional
MPC relies on solving an optimal control problem at each
time step, where the cost function depends on the state and
input variables over a fixed-length prediction horizon [1].
Recently, approaches that consider the horizon length as a
problem variable have gained attention, as this enables greater
flexibility in the optimization problem and allows tasks to
be completed within prescribed deadlines. Several techniques
directly minimize the horizon length, as in time-optimal MPC
[2]-[6], while others, like shrinking-horizon MPC, reduce
it step by step [7], [8]. An even more flexible framework
is Variable-Horizon MPC (VH-MPC), in which the horizon
length is included among the optimization variables in the cost
function. Introduced in [9] for linear systems with bounded
disturbances, this approach ensures recursive feasibility, finite-
time convergence and robust constraint satisfaction via tube-
based MPC. However, its level of conservatism depends on the
choice of the terminal constraint. In this respect, an adaptive
terminal constraint selection is adopted in [10], whose aim is
to minimize the final distance to a reference trajectory.

The aforementioned approaches rely on state feedback,
assuming full knowledge of the system state. In many practical
scenarios, only partial knowledge of the state is available,
possibly corrupted by noise. This introduces the necessity to
incorporate state estimation to ensure feasibility and robustness
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against disturbances. A possible solution is to resort to output
feedback tube-based MPC. In [11], [12], tube-based MPC is
combined with state estimation performed via a Luenberger
observer, while [13] extends this approach to handle time-
varying constraints. Meanwhile, alternative estimation tech-
niques, such as set-membership methods, have been explored
to enhance robustness [14]-[16]. All these approaches focus
on fixed-horizon optimal control problems. To the best of our
knowledge, output feedback tube-based MPC schemes relying
on variable-horizon formulations have not been explored so
far.

In this letter, a robust output feedback VH-MPC scheme
with adaptive terminal constraints is proposed, in which the
state is estimated through a Luenberger observer from noisy
measurements. The goal is to intercept a moving target with
a known trajectory, in the presence of bounded process dis-
turbance and measurement noise. The main novelty is the
introduction of an adaptive mechanism for setting the terminal
constraint set, following the approach in [10], to cope with the
output feedback case. This solution has the twofold objective
of preserving recursive feasibility and finite-time convergence
while reducing as much as possible the final distance to
the target, despite the lack of full state information. The
proposed output feedback VH-MPC scheme is validated on a
numerical example involving an orbital rendezvous maneuver
of a spacecraft with an uncontrolled tumbling object.

The rest of the letter is organized as follows. The output
feedback control problem is introduced in Section II. The
proposed MPC scheme is presented in Section III, along with
a discussion of its properties. Simulation results are reported
in Section IV. Some conclusions are drawn in Section V.

The adopted notation is fairly standard. The symbols & and
© represent the Minkowski sum and Pointryagin set difference,
respectively. The notation |c| is used to indicate the integer
part of c € R.

Il. TUBE-BASED OUTPUT FEEDBACK CONTROL

Let us consider the discrete-time linear time-invariant sys-

tem ol 1)
y(k)

where (k) € R™ is the system state at time k, u(k) € R™ is
the control input, y(k) € RP is the measured output, and w(k)
and n(k) are the process disturbance and measurement noise,
respectively. It is assumed that w(k) and n(k) are bounded,
ie. w(k) € W, n(k) € N, where W and N are bounded

= Ax(k) + Bu(k) + w(k), 0
= Cz(k) + n(k),



convex sets containing the origin. The control objective is to
drive the state to a small neighborhood of a known reference
trajectory 7(k) in finite time, while optimizing a suitable
performance index. Moreover, system (1) is subject to the
following (possibly time-varying) state and input constraints

z(k) € X(k), u(k) € Uk). )

The sets X'(k) and U(k) are assumed to be convex and to
contain the origin. Moreover, the pairs (A, B) and (4,C)
are stabilizable and detectable, respectively. Hereafter, we
recall the classical tube-based output feedback control formu-
lation [1, Ch. 5].

A. Observer Design

A Luenberger observer is employed to estimate the state,
so that the estimated state dynamics read

#(k+1) = Az(k) + Bu(k) + L(y(k) — Ci(k)), (3

where the matrix L is such that A; £ A — LC is Schur.
The estimation error between the true and estimated state is
defined as Z(k) £ x(k) — #(k) and evolves as

E(k+1) = Api(k) + 0(k), 4)

where §(k) = w(k) — Ln(k), and therefore 6(k) € A £
W @ (—LN). Let the initial estimation error Z(0) belong to

a set So. Then, according to (4), Z(k) € S(k) where the set
sequence S(k) satisfies

Sk+1)=ASk)® A, 5)

with S (0) = So. The observer dynamics in (3) can be rewritten
as

#(k+1) = Az(k) + Bu(k) + §(k), (6)
with 0(k) = L(y(k) — Ci(k)) = LC%(k) + Ln(k). Hence,
§(k) € A(k) & LCS(k) @ LN. Note that 6(k) behaves as
a bounded additive process disturbance for the observer state
dynamics (6).

B. Controller Design

As usual in tube-based control techniques, the control policy
is chosen as

u(k) = v(k) + K(&(k) — z(k)), ©)

where the matrix K is such that Ax £ A+ BK is Schur and
z(k) satisfies the nominal disturbance-free dynamics

2(k+1) = Az(k) + Bu(k). (8)

driven by the nominal control signal v(k). The control error is
defined as e(k) = #(k) — z(k) and its dynamics are obtained
by subtracting (8) from (6), thus resulting in

e(k +1) = Age(k) + 0(k). ©)

Assume the initial control error belongs to a bounded set Sy,
then e(k) € S(k), where the sequence S(k) satisfies

S(k+1) = AgS(k) @ A(k) (10)
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with §(0) = Sp. Note that if Sp = {0}, which corresponds
to choosing z(k) = &(k), then the set sequence S(k) can be
computed as S(k) = S.F " AL A(k — i — 1). Let us define
the tightened constraints for the nominal system

ROEINGENGI

(11)
U(k) & KS(k).

Y
L

It turns out that, if the nominal state and input sequences
satisfy the tightened constraints (11), then the perturbed tra-
jectories of the closed-loop system (1) with the control law
(7) satisfy the state and input constraints (2).

[1l. OuTPUT FEEDBACK VH-MPC

In this work, the nominal control input v(k) in (7) is
computed via a VH-MPC scheme. In particular, at each time
instant k, the following optimization problem Py (Z(k), Z¢ k)
is considered

Ne—1
pin Ty = Ny +7 > o)l (12a)
, 2
st 2x(0) = (k) (12b)
21 (j +1) = Aze(j) + Bu(j) (12¢)
() € Ze(§), j=1,...,Ne—1  (12d)
ve(§) € Vk(j), 7=0,...,Ny—1 (12¢)
21(N3) € {r(k+ Np)} © Z; 4 (120)

where the sequences vy = [vg(0),..., vg(N —1)], 2z =
[21(0), ..., zx(Ny)] are the nominal inputs and states, respec-
tively, along the prediction horizon Ny, and || - || indicates an
arbitrary vector norm. The solution of P (z(k), Z; ) consists
of the optimal cost J;, the optimal horizon length N/, and
the optimal input and state sequences, v}, and 27, respectively.
Note that, given the initial state constraint z(0) = &(k), the
control error e(k) at every time step k is equal to zero and thus
the control law (7) can be written as u(k) = v(0). In (12), the
tightened constraints along the prediction horizon are defined
as

Z() 2 xk+ie [Sh &), g
Vi(j) Uk + §) © KSk(3),
where Sy, (j) 2 S(k + j) and
Sk(j) = iA%Ak(j —i—1), (14)
1=0

and Ag(j) 2 A(k + j) = LCS,(j) @ LN. Notice that (14)
corresponds to (10) taking into account that e(k) = 0, and
hence Si(0) = {0}, at every time step k.

The key ingredient of problem (12) is the terminal constraint
set Z¢ 1, whose design is crucial both for recursive feasibility
and to achieve a close proximity to the reference trajectory.
This is discussed in the next subsection.
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Algorithm 1 OF-ATC Scheme
1: Input £(0), A
2: k<« 0
3: Solve Py(£(0),{0}) and get (J5, N, v§, 25)
4: u(0) < v§(0)
5: &(1) < Az(0) + Bu(0) + L(y(0) —
6: Zpo {0}, g0
7
8
9

C1(0))

: while N > 1 do
k+—k+1
(CI) Solve Py (3(k),{0}), get (J;:, N}, o5, z})
10: if J; > Ji_; — X then

11: Zik < Zpp-1® Ag’:’l_lA(k -1)

12: (C2) Solve Py (z(k), Z5) and get (J, N, vf, 25)
13:  else

14: (it Nigs v 20) = (T Ny 0, 22)

15: Zrg {0}

16: T+ k

17 end if

5 u(k) < vp(0

)
190 &(k+1) < Az(k) + Bu(k) + L(y(k) — Cz(k))
20: end while
21: return 1), T, <+ k+1

A. VH-MPC with Adaptive Terminal Constraints

With the goal of intercepting the reference trajectory r(k), a
natural choice for the terminal constraint set would be Z¢ , =
{0} for all k, resulting in the terminal equality constraint
21 (Ng) = r(k + Ni). However, it turns out that process and
measurement disturbances can make this constraint infeasible.
To address this issue, we propose a control strategy relying
on an adaptive choice of the terminal set Zy; that ensures
recursive feasibility, finite-time convergence, and minimizes
the distance to the desired trajectory.

The approach prioritizes solving problem (12) with the
terminal equality constraint Z;; = {0} as long as it is
feasible and the optimal cost decreases by at least a predefined
threshold A\ compared to the previous step. If this condition
is not met, a problem with an expanded terminal set Zy j is
solved to ensure feasibility and a sufficient cost decrease. More
specifically, at each time k, problem Py (&(k), {0}) is solved.
If its resulting optimal cost J;' satisfies J; < J;_, — A, the
control action is computed using this solution, Zy , is reset to
{0}, and the algorithm proceeds to the next step. If, conversely,
problem Py (3(k),{0}) is infeasible or J; > J; | — A, the
problem Py (z(k), Zy ) is solved instead, with the terminal
set defined as

-1

Zip=Zppo1 ® AT AR — 1), (15)

The solution of this problem is then used for selecting the
control action at time k. The entire procedure of the pro-
posed Output Feedback VH-MPC with Adaptive Terminal
Constraints (hereafter denoted as OF-ATC) is detailed in
Algorithm 1. The following assumption is enforced in order
to ensure that there exists an initial feasible control sequence
(of any length).
Assumption 1: The problem Py(Z(0), {0}) is feasible.

The following result establishes the key properties of the
proposed scheme.

Theorem 1: Let Assumption 1 be satisfied. Then, the fol-
lowing statements hold:

(i) Problems Py (&(k), Z¢ ), where the sets Zy; are de-
fined according to Algorithm 1, are feasible for all
k=1,2,... and any w(k) € W and n(k) € N;

(i) By selecting v in the cost J such that

AE1—~ysup { sup ZHKAJ ol p >0,

ko | seam) i

(16)

and setting A\ = \ in Algorithm 1, the optimal cost
decreases by at least A\ at each step, i.e.

Jr1 < Ji =\, Vk. (17)

Proof: (i) At step k, the solution v}, 2z}, results from

problem Py (&(k), Z¢ 1), with Z¢ 5, chosen as in Algorithm 1.
Feasibility of this problem implies that

2,(0) = (k) (18)
z,(J) € 2k(j), Jj=1,....N; -1 (19)
vr(4) € Ve(d), 5=0,..., Ny — (20)
2+ 1) = Az )+ka( ), 7=0,. =1 @D
2, (N) € {r(k + Np)} ® Z.k, (22)

where Zj(j) and Vj(j) are defined in (13). Consider now
the candidate solution v}, 2}, for step & 4 1 with length
N[ — 1, defined as follows

(7 +1) + Ajd(k),

P _ ji=0,...,
vp(j +1) + KARS(k),

j=0,...,

N -1
Ni =2,
(23)
where §(k) depends on the realizations of w(k) and n(k).
In the following, we prove the feasibility of the candidate
solution (23) for the problem Py 41 (Z(k+1), Z¢ k+1). In par-
ticular, we show that constraints (12b)-(12f) are satisfied by the
candidate solution (23) at step k£ + 1. First, by exploiting (18),
(23) and the closed-loop observer dynamics, one has

21 (4) =
”;c+1(3) =

25 (1) + LC%(k) + Ln(k)
z}‘;(O) + Bvj(0) + LCZ(k) + Ln(k)
Az(k) + Bu(k) + LCz (k) + Ln(k) = #(k + 1).

Zk+1( )=

Hence the initial constraint (12b) is satisfied by z;_,(0).
From (21), one has that

2p(1+2)=Az(j+ 1)+ Buj(j + 1). (24)

By using (23), equation (24) can be written as

(42 = 2p1 (G +1) — A6k
= A2 ()= Ajed(8)) + B (v ()~ K AS(K) )
= Azllc+1(j) + BU;H-l(j) - Aﬁ_lé(k)-



Hence, Z;chl(j +1) = Az,’cﬂ(j) + B%H(j) and thus
2,1, V), satisfies (12¢). Using (19)-(23) and (13), one has
Zhea(4) € Ze(f + 1) @ AY A(k)

= X(k+j+1)© [Si(i+1) @ Su(j + )] © AL AK)
J

D AL A(—1) B Sk(j+1) DAL A(R).

=0

Then, by (14) and recalling that Ax(0) = A(k) and Sk(j +
1) = Sk+1(J), one gets

— X(k+j+1) e

7j—1

D ARARG—i—1) & Sk (d)
=0

2p41(J) € X(k+j+1)©

=Xk+j+1)0 [Sk+1(j) @ 5k+1(j)} = Zp41())

and hence the sequence 2, ; satisfies (12d). Proving that v}
satisfies (12e) follows a similar argument. Finally, the terminal
state of the candidate solution (23), satisfies:

* * * N;Zfl
21 (Ng = 1) = 25 (Ny) + ARt d(k)

e {r(k+NO)Y @ 2 @ AN A(R)
={r(k+ Ny} ® Zfr41,

where Zy . is defined as in Algorithm 1. Hence, z;_ (N —1)
satisfies the terminal constraint (12f). This concludes the proof
of recursive feasibility.

(i) If J, ri1 < Ik —\, (17) holds by construction. Otherwise,
by using (16), it is easy to show that the cost J; , ; associated
to the candidate solution (23) is such that J; ., < Ji — A
Since the optimal solution of problem Pyy1(z(k+1), 2 k+1)
clearly satisfies J;; ; < J;, (17) immediately follows.

|

Remark 1: The computation of \ in (16) can be demand-
ing, even though it is performed offline. Nevertheless, the
complexity can be mitigated as follows. First, concerning
the infinite summation in (16), the terms | KA%-d|| decay
exponentially to zero as j — oco. Consequently, the summation
can be truncated after a sufficiently large number of terms,
without significant loss of accuracy. The most computationally
intensive part is the evaluation of the inner supremum over
the set A(k). In general, if the sets W, AN and S, are
polytopes, also A(k) is a polytope, whose number of facets
and vertices grows with k. In order to reduce the computational
burden, one may assume that YW, N and 30 are zonotopes,
which implies that A(k) is a zonotope itself [17]. While the
exact propagation of A(k) becomes trivial, the number of its
vertices still grows exponentially with the number of zonotope
generators. However, it is possible to limit the number of
vertices by computing a zonotope containing A(k) with a
prescribed maximum number of generators. This can be done
by using one of the available techniques for zonotope order
reduction [18].

The next result defines the convergence properties of the
proposed control scheme.

Theorem 2: Let Assumption 1 be satisfied. Then, the tra-
jectories Z(k) of the observer (3), with the VH-MPC control
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law defined via Algorithm 1, converge in a finite number of
steps 1. to the set

(25)

with T} as returned by Algorithm 1. The trajectories x(k)
of the closed-loop system (1) with the VH-MPC control law
converge to the set

Moreover, T, < | J&/\| where J§ is the optimal cost of the
initial problem Py (Z(0),{0}).

Proof: The cost decrease condition (17) guarantees that
Algorithm 1 terminates in a number of steps T, < |Ji/A.
Moreover, at step k = T, — 1, the optimization problem
Pr,—1(&(Tc — 1), Z¢,1.—1) is solved with the terminal set

(26)

T.—2
Ziroa= > Ax A

i=T,
being 7; the time step in which the control action is selected
for the last time as the solution of problem P (Z(k),{0})
during the execution of Algorithm 1. Then, since Ni_1 =1
by construction (see line 7 of Algorithm 1), the final observer
state is 2(7¢) = 2}, (1) + 0(T. — 1) and then, by (12f)

HT) e {r(T)y® Zim 1 ©A(T.—1)=T.

Finally, (26) follows from z(T;.) = &(T.)+#(T.) and Z(T;) €
S(T.). u

Remark 2: The proposed VH-MPC control scheme can be
easily extended to a setting in which the reference trajectory
r(k) is not known exactly. In fact, if it is assumed that r(k) €
R(k), where R(k) is a sequence of bounded convex sets, one
just has to replace the singleton {r(-)} with the set R(-) in
the terminal constraint (12f) and in the subsequent technical
developments. In this way, the properties of the control scheme
established in Theorems 1 and 2 still hold.

Remark 3: The proposed control law does not impose spe-
cific assumptions on the reference trajectory r(k). However,
the feasibility of problem Py(&(k),{0}) (Assumption 1) im-
plicitly depends on r(k). In particular, the characteristics of
r(k) influence the range of feasible horizon lengths Ny, which
in turn affects the flexibility of the VH-MPC scheme.

B. Properties of OF-ATC

The proposed approach presents several novel features that
make it different from other existing methods. First, it has been
observed that the solution of problem Py (&(k),{0}) satisfies
the cost decrease condition J; < Jg 11 — for most of the time,
and thus problem Py (Z(k), Z5 ) with Z5 # {0} is solved
only for very few consecutive steps right before maneuver
completion. Consequently, the set 7 defined in (25), is usually
the sum of very few terms. This leads to a small convergence
set around the selected point on the reference trajectory, thus
reducing the final distance to the target if compared to more
conservative methods in which the terminal constraint set
sequence is fixed a priori (see, e.g, [9]).
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Unlike the receding-horizon techniques described in [13],
the proposed method does not require the initial sets So and
Sy to be robustly positive invariant (RPI) with respect to 6 (k)
and §(k) for the systems (4) and (6), respectively.

Finally, it is worth observing that Assumption 1 is less
conservative than the usual assumption made in standard tube-
based MPC, which requires the feasibility of the initial opti-
mization problem for a pre-defined fixed horizon length. In-
deed, Assumption 1 only requires that the initial optimization
problem Py (Z(k),{0}) is feasible for some horizon length,
thus increasing the flexibility of the control scheme.

IV. SIMULATION RESULTS

The effectiveness of the proposed control law is tested on
an orbital rendezvous between a controlled spacecraft and an
uncontrolled tumbling object, which is relevant in applications
such as active debris removal [19], [20].

The dynamics of the controlled spacecraft are governed by
the Hill-Clohessy-Wiltshire (HCW) equations [21], formulated
in the radial-transverse-normal frame centered at the target
center of mass. These equations are discretized with samplin%
time ¢, = 11.7 s. The state vector z(k) = [2] (k) 2] (k)]
includes the spacecraft position and velocity vectors. The con-
trol input u(k) is the acceleration vector. Only measurements
of the position x,,(k) are assumed to be available, corrupted by
noise n(k) € N = [<0.01,0.01]* m. The spacecraft dynamics
are assumed to be affected by a bounded process disturbance
wk) €W =[-2-107%,2-103]" m x [1073,1073]" mss.

The target object is tumbling with a period of 600 s around
a spin axis orthogonal to the orbital plane. Its docking port is
located 1.5 m from the center of mass, while the capture point
is situated at a distance of 2 m. The reference trajectory r(k) =
(25 (k)" z{,’(k’)T]T is given by position and velocity of the
capture point and can be computed from the trajectory of the
docking port z%(k) = [:vg(k)T xﬁ(k)T}T. These trajectories
are obtained by integrating the rotational kinematics of a rigid
body and sampled at intervals of .

The spacecraft is required to remain within a visibility cone
stemming from the docking port with a half-angle av = 30 deg.
In this work, the cone is approximated with a polytopic
inner approximation. Moreover, the control input must satisfy
lu(k)||so < 0.02 m/s?. These requirements define the time-
varying constraint sets X (k), U in (2). Figure 1 provides
a schematic representation of the considered scenario. For
further details, the reader is referred to [22].

The maximum initial estimation error on the position and
velocities are 0.2 m and 10~ m/s, respectively, thus 5’0 in (5)
is a box. It is important to note that this set is not RPI for
system (4) with respect to d(k). The control effort in the
cost Ji is weighted in the 1-norm (which accounts for fuel
consumption) with v = 3, corresponding to A = 0.29 in (16).
In this case study, A\ has been computed by taking the sup
in (16) over a box containing A(k) (as explained in Remark 1).

A Monte Carlo simulation across 100 different scenarios sat-
isfying Assumption 1 has been conducted. For each scenario,
the initial radial and transverse coordinates of the spacecraft

Fig. 1. Qualitative illustration of the rendezvous mission. The capture
point trajectory zp (k) is depicted in dashed-red, while the docking
port position :cg(k:) in dashed-black. The green sets are the visibility
cones and the purple arrow is the spin axis. The dashed-blue line is the
trajectory xp (k).

are uniformly sampled over [—50,—15] m and [—10,10] m,
respectively, with the initial normal position and velocity
vector set equal to zero. The initial estimation error Z(0) has
been sampled from So. The disturbance sequences w(k) and
n(k) used in all experiments have been uniformly sampled
from the sets W and N/, respectively.

In the 100 tests, the average final distance to the cap-
ture point is 0.04 m and the average final velocity error is
0.001 m/s. The average value of T, — 7, corresponding to
the number of terms in the sum in (25) is 2.04 (96% of
the occurrences are equal to 2). This confirms that the final
set T is typically small, thus ensuring a close proximity of
the final state to the reference trajectory. The simulations
have been performed in MATLAB on a laptop equipped
with an Intel Core i7-1165G7 and 16 GB of RAM. Each
instance of problem (12) is solved by enumerating over a
finite set of prediction horizons, Ny, € {1,...,30}, leading to
a corresponding finite set of linear programs (LPs). Each LP
is solved using the Gurobi optimizer. The average execution
time is 0.5 s, which is much smaller than the selected t;.

The performance of the OF-ATC algorithm has been first
compared to a control scheme with a pre-defined (non adap-
tive) terminal constraint sequence. In particular, at each time
step k, problem (12) is solved with the terminal constraint

set chosen as Zy, = QO [Sk(Nk) @Sk(Nk)} , with Q =

S(o0) @ S(c0) (computed as described in [23]). This cor-
responds to the control law in [9] adapted to the output
feedback setting, and guarantees that the state trajectories
terminate in the set Q. This control scheme achieves an
average final position error of 0.52 m and a final velocity
error of 0.011 m/s, which are approximately one order of
magnitude larger than those obtained using OF-ATC. More-
over, the minimum distance is more than 4 times larger than
the maximum distance achieved by OF-ATC. A comparison
on the resulting trajectories for one simulation is reported in
Fig. 2, together with the final sets ensured by the two control
laws. These results highlight the reduced conservatism of the
proposed approach, thanks to the adaptive mechanism for the
selection of the terminal constraint.

Additionally, the performance of OF-ATC has been evalu-
ated against its state-feedback version in [10] (denoted as SF-
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Fig. 2. Trajectories xp (k) resulting from OF-ATC (blue) and the control
law borrowed from [9] (green). The set T is depicted in blue, while the
green set is Q. The points 27 (T¢) for the two laws are the blue and
green crosses. The whole reference z7 (k) and docking port mg(k)
trajectories are reported in dashed-red and dashed-black, respectively.

ATC), in which the full state is assumed to be exactly known.
This comparison aims to assess the performance degradation
introduced by output feedback with noisy measurements. The
results indicate that the final distance achieved by SF-ATC
is approximately 5 times smaller, while the control effort is
reduced by a factor of 1.25. No significant differences are
observed in terms of completion time. On the other hand,
if noisy position measurements (along with exact velocity
measurements) are fed to the SF-ATC scheme, feasibility is
lost during the maneuver in 49 cases, due to state constraint
violations. The performance drop exhibited by OF-ATC is
justified by the necessity to deal with partial state information
and to compensate for measurement noise.

Finally, the receding-horizon control law proposed in [13]
has been tested on the same scenario with fixed prediction
horizon equal to 30. Recall that this control law requires S(0)
and S (0) to be RPI sets for systems (9) and (4) with respect to
&(k) and 6(k), respectively. Therefore, they cannot be smaller
that the minimal RPI sets S(co) and S(oco). However, these
sets are generally large and, consequently, they may lead to
a severe constraint tightening. Indeed, when the minimal RPI
sets are chosen to initialize the receding-horizon MPC, none
of the 100 tested scenarios is initially feasible. This confirms
the higher flexibility of the variable-horizon approach.

V. CONCLUSIONS

This letter presented a robust output feedback variable-
horizon MPC framework for intercepting a moving target in
the presence of bounded process disturbances and measure-
ment noise. The proposed approach relies on an adaptive
mechanism for setting the terminal set of the MPC optimiza-
tion problem, which allows one to reduce significantly the final
distance to the target, as demonstrated through numerical sim-
ulations on an orbital rendezvous maneuver with a tumbling
target. Future work will focus on the use of set membership
state estimation techniques, in combination with the VH-MPC
control scheme, and on the extension of the proposed approach
to nonlinear systems.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

IEEE CONTROL SYSTEMS LETTERS, VOL. XX, NO. XX, XXXX 2025

REFERENCES

J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design, vol. 2. Nob Hill Publishing Madison,
WI, 2017.

L. Van den Broeck, M. Diehl, and J. Swevers, “A model predic-
tive control approach for time optimal point-to-point motion control,”
Mechatronics, vol. 21, no. 7, pp. 1203-1212, 2011.

C. Rosmann, F. Hoffmann, and T. Bertram, “Timed-elastic-bands for
time-optimal point-to-point nonlinear model predictive control,” in 2015
european control conference (ECC), pp. 3352-3357, IEEE, 2015.

R. Verschueren, H. J. Ferreau, A. Zanarini, M. Mercangtz, and M. Diehl,
“A stabilizing nonlinear model predictive control scheme for time-
optimal point-to-point motions,” in 2017 IEEE 56th annual conference
on decision and control (CDC), pp. 2525-2530, IEEE, 2017.

A. J. Krener, “Adaptive horizon model predictive control,” IFAC-
PapersOnLine, vol. 51, no. 13, pp. 31-36, 2018.

R. L. Sutherland, I. V. Kolmanovsky, A. R. Girard, F. A. Leve, and C. D.
Petersen, “On closed-loop Lyapunov stability with minimum-time MPC
feedback laws for discrete-time systems,” in 2019 IEEE 58th Conference
on Decision and Control (CDC), pp. 5231-5237, 1IEEE, 2019.

W. B. Greer and C. Sultan, “Shrinking horizon model predictive control
method for helicopter—ship touchdown,” Journal of Guidance, Control,
and Dynamics, vol. 43, no. 5, pp. 884-900, 2020.

H. Farooqi, L. Fagiano, P. Colaneri, and D. Barlini, “Shrinking horizon
parametrized predictive control with application to energy-efficient train
operation,” Automatica, vol. 112, p. 108635, 2020.

A. Richards and J. P. How, “Robust variable horizon model predictive
control for vehicle maneuvering,” International Journal of Robust and
Nonlinear Control, vol. 16, no. 7, pp. 333-351, 2006.

R. Quartullo, G. Bianchini, A. Garulli, and A. Giannitrapani, “Robust
variable-horizon MPC with adaptive terminal constraints,” arXiv preprint
arXiv:2410.08807, 2024.

D. Q. Mayne, S. V. Rakovié, R. Findeisen, and F. Allgéwer, “Robust
output feedback model predictive control of constrained linear systems,”
Automatica, vol. 42, no. 7, pp. 1217-1222, 2006.

M. Kégel and R. Findeisen, “Robust output feedback MPC for uncertain
linear systems with reduced conservatism,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 10685-10690, 2017.

D. Q. Mayne, S. Rakovi¢, R. Findeisen, and F. Allgéwer, “Robust output
feedback model predictive control of constrained linear systems: Time
varying case,” Automatica, vol. 45, no. 9, pp. 2082-2087, 2009.

L. Chisci and G. Zappa, “Feasibility in predictive control of constrained
linear systems: the output feedback case,” International Journal of
Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 12, no. 5,
pp. 465-487, 2002.

F. D. Brunner, M. A. Miiller, and F. Allgéwer, “Enhancing output-
feedback MPC with set-valued moving horizon estimation,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 9, pp. 2976-2986, 2018.

Z. Dong and D. Angeli, “Homothetic tube-based robust economic MPC
with integrated moving horizon estimation,” IEEE Transactions on
Automatic Control, vol. 66, no. 1, pp. 64-75, 2020.

M. Althoff and B. H. Krogh, “Zonotope bundles for the efficient
computation of reachable sets,” in 2011 50th IEEE conference on
decision and control and European control conference, pp. 6814-6821,
IEEE, 2011.

X. Yang and J. K. Scott, “A comparison of zonotope order reduction
techniques,” Automatica, vol. 95, pp. 378-384, 2018.

M. Shan, J. Guo, and E. Gill, “Review and comparison of active space
debris capturing and removal methods,” Progress in Aerospace Sciences,
vol. 80, pp. 18-32, 2016.

M. Leomanni, G. Bianchini, A. Garulli, A. Giannitrapani, and R. Quar-
tullo, “Orbit control techniques for space debris removal missions
using electric propulsion,” Journal of Guidance, Control, and Dynamics,
vol. 43, no. 7, pp. 1259-1268, 2020.

W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite
rendezvous,” Journal of the aerospace sciences, vol. 27, no. 9, pp. 653—
658, 1960.

M. Leomanni, R. Quartullo, G. Bianchini, A. Garulli, and A. Gian-
nitrapani, ‘“Variable-horizon guidance for autonomous rendezvous and
docking to a tumbling target,” Journal of Guidance, Control, and
Dynamics, vol. 45, no. 5, pp. 846-858, 2022.

S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
“Invariant approximations of the minimal robust positively invariant set,”
IEEE Transactions on automatic control, vol. 50, no. 3, pp. 406-410,
2005.



