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 a b s t r a c t

This paper presents a novel robust variable-horizon model predictive control scheme designed to 
intercept a target moving along a known trajectory, in finite time. Linear discrete-time systems affected 
by bounded process disturbances are considered and a tube-based MPC approach is adopted. The 
main contribution is an adaptive mechanism for choosing the terminal constraint set sequence in 
the MPC optimization problem. This mechanism is designed to ensure recursive feasibility while 
promoting minimization of the final distance to the target. Finite-time convergence of the proposed 
control scheme is proven. In order to evaluate its effectiveness, the designed control law is tested 
through numerical simulations, including a case study involving orbital rendezvous of a satellite with 
a tumbling object. The results indicate a significant reduction in conservatism compared to existing 
state-of-the-art methods using a fixed terminal set sequence.

© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Model Predictive Control (MPC) techniques usually require, at 
each time instant, the solution of an optimal control problem 
whose cost is a suitable function of the state and input vari-
ables, over a fixed-length prediction horizon (Rawlings, Mayne, 
& Diehl, 2017). In recent years, there has been a growing inter-
est towards MPC settings in which the length of the prediction 
horizon is itself a variable of the optimization problem. In fact, 
in some applications it is crucial to perform the desired task in 
the least amount of time or within a prescribed deadline. This 
is the case, for example, of spacecraft rendezvous and docking 
maneuvers with moving targets (Boyarko, Yakimenko, & Romano, 
2011; Capello, Dabbene, Guglieri, & Punta, 2018; Di Cairano, Park, 
& Kolmanovsky, 2012; Leomanni, Quartullo, Bianchini, Garulli, & 
Giannitrapani, 2022; Ramírez, Felicetti, & Varagnolo, 2023), and 
motion planning of robotic systems (Ardakani, Olofsson, Roberts-
son, & Johansson, 2018; Nascimento, Dórea, & Gonçalves, 2018; 
Verscheure, Demeulenaere, Swevers, De Schutter, & Diehl, 2009). 
In such cases, it may indeed be useful to include the length of the 
prediction horizon in the cost function of the MPC scheme.

A first possibility is to directly minimize the length of the 
prediction horizon. This results in the so-called minimum-time
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or time-optimal MPC. In Van den Broeck, Diehl, and Swevers 
(2011), a bilevel optimization scheme is proposed. The inner 
problem is a standard optimal control problem with fixed horizon 
length, while the outer problem aims at minimizing the horizon 
length under the constraint that the inner problem is feasible. 
In Rösmann, Hoffmann, and Bertram (2015), time optimality is 
pursued by using time-elastic bands, i.e., by including the sam-
pling time among the optimization variables. Time-optimal MPC 
for point-to-point motion is addressed in Verschueren, Ferreau, 
Zanarini, Mercangöz, and Diehl (2017), where an exponential 
increase of the stage costs along the horizon is used to enforce 
time-optimality and closed-loop stability of the resulting control 
scheme. Lyapunov stability of minimum-time MPC has been stud-
ied in Krener (2018), Sutherland, Kolmanovsky, Girard, Leve, and 
Petersen (2019).

An alternative to time-optimal MPC is known as shrinking-
time MPC: in this case, the horizon length is not an optimization 
variable, but it is reduced by design at every time step. This 
approach has been employed for an helicopter landing maneuver 
in Greer and Sultan (2020), and for energy-efficient operation 
of trains in Farooqi, Fagiano, Colaneri, and Barlini (2020). It is 
worth observing that the latter work is the only one among those 
cited so far in which some source of uncertainty is considered. In 
particular, suitable relaxations are proposed to retain recursive 
feasibility in the presence of bounded input disturbances.

A more general setting is that of Variable-Horizon MPC (VH-
MPC), in which the prediction horizon length is treated as a 
variable of the optimization problem and weighted in the cost 
function. In the seminal paper Richards and How (2006), this 
framework is considered for linear systems affected by bounded 
process disturbances, with application to vehicle maneuvers. Re-
cursive feasibility and finite-time convergence to a suitable region 
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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containing the target is achieved via a tube-based MPC approach. 
A possible drawback of this solution is that the convergence set 
is determined by the a priori worst-case disturbance sequence, 
along the entire maneuver. Therefore, the resulting performance 
may be conservative in terms of final distance to the target. The 
VH-MPC approach has been recently applied to path tracking for 
autonomous vehicles (Wang, Wang, Chen, Zhao, & Tan, 2021), 
helicopter landing (Ngo & Sultan, 2022), satellite docking to a 
tumbling target (Leomanni et al., 2022), drone rendezvous with a 
moving platform (Persson, Hansson, & Wahlberg, 2024).

In this paper, a new robust VH-MPC scheme is proposed, 
whose aim is to intercept a moving target with known trajectory, 
in the presence of bounded process disturbance. The main novelty 
is an adaptation mechanism for the terminal set of the tube-
MPC optimization problem, which has the twofold objective of 
preserving recursive feasibility while reducing as much as pos-
sible the final distance to the target. Finite-time convergence 
of the designed control scheme is proven. Moreover, as a side 
contribution, it is shown that time-optimal MPC can be recovered 
as a special case of the proposed VH-MPC setting, in which the 
resulting prediction horizon is guaranteed to reduce at every time 
step (Quartullo, Bianchini, Garulli, & Giannitrapani, 2024). The 
VH-MPC scheme is tested on a simple example, to illustrate its 
main properties, and on a realistic case study featuring the ren-
dezvous of a satellite with a tumbling target. Simulation results 
show that online adaptation of the terminal set leads to a remark-
able reduction of conservatism, with respect to employing the 
terminal set corresponding to the a priori worst-case disturbance 
sequence.

The rest of the paper is organized as follows. The variable-
horizon problem is formulated as a tube-MPC scheme in
Section 2. The novel control strategy guaranteeing finite-time 
convergence is presented in Section 3 and then tested in the 
aforementioned simulation scenarios in Section 4. Some conclu-
sions are drawn in Section 5.

Notation

The adopted notation is fairly standard. The symbols ⊕ and 
⊖ represent the Minkowski sum and Pontryagin set difference, 
respectively. In particular, given two sets A, B, A⊕ B = {a+ b :
a ∈ A, b ∈ B} and A⊖ B = {a : {a} ⊕ B ⊆ A}. The notation ⌊c⌋
is used to indicate the integer part of c ∈ R.

2. Problem formulation

Consider the linear time-invariant system 
x(k+ 1) = Ax(k)+ Bu(k)+ w(k), (1)

where x(k) ∈ Rn is the system state at time k, u(k) ∈ Rm is the 
control input and w(k) ∈ W is a bounded disturbance. The control 
objective is to drive the state to a predefined reference trajectory 
r(k) in finite time, while optimizing a suitable performance index. 
Moreover, the state and input are subject to the constraints 
x(k) ∈ X (k), u(k) ∈ U(k), (2)

with X (k), U(k) and W being convex sets.
Consider now the disturbance-free (nominal) system, given by

z(k+ 1) = Az(k)+ Bv(k), (3)

and define the error between the true and the nominal state as 
e(k) = x(k)−z(k). As in standard tube-based MPC (Chisci, Rossiter, 
& Zappa, 2001; Rawlings et al., 2017), let the feedback policy be 
designed as 
u(k) = v(k)+ K (x(k)− z(k)), (4)
2

where v(k) is the nominal control input and K  is such that AK =

A+ BK  is Schur. Then, the error system evolves as 

e(k+ 1) = AK e(k)+ w(k). (5)

It is well-known that if e(0) = 0 (i.e., z(0) = x(0)), then e(k) ∈
S(k), ∀k ≥ 0, with 

S(k) =
{
{0}, if k = 0∑k−1

i=0 Ai
KW, if k ≥ 1.

(6)

Moreover, if the nominal state and input satisfy the tightened 
constraints, 
z(k) ∈ Z(k) = X (k)⊖ S(k),
v(k) ∈ V(k) = U(k)⊖ KS(k), (7)

then the state-input constraints (2) are robustly satisfied with 
respect to any disturbance realization w(k).

In this work, the performance index to be optimized weights 
the command input and state deviation from the reference tra-
jectory. Moreover, in order to promote finite-time convergence it 
includes the horizon length N , thus resulting in the cost function

J = N + γz

N∑
k=0

∥z(k)− r(k)∥ + γv

N−1∑
k=0

∥v(k)∥, (8)

where γz, γv ≥ 0 and ∥ · ∥ indicates an arbitrary (possibly 
weighted) vector norm.

The nominal control input v(k) in (4) is computed via a robust 
variable-horizon MPC scheme. In particular, at each time instant 
k, the following optimization problem Pk(x(k),Zf ,k) is considered:

min
Nk,vk,zk

Jk = Nk + γz

Nk∑
j=0

∥zk(j)− r(k+ j)∥ + γv

Nk−1∑
j=0

∥vk(j)∥

s.t. zk(0) = x(k)
zk(j+ 1) = Azk(j)+ Bvk(j)
zk(j) ∈ Zk(j), j = 1, . . . ,Nk − 1
vk(j) ∈ Vk(j), j = 0, . . . ,Nk − 1
zk(Nk) ∈ {r(k+ Nk)} ⊕ Zf ,k

Nk ∈ N+,

(9)

where the sequences vk = [vk(0), . . . , vk(Nk − 1)] and zk =
[zk(0), . . . , zk(Nk)] are the nominal inputs and states, respectively, 
along the prediction horizon, and 
Zk(j) = X (k+ j)⊖ S(j),
Vk(j) = U(k+ j)⊖ KS(j) (10)

are the tightened state and input constraint sets. In problem (9), 
Zf ,k is a sequence of convex terminal constraint sets to be prop-
erly designed. The solution of Pk(x(k),Zf ,k) consists of the optimal 
cost J∗k , the optimal horizon length N∗k , and the optimal input and 
state sequences, v∗k and z∗k , respectively. At each step k, the first 
sample of the optimal control sequence is applied to system (1), 
i.e. u(k) = v∗k (0), as in the typical receding-horizon approach. 
From standard tube-MPC arguments, it turns out that, if (9) 
admits a solution satisfying the tightened constraints in (10), then 
the state and control trajectories of the uncertain closed-loop 
system (1)–(4) robustly satisfy the original constraints (2).

In order to ensure recursive feasibility and finite-time conver-
gence of the robust VH-MPC scheme described above, a possible 
solution is the one proposed in Richards and How (2006). That 
study considers a specific instance of problem P (x(k),Z ), in 
k f ,k
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which r(k) = 0, ∀k and Zf ,k is selected as 

Zf ,k = Q⊖ S(Nk), (11)

where S(Nk) is defined as in (6) and Q is a suitable set guarantee-
ing Zf ,k to be non-empty for each value of Nk. A reasonable choice 
for this set is Q = S(∞) = limk→∞ S(k). The set S(∞) is the 
largest robustly positive invariant set for the error system (5) and 
it can be computed as suggested, e.g., in Kolmanovsky and Gilbert 
(1998). The terminal set sequence (11) guarantees recursive fea-
sibility of problem (9) and finite-time convergence of the error 
to the set S(∞), provided that γv and γz are suitably selected 
(see Richards and How (2006) for details). In turn, this often 
results in a large terminal distance from the target at maneuver 
completion, thus leading to inaccurate target interception.

In the next section, an adaptive way of choosing the terminal 
constraint sets Zf ,k is proposed.

3. VH-MPC with adaptive terminal constraints

In the perspective of intercepting a reference trajectory r(k), 
the ideal choice for the terminal set would be Zf ,k = {0}, ∀k, 
corresponding to the equality terminal constraint 
zk(Nk) = r(k+ Nk). (12)

However, since x(k) in (9) is affected by the presence of distur-
bances in the closed-loop system (1)–(4), constraint (12) may 
render problem (9) infeasible. To this purpose, in this section, we 
propose a control strategy that relies on an adaptive choice of 
the terminal set Zf ,k, in order to reduce the final distance to the 
desired trajectory, while guaranteeing both recursive feasibility 
and finite-time convergence of the control scheme.

The idea is to keep solving problem (9) with terminal equality 
constraint (12), namely Pk(x(k), {0}), as long as the problem is 
feasible and the optimal cost decreases by at least a suitable 
positive quantity λ with respect to the previous step. Whenever 
this does not occur, problem (9) is solved with a suitable terminal 
set Zf ,k that guarantees a cost decrease not smaller than λ. 
More specifically, the proposed control algorithm consists of the 
following procedure. At each time k, solve problem Pk(x(k), {0})
and let ̃J∗k  be the resulting optimal cost (J̃∗k = ∞ if the problem is 
infeasible). Then:

• if J̃∗k ≤ J∗k−1 − λ, use the solution of Pk(x(k), {0}) at time k, 
set Zf ,k = {0} and proceed to the next time step;
• if ̃J∗k > J∗k−1 − λ, solve Pk(x(k),Zf ,k), where 

Zf ,k = Zf ,k−1 ⊕ A
N∗k−1−1
K W, (13)

with the additional constraint Nk ≤ N∗k−1 − 1. Use the 
solution of such a problem as optimal at time k and proceed 
to the next time step.

The overall control strategy is detailed in Algorithm 1.
As it is common in MPC, it is assumed that the optimization 

problem is feasible at the initial time k = 0. 

Assumption 1.  The problem P0(x(0), {0}) is feasible.
The following result establishes the key properties of the 

proposed scheme.

Theorem 2.  Let Assumption  1 be satisfied. Then, the following 
statements hold:

(i) Problems Pk(x(k),Zf ,k), where the sets Zf ,k are defined ac-
cording to Algorithm 1, are feasible for all k = 1, 2, . . . and 
any w(k) ∈ W;
3

Algorithm 1 VH-MPC with Adaptive Terminal Constraint Se-
quence (ATCS)
1: Input x(0), λ
2: Solve P0(x(0), {0}) and get (J∗0 , N∗0 , v∗0, z∗0 )
3: Zf ,0 ← {0}
4: N̄ ← N∗0
5: u(0)← v∗0 (0)
6: x(1)← Ax(0)+ Bu(0)+ w(0)
7: k← 0
8: while N∗k > 1 do
9:  k← k+ 1

10:  (C1) Solve Pk(x(k), {0}), get (J̃∗k , Ñ∗k , ṽ∗k , z̃
∗

k )
11:  if ̃J∗k > J∗k−1 − λ then
12:  Zf ,k ← Zf ,k−1 ⊕ A

N∗k−1−1
K W

13:  (C2) Solve Pk(x(k),Zf ,k) with Nk ≤ N∗k−1 − 1,
  get (J∗k ,N∗k , v∗k , z

∗

k )
14:  else
15:  (J∗k ,N∗k , v∗k , z

∗

k )← (J̃∗k , Ñ∗k , ṽ∗k , z̃
∗

k )
16:  Zf ,k ← {0}
17:  N̄ ← N∗k
18:  end if
19:  u(k)← v∗k (0)
20:  x(k+ 1)← Ax(k)+ Bu(k)+ w(k)
21: end while
22: return N̄

(ii) By selecting γv and γz such that 

λ̄ ≜ 1− sup
w∈W

{
γz

∞∑
j=0

∥Aj
Kw∥ + γv

∞∑
j=0

∥KAj
Kw∥

}
> 0 (14)

and setting λ = λ̄ in Algorithm 1, the optimal cost decreases 
by at least λ̄ at each step, i.e. 
J∗k+1 ≤ J∗k − λ̄, ∀k. (15)

Proof.  (i) To prove the statement it suffices to show that if 
problem Pk(x(k),Zf ,k) is feasible, then also problem Pk+1(x(k +
1),Zf ,k+1) is feasible. At step k, the solution v∗k, z∗k with optimal 
cost J∗k  can result from either problem Pk(x(k), {0}) (hereafter 
denoted as case (C1)) or Pk(x(k),Zf ,k), with Zf ,k chosen as in 
Algorithm 1 (case (C2)). Feasibility of either problem implies that
z∗k (j) ∈ Zk(j) = X (k+ j)⊖ S(j), j = 1, . . . ,N∗k − 1 (16)

v∗k (j) ∈ Vk(j) = U(k+ j)⊖ KS(j), j = 0, . . . ,N∗k − 1 (17)

z∗k (j+ 1) = Az∗k (j)+ Bv∗k (j), j = 0, . . . ,N∗k − 1 (18)

z∗k (N
∗

k ) ∈
{
{r(k+ N∗k )} for case (C1)
{r(k+ N∗k )} ⊕ Zf ,k for case (C2). (19)

Consider now the following candidate solution for step k+1 with 
length N∗k − 1: 

ẑk+1(j) = z∗k (j+ 1)+ Aj
Kw(k), j = 0, . . . ,N∗k − 1

v̂k+1(j) = v∗k (j+ 1)+ KAj
Kw(k), j = 0, . . . ,N∗k − 2,

(20)

with associated cost 

Ĵk+1 = N∗k − 1+ γz

N∗k−1∑
j=0

∥ẑk+1(j)− r(k+ j+ 1)∥

+ γv

N∗k−2∑
∥v̂k+1(j)∥.

(21)
j=0
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It turns out that (Ĵk+1, N∗k −1, v̂k+1, ẑk+1) is a feasible solution 
for problem Pk+1(x(k + 1),Zf ,k+1). In fact, the initial constraint 
zk+1(0) = x(k + 1) is trivially satisfied. Moreover, by using (18) 
and (20), we get:

ẑk+1(j+ 1)− Aj+1
K w(k)

= A
(
ẑk+1(j)− Aj

Kw(k)
)
+ B

(
v̂k+1(j)− KAj

Kw(k)
)

= Aẑk+1(j)+ Bv̂k+1(j)− Aj+1
K w(k).

Hence, ẑk+1(j + 1) = Aẑk+1(j) + Bv̂k+1(j). Furthermore, regarding 
the state constraints, from (16) one has that

ẑk+1(j) = z∗k (j+ 1)+ Aj
Kw(k) ∈ Zk(j+ 1)⊕ Aj

KW

= X (k+ j+ 1)⊖ S(j+ 1)⊕ Aj
KW

= X (k+ j+ 1)⊖
j∑

i=0

Ai
KW ⊕ Aj

KW

= X (k+ j+ 1)⊖

[ j−1∑
i=0

Ai
KW ⊕ Aj

KW

]
⊕ Aj

KW

⊆ X (k+ j+ 1)⊖ S(j) = Zk+1(j).

Similarly, for the input constraints, using (17) one gets:

v̂k+1(j) = v∗k (j+ 1)+ KAj
Kw(k)

∈ Vk(j+ 1)⊕ KAj
KW

= U(k+ j+ 1)⊖ KS(j+ 1)⊕ KAj
KW

= U(k+ j+ 1)⊖ K
j∑

i=0

Ai
KW ⊕ KAj

KW

⊆ U(k+ j+ 1)⊖ KS(j) = Vk+1(j).

As for the terminal constraint, cases (C1) and (C2) need to be 
analyzed separately. In the former, we have that zk(N∗k ) = r(k +
N∗k ) and Zf ,k = {0}, at step k. Hence, at step k + 1, one has 
Zf ,k+1 = A

N∗k−1
K W , and thus:

ẑk+1(N∗k − 1) = z∗k (N
∗

k )+ A
N∗k−1
K w(k)

∈ {r(k+ N∗k )} ⊕ A
N∗k−1
K W

= {r(k+ N∗k )} ⊕ Zf ,k+1.

For case (C2), first notice that the candidate solution (20) satisfies 
the length constraint Nk+1 ≤ N∗k −1. Then, by exploiting (13) and 
(19) one has:

ẑk+1(N∗k − 1) = z∗k (N
∗

k )+ A
N∗k−1
K w(k)

∈ {r(k+ N∗k )} ⊕ Zf ,k ⊕ A
N∗k−1
K W

= {r(k+ N∗k )} ⊕ Zf ,k+1.

Therefore, problem Pk+1(x(k+1),Zf ,k+1) is feasible for both cases 
(C1) and (C2).

(ii) The cost Ĵk+1 associated to the candidate solution (20) 
satisfies

Ĵk+1 = N∗k − 1+ γz
∑N∗k−1

j=0 ∥ẑk+1(j)− r(k+ j+ 1)∥

+γv

∑N∗k−2
j=0 ∥v̂k+1(j)∥

= N∗k − 1+ γz
∑N∗k−1

j=0 ∥z
∗

k (j+ 1)+ Aj
Kw(k)− r(k+ j+ 1)∥∑N∗k−2 ∗ j
+γv j=0 ∥vk (j+ 1)+ KAKw(k)∥

4

≤ N∗k − 1+ γz
∑N∗k−1

j=0 ∥z
∗

k (j+ 1)− r(k+ j+ 1)∥

+γz
∑N∗k−1

j=0 ∥A
j
Kw(k)∥ + γv

∑N∗k−2
j=0 ∥v

∗

k (j+ 1)∥

+γv

∑N∗k−2
j=0 ∥KA

j
Kw(k)∥

= N∗k − 1+ γz
∑N∗k−1

j=0 ∥z
∗

k (j+ 1)− r(k+ j+ 1)∥

+γz
∑N∗k−1

j=0 ∥A
j
Kw(k)∥ + γv

∑N∗k−2
j=0 ∥v

∗

k (j+ 1)∥

+γv

∑N∗k−2
j=0 ∥KA

j
Kw(k)∥ + γz∥z∗k (0)− r(k)∥

−γz∥z∗k (0)− r(k)∥ + γv∥v
∗

k (0)∥ − γv∥v
∗

k (0)∥

≤ J∗k − 1+ γv

∑N∗k−2
j=0 ∥KA

j
Kw(k)∥ + γz

∑N∗k−1
j=0 ∥A

j
Kw(k)∥

≤ J∗k − λ̄,

where λ̄ is selected as in (14). Hence, the optimal cost at time 
k+ 1 satisfies
J∗k+1 ≤ Ĵk+1 ≤ J∗k − λ̄. □

The next result states that the proposed control strategy ter-
minates in a finite number of steps and characterizes the termi-
nation set. 

Theorem 3.  Let Assumption  1 be satisfied. Then, the trajectories 
x(k) of the uncertain closed-loop system (1)–(4), with the VH-MPC 
control law defined via Algorithm 1, reach in a finite number of time 
steps Nct the set {r(Nct )} ⊕ S(N̄), being N̄ as returned by Algorithm 
1. Moreover, Nct ≤ ⌊J∗0/λ̄⌋ where J∗0  is the optimal cost of the initial 
problem P0(x(0), {0}).

Proof.  Finite-time termination in Nct ≤ ⌊J∗0/λ̄⌋ steps is a di-
rect consequence of the decreasing property of the cost in (15) 
ensured by Theorem  2. Now, let k̄ be the algorithm time step 
at which line 17 of Algorithm 1 is executed for the last time 
(k̄ = 0 if it is never executed). Due to the adaptive choice 
of the terminal set in Algorithm 1, the final constraint of the 
optimization problem solved at the last step k = Nct − 1 is 
zk(1) ∈ {r(Nct )} ⊕ Zf ,Nct−1, where Zf ,Nct−1 =

∑Nct−1
i=k̄

A
N∗i −1
K W if 

k̄ < Nct , and zk(1) = r(Nct ) if k̄ = Nct . Therefore, the final state of 
the closed-loop system at completion time Nct satisfies
x(Nct ) = Ax(Nct − 1)+ Bu(Nct − 1)+ w(Nct − 1)

= zk(1)+ w(Nct − 1)

∈ {r(Nct )} ⊕
Nct−1∑
i=k̄

A
N∗i −1
K W ⊕W

⊆ {r(Nct )} ⊕ S(N̄).

where the last inclusion stems from N∗
k̄
= N̄ and the fact that 

the sequence N∗i  for k̄ ≤ i ≤ Nct − 1, is strictly decreasing by 
construction, due to the constraint Nk ≤ N∗k−1 − 1 in (C2) (see 
line 13 of Algorithm 1). □

Remark 4.  The worst-case outcome of Algorithm 1 is N̄ = N∗0 . In 
this case, the final state lies in the set {r(Nct )} ⊕ S(N∗0 ). Note that 
the latter is always smaller than {r(Nct )}⊕S(∞), which is the per-
formance guaranteed by the approach borrowed from Richards 
and How (2006). However, in most cases, the condition in line 11 
of Algorithm 1 is triggered only in close proximity of the target, 
i.e., for small values of N∗k−1. Hence, N̄ is typically significantly 
smaller than N∗0 . In turn, this leads to S(N̄) being much smaller 
than S(∞), as observed in the case studies worked out (see 
Section 4).

Remark 5.  Problem (9) is a convex program with integrality 
constraints, which typically involves computational challenges. 
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When the 1-norm is used in cost (8), the problem becomes a 
Mixed-Integer Linear Program (MILP). The upper bound on the 
completion time stated in Theorem  3 allows one to restrict the set 
of admissible horizon lengths. Further reduction of the computa-
tional burden can be obtained by exploiting heuristic procedures 
such as those proposed in Leomanni et al. (2022), Persson et al. 
(2024), which rely on a clever selection of the sequence of linear 
programs to be solved.

3.1. Robust minimum-time MPC

A special instance of the VH-MPC problem is minimum-time 
MPC in which one has γz = γv = 0 and the cost function 
in (8) boils down to J = N . In this case, the analysis of recursive 
feasibility and finite-time convergence is more straightforward, 
as clarified in the next result. 

Corollary 6.  Let Assumption  1 be satisfied. If γz = γv = 0, then 
problems Pk(x(k),Zf ,k), with Zf ,k selected according to Algorithm 
1, are feasible for all k = 1, 2, . . . and the optimal horizon length 
decreases by at least 1 at each step k.

Proof.  Recursive feasibility is inherited from the proof of
Theorem  2. With γz = γv = 0, the quantity λ̄ in (14) turns 
out to be 1, indicating that the condition to be checked in line 
11 of Algorithm 1 becomes Ñ∗k > N∗k−1 − 1. If such a condition 
holds, problem Pk(x(k),Zf ,k) is solved. According to the proof of 
Theorem  2, a solution of length N∗k−1− 1 is feasible. Hence, being 
Jk = Nk, one gets N∗k ≤ N∗k−1 − 1. Conversely, if Ñ∗k ≤ N∗k−1 − 1, 
Algorithm 1 sets N∗k = Ñ∗k . Consequently, the proposed control 
strategy ensures that the optimal horizon length decreases by at 
least 1 at every time step k ≥ 1. □

As a direct consequence of Corollary  6, the results in
Theorem  3 read as follows for the minimum-time MPC problem. 

Corollary 7.  Let Assumption  1 be satisfied and γz = γv = 0. 
Then, finite-time convergence of x(k) to {r(Nct )} ⊕ S(N̄) is achieved 
in Nct ≤ N∗0  steps, being N∗0  the solution of the initial problem 
P0(x(0), {0}).

Remark 8.  In minimum-time MPC, the optimal horizon length 
is ensured to decrease over time, as stated in Corollary  6. Conse-
quently, at each step k of Algorithm 1, the optimization variable 
Nk can be effectively upper-bounded by N∗k−1−1. This information 
can be used to further speed up the solution of problem (9).

4. Numerical results

In this section, the proposed control algorithm is tested on 
two case studies. In the first, a double integrator is considered 
to illustrate the main features of the proposed VH-MPC strategy 
with adaptive terminal constraint sequence (in the following, 
denoted by ATCS). The second case study considers a realistic 
scenario, in which a controlled satellite is required to intercept 
an uncontrolled tumbling object (such as a defunct satellite or 
space debris). The performance of ATCS is compared to that of 
the VH-MPC control law with fixed terminal constraint sequence 
(denoted by FTCS) borrowed from Richards and How (2006).

In both examples, the 1-norm is employed in the cost function 
J in (8). The motivation of this choice is twofold. Firstly, formu-
lating problem (9) with the 1-norm enables it to be treated as 
discussed in Remark  5. Secondly, the 1-norm explicitly accounts 
for fuel optimization in the considered aerospace application 
(see, e.g., Leomanni, Bianchini, Garulli, Giannitrapani, and Quar-
tullo (2019)). Zonotopes are used to represent the sets W , S(k)
5

and Zf ,k. This is because zonotopes simplify the computation 
of Minkowski sums involved in (6) and Algorithm 1 (Althoff & 
Krogh, 2011). In the simulations, the set S(∞) is computed as 
in Rakovic, Kerrigan, Kouramas, and Mayne (2005). The optimiza-
tion problems have been solved with Gurobi (Gurobi Optimiza-
tion, 2024) called from Matlab on a laptop equipped with an Intel 
Core i7-1165G7 processor and 16 GB of RAM. 

4.1. Double integrator

Consider the discrete-time double integrator with additive 
disturbance described by (1), where x(k) = [x1(k) x2(k)]T  and

A =
[

1 1
0 1

]
B =

[
0
1

]
.

The control objective is to drive the state to the origin, i.e., r(k) =
0, ∀k, counteracting the presence of the bounded disturbance 
w(k) ∈ W = [−0.1, 0.1]× [−0.4, 0.4]. Moreover, state and input 
constraints must be satisfied, specifically: −25 ≤ x1(k) ≤ 25, 
−2 ≤ x2(k) ≤ 2 and |u(k)| ≤ 2. The control gain in (4) is 
set to K = [−0.06 − 0.5] so that AK  has eigenvalues 0.7 and 
0.8. The weights in the cost function are γz = 0.02 and γv =

1, corresponding to λ̄ = 0.27 in (14). These parameter values 
have been selected via a trial-and-error procedure. Note that 
the choice of K  influences the feasibility region of problem (9) 
through the eigenvalues of AK , which, in turn, determine the size 
of the sets S(j) in constraint (10). Eigenvalues near the unit circle 
cause S(j) to grow, potentially making some sets Zk(j) empty. 
Conversely, small eigenvalues may eventually result in empty 
input constraints Vk(j).

A Monte Carlo simulation across 300 different scenarios has 
been conducted. For each scenario, the initial condition x(0) has 
been uniformly sampled over the feasible region (i.e., the val-
ues of x(0) for which the problem P0(x(0), {0}) is feasible, as 
required by Assumption  1), excluding elements starting inside 
the set S(∞), for which the FTCS approach is meaningless. The 
disturbance sequences have been sampled uniformly from the set 
W for each simulated scenario. Fig.  1 displays the final states for 
both control laws. It can be observed that ACTS drives the states 
to a relatively small neighborhood of the origin, achieving a mean 
terminal distance of 0.38. Conversely, the FTCS control strategy 
drives the state trajectories much farther away from the origin, 
with an average final state norm of 6.74. Furthermore, in the 
latter case, it can be noticed that final states generally lie near 
the boundary of S(∞). More specifically, as noticeable in (11), 
smaller values of Nk (implying a small S(Nk)) result in larger sets 
Zf ,k. On the other side, the most frequent N̄ returned by ACTS 
is 2. Thus the majority of the blue points in Fig.  1 fall in the 
set S(2) (depicted in blue). The largest N̄ returned by Algorithm 
1 in the 300 tests is 3, thus the adaptive mechanism for the 
terminal constraint set is triggered only in close proximity of the 
target (see Remark  4). In the simulations worked out, the average 
completion time Nct turns out to be 13 steps, while the average 
value of ⌊J∗0/λ̄⌋ is 73. This is not surprising, as item (ii) in Theorem 
3 provides only a sufficient condition for finite-time convergence.

To further demonstrate the performance of the proposed con-
trol strategy, a single run is performed with initial condition 
x(0) = [20 0]T  and by assuming a persistent disturbance on 
the boundary of the set W , specifically w(k) = [0.1 0.4]T , ∀k. 
In Fig.  2, the trajectory obtained by applying the ATCS strategy 
(blue) is compared to the one produced by the FTCS strategy (red). 
It is evident that ATCS achieves a smaller final distance, while 
the trajectory obtained by applying the FTCS terminates on the 
boundary of S(∞) (highlighted in red). In this test, the value of 
N̄ returned by Algorithm 1 is equal to 3. The final state norm 
returned by ATCS and FTCS are 1.45 and 7.53, respectively.
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Fig. 1. Top: final states obtained by applying ATCS (blue dots) and FTCS (red 
dots). Bottom: one of the simulated trajectories. In both panes: the red set 
is S(∞); the blue set is S(N̄), with N̄ = 2. The green rectangle is X . (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 2. Trajectories resulting from one run of ATCS and FTCS under a persistent 
disturbance on the boundary of W . The red and blue sets are S(∞) and S(3), 
respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

4.2. Rendezvous with a tumbling satellite

In this case study, we consider an orbital rendezvous between 
a controlled satellite and an uncontrolled tumbling object. This 
scenario is significant in various contexts, including active debris 
removal (Leomanni, Bianchini, Garulli, Giannitrapani, & Quartullo, 
2020; Shan, Guo, & Gill, 2016).

The dynamics of the servicing satellite are described by the 
Hill–Clohessy–Wiltshire (HCW) equations (Clohessy & Wiltshire, 
1960), written in the radial-transverse-normal (RTN) body frame 
centered at the target center of mass. The HCW equations are 
normalized and discretized with sampling interval θs (expressed 
in radians), leading to the dynamic model

x(k+ 1) = Ax(k)+ Bu(k)+ w(k)

= eAcθs x(k)+
(∫ θs

0
eAcθdθ

)
Bc u(k)+ w(k), (22)

where x(k) =
[
xTp (k) xTv (k)

]T  is the state vector, with xp(k) and 
x (k) denoting the position and velocity components; u(k) is the 
v

6

Fig. 3. Schematic representation of the considered case study in the orbital 
plane. The dashed line represents the position component of the reference 
trajectory zrp(k). The shaded region is the state constraint set.

acceleration vector along the three axes and

Ac =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 0 0 0 2 0
0 0 0 −2 0 0
0 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ Bc =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ .

The state components xp(k) and xv(k) are normalized by umax/η
2

and umax/η, respectively, with η being the orbit mean motion 
and umax the maximum deliverable acceleration along each axis. 
Similarly, the acceleration u(k) is normalized by umax. Hence, all 
signals xp(k), xv(k), u(k) and w(k) are dimensionless. The input 
constraint set is U(k) = {u : ∥u∥∞ ≤ 1}, ∀k. The process dis-
turbance w(k) is assumed to belong to a box W =

[
−w̄p, w̄p

]3
×

[−w̄v, w̄v]3 ⊂ R6 with w̄p, w̄v being the maximum disturbances 
acting on the position and velocity components, respectively. The 
reference nominal trajectory of the target r(k) =

[
zrp(k)

T zrv(k)
T
]T

is represented by the capture point trajectory, where zrp(k) and 
zrv(k) specify the position and velocity components, respectively. 
The reference trajectory is generated by integrating the classical 
rotational kinematics of a rigid body, defined by 
żrp(θ ) = zrv(θ ), żrv(θ ) = ω(θ )× zrp(θ ), (23)

with ω(θ ) being the angular velocity vector, and then sampling 
them with sampling interval θs. The capture point rigidly evolves 
together with the docking port of the target satellite, represented 
by the vector xd(k) =

[
xdp(k)

T xdv(k)
T
]T . The servicing satellite 

is required to remain inside a visibility cone stemming from 
the docking port. In this paper, we consider a polytopic inner-
approximation of the cone, so that the state constraints X (k) are 
convex polytopes. In particular, the state constraint set is defined 
as:

X (k) =
{
xp ∈ R3

: ∥T (k)
(
xp −

[
xTp x⃗

d
p(k)

]
x⃗dp(k)

)
∥∞

≤
tanα
√
2

[
xp − xdp(k)

]T
x⃗dp(k)

}
, (24)

where the matrix T (k) defines the planes of the polytopic approx-
imation, α is the half-angle of the visibility cone and ⃗xdp(k) is the 
unit vector indicating the direction of the docking port position at 
time k. Fig.  3 depicts a schematic representation of the considered 
setting in the orbital plane. For more details, the reader is referred 
to Leomanni et al. (2022).

The considered rendezvous scenario is set as follows. The 
target satellite lies on a circular orbit at a distance of 800 km 
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Fig. 4. Trajectories resulting from Algorithm 1 (ATCS) and FTCS. The red and 
blue sets are S(∞) and S(2), respectively. The reference trajectory of the capture 
point is depicted in black. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Box plot statistic on the final distance to the target achieved by ATCS 
and FTCS starting from 100 different initial conditions.

from the Earth, exhibiting tumbling behavior with a spin period 
of 500 s. The spin axis is perpendicular to the orbital plane. 
Initially, the controlled satellite is positioned 40 m before and 
10 m above the target, corresponding to the initial state x(0) =
10−3 · [−2.1857 0.5464 0 0 0 0]T . The docking port is located 
1.5 meters from the target center of mass, while the capture point 
is situated at a distance of 1.7 m. The maximum acceleration of 
the propulsion system is umax = 20 mm/s2, and the sampling 
interval is θs = 0.0123 radians, corresponding to a sampling time 
of 11.7 seconds. The visibility cone constraint (24) is characterized 
by a half-angle α = π/6 rad. Disturbance bounds are set to 
w̄p = 10−6 and w̄ = 5 · 10−4. The matrix K  in (4) is selected such 
that the poles of AK  are {0.6, 0.6, 0.6, 0.5, 0.5, 0.5}. The input and 
state weights in cost function (8) are set to γz = 100 and γv = 1, 
resulting in λ̄ = 0.58 in (14).

The proposed control strategy is compared to FTCS. The re-
sults are shown in Fig.  4, where the radial-transverse trajectories 
obtained by the two methods are reported. ATCS achieves a 
much smaller final distance to the selected point on the reference 
trajectory, equal to 6 cm, as opposed to 88 cm achieved by FTCS. 
Moreover, a Monte Carlo simulation has been conducted across 
100 different initial conditions for which Assumption  1 holds. 
A statistic on the final distances achieved by the two compared 
control laws is reported in Fig.  5. It can be seen that the median 
values of the final distance for ATCS and FTCS are 97 cm and 6 cm, 
7

respectively. Notice that the minimum distance reached by FTCS 
is 74 cm, while the maximum one achieved by ATCS is 11 cm.

The average computational time at each time step was 0.3 s 
with a maximum of 0.65 s. The heuristics proposed in Leomanni 
et al. (2022) for finding the optimal horizon N∗k  in problem (9) 
has also been evaluated. While no significant changes in the per-
formance have been observed, the computational time has been 
reduced by approximately a factor of 3. In any case, the resulting 
execution time is significantly smaller than the sampling time for 
the considered case study.

5. Conclusions

A new robust variable-horizon model predictive control scheme
has been proposed for discrete-time linear systems affected by 
bounded process disturbances. The considered setting encom-
passes minimum-time MPC as a special case. It has been shown 
that adapting online the terminal constraint set of the MPC opti-
mization problem is useful in applications in which it is required 
to intercept a reference trajectory. The proposed solution allows 
one to remarkably reduce the conservatism of the standard tube-
based approach. Future investigations will concern the derivation 
of less conservative bounds on the convergence time of the 
proposed procedure. The extension of variable horizon MPC with 
adaptive terminal constraint to the case of stochastic disturbances 
will also be addressed.
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