
MS&E 121 Handout #25     
Introduction to Stochastic Processes & Models February 19, 2002

Queuing Theory

Overview of Queuing Theory Lectures

Introduction to Queueing Systems
– Important Questions about Queueing Systems
– Components of a Queuing System

Fundamental Results for General Queueing Systems
– Terminology for General Queueing Systems
– Steady State Quantities
– Fundamental Quantities of Interest
– Basic Cost Identity
– Consequences: Little’s Law and Other Useful Relationships

Properties of Poisson Arrival Processes
– Superposition and decomposition of Poisson arrivals
– Poisson arrivals see time averages
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Overview of Queuing Theory Lectures, 
continued

Queueing Systems with Exponential Arrivals and Service 
– M/M/1 queue
– M/M/S queue 
– M/M/1/C queue 
– Markovian queues with general state definition

Networks of Markovian Queues
– The Equivalence Property
– Open Jackson networks 
– Closed Jackson networks

Queueing Systems with Nonexponential Distributions
– The M/G/1 Queue
– Special Cases of M/G/1: M/D/1 and M/Ek/1 queues

examples: security checkpoint
Safeway checkout lines
two law practices
Stanford post office
shoeshine shop

examples: car wash
Ward’s Berry Farm
roommate network

examples: McDonald’s Drive Thru
homework questions

Important Questions about Queueing Systems

• What fraction of time is each server idle?

• What is the expected number of customers in the queue? in the queue 
plus in service?

• What is the probability distribution of the number of customers in the 
queue? in the queue plus in service?

• What is the expected time that each customer spends in the queue? in 
the queue plus in service?

• What is the probability distribution of a customer’s waiting time in the 
queue? in the queue plus in service?
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Components of a Queueing System

queue
served 

customers
customers

Arrival Process Queue Service Process

input 
source

service 
mechanism

Components of a Queueing System: The 
Arrival Process

input 
source

service 
mechanismqueue

served 
customers

customers

Characteristics of Arrival Process:
• finite or infinite calling population
• bulk or individual arrivals
• interarrival time distribution
• simple or compound arrival processes
• balking or no balking
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Components of a Queueing System: The 
Queue

queue
input 

source
customers service 

mechanism
served 

customers

Queue Characteristics:

• finite or infinite
• queue discipline: 

FCFS = first-come-first-served LCFS = last -come-first-served
Priority service order Random service order

Components of a Queueing System: The 
Service Process

input 
source

service 
mechanismqueue

served 
customers

customers

Characteristics of Service Process:
• number/configurations of servers
• batch or single service
• service time distribution
• rework
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Notation for Characterizing Queueing 
Systems

____ / ____  / ____ / ____ / ____  

distribution of 
interarrival times

distribution of 
service times

number of 
parallel servers maximum number 

of customers 
allowed in system

size of calling 
population

M = iid exponential
D = iid and deterministic
Ek = Erlang with shape parameter k
GI = iid with general distribution

Notation for Characterizing Queueing 
Systems: Examples

single server queue with Poisson arrivals and 
exponential service times, 
a.k.a. M/M/1

same as M/M/1 with finite system capacity C

S server queue with Poisson arrivals and 
exponential service times, a.k.a. M/M/S

M / M  / 1 /     /∞ ∞

M / M  / 1 / C /∞

M / M  / S /     /∞ ∞

M / M  / 1 / K / K single server queue with Poisson arrivals from 
a population of K potential customers; and 
exponential service times
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Terminology for General Queueing Systems

N(t) = the number of customers in the system at time t: this 
includes both customers that are in the queue and being served

Pn(t) = the probability that there are exactly n customers in the 
system at time t 

= P(N(t)=n)

λn = mean arrival rate of entering customers when n customers 
are in the system

µn = mean service rate for overall system when n customers are 
in the system

Note: N(t) and Pn(t) are difficult to compute for 
general t. We will be mainly interested in their 
values as t becomes infinite.

Steady State Quantities

Pn = long run probability that there will be exactly n customers in 
the system

= lim ( )
t

nP t
→∞

λ = long run average arrival rate of entering customers

= Pn
n

n
=

∞

�
0

λ

For general queues, the steady state probabilities Pn can be difficult to compute.
However, if the queue is a continuous time Markov Chain, then Pn= ωn (if a 
steady-state distribution exists). 
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Fundamental Quantities of Interest

L = the long run average number of customers in the system

LQ = the long run average number of customers waiting in queue

LS = the long run average number of customers in service

L = LS + LQ

More Fundamental Quantities of Interest

W = the waiting time in the system for an arbitrary customer (random variable)

WQ = the waiting time in the queue for an arbitrary customer (random variable)

W = the long run average amount of time a customer spends in the system

= E(W ) 

WQ= the long run average amount of time a customer spends in the queue

= E(WQ )

WS = the long run average amount of time a customer spends in service

W = WS + WQ
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Basic Cost Identity

average rate at which the system earns

= λ x average amount an entering customer pays

Suppose each entering customer must pay money to the system. Then 
the following identity applies:

Many fundamental relationships about queueing system performance can 
be derived from this identity. It can be used not only to compute monetary 
income rates but also to derive relationships between the fundamental 
quantities we are interested in for queueing systems. For example, if each 
customer pays $1 per unit time that they are in the system  (i.e. either in 
queue or being served) then 

the average rate at which the system earns = L

the average amount an entering customer pays = W

For this example, the basic cost identity tells us: L = λ W

Little’s Law

A quick diversion

A few topics I want to weave in before we proceed with Little’s Law and 
its variations: 

• The superposition and decomposition of Poisson processes

• Poisson arrivals see time averages

• Computing steady state-equations: rate in = rate out
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Superposition of Poisson Arrival Processes

Often the arrival process to a queue consists of multiple different arrival 
processes of customers from different origins. It turns out that it is easy to deal 
with such compound arrival processes when each individual arrival process is 
Poisson and is independent of the others.

Suppose you have two independent Poisson arrival processes X and Y with 
respective rates λx and λy. Then the combination of the two arrival streams is 
also a Poisson process with rate λx+λy.

Why? Let T be a random variable representing the remaining time until an 
arrival of either type occurs. Let Tx and Ty be the remaining times until arrivals of 
type x and y occur. Then T = min{Tx,Ty}. Since Tx and Ty are exponentially 
distributed with parameters λx and λy respectively, T must also be exponentially 
distributed with parameter λx+λy. Hence, the combined stream has exponential 
interarrival times, and is thus a Poisson process with rate λx+λy.

Decomposition of Poisson Arrival Processes

Another nice property of Poisson arrival processes allows us to disaggregate the 
process into independent Poisson processes. Suppose customers arrive to our 
system according to a Poisson process with rate λ. Suppose that an arriving 
customer is of type k with probability pk, where 

Then the arrivals of customers of type k follow a Poisson process with rate pkλ.

An example: suppose arriving customers to a system balk with fixed probability 
p independent of the number of people in the system.  If the arrival process is 
Poisson with rate λ, the arrivals who stay follow a Poisson process with rate 
(1-p)λ. The customers who balk do so according to a Poisson process with rate 
pλ.

.1
1

�
=

=
n

k
kp
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Poisson Arrivals See Time Averages (PASTA)

For a queuing system with Poisson arrivals, an arriving customer sees the time-
average steady-state number-in-system process. In other words, the long run 
fraction of customers that arrive to find exactly k customers (not including him or 
herself) is given by ωk.

This property is called “Poisson Arrivals See Time Averages.” It depends critically 
on the assumption of having a Poisson arrival process. Suppose, instead, for 
example, that we have deterministic arrival and service processes with respective 
rates λ and µ (with λ < µ).

The time-average steady-state fraction of time in which there are 0 customers in 
the system is 1- λ/µ, and the steady-state fraction of time in which there is 1 
customers is λ/µ. But 100% of arriving customers find no customers in the system! 
“PASTA” does not apply in this case because the arrivals are not Poisson.

The PASTA Property

1/µ 1/λ − 1/µ 1/µ 1/λ − 1/µ 1/µ 1/λ − 1/µ

empty system 1 customer

Example: Poisson Arrivals See Time Averages

In an M/M/1 queue, what fraction of arriving customers have to wait? The 
fraction that finds the system in any state k > 0, which, according to the PASTA 
property, is 1 - ω0 = ρ.

EXAMPLE: The M/M/1 queue
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Computing the steady state distribution: 
Rate In = Rate Out

When studying CTMCs, we learned that each of the steady state equations 

could be expressed as:

In simple queuing systems that can be modeled as birth and death processes, the 
“rate-in = rate-out” equations are particularly simple to write down because 
transitions can only occur to adjacent states. In such cases, they are a shortcut to 
writing down the steady state equations. 

,...,Sj=q
S

i
iji 0for0=

0
�

=

ω

�
≠

=
ji

ijijj qq ωω

steady state rate out of state j = 

= steady state rate into state j

Rate In = Rate Out 
for the General Birth and Death Process

State Rate In = Rate Out

0

1

... ...

n-1

n
... ...

0011 ωλωµ =

0 1 2 3 …
.

λ 0

µ 1

λ1 λ 2 λ 3

µ 2 µ 3 µ 4

1112200 )( ωµλωµωλ +=+

11122 )( −−−−− +=+ nnnnnnn ωµλωµωλ

nnnnnnn ωµλωµωλ )(1111 +=+ ++−−
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Example: Rate In = Rate Out 
for the M/M/1 queue

State Rate In = Rate Out

0

1

... ...

n-1

n
... ...

01 λωµω =

120 )( ωµλµωλω +=+

12 )( −− +=+ nnn ωµλµωλω

nnn ωµλµωλω )(11 +=+ +−

0 1 2 3 .

µ µ µ µ

λ λ λ λ

Little’s Law

L = λ W
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A Proof of Little’s Law
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Let Ai  and Di be the arrival and departure times of customer i. Then
Wi = Di - Ai . Define the indicator function

number of arrivals by time t.

I A s D
A s D

i i
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( )≤ ≤ =
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�
�

1

0

if

o th erw ise

number of people in 
system at time s.

Other Useful Relationships

Another useful relationship can be obtained from the basic cost 
identity by assuming each customer pays $1 per unit time that they 
are in the queue. Then

the average rate at which the system earns = LQ

the average amount an entering customer pays = WQ

In this case, the basic cost identity tells us: 

LQ = λ WQ
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Other Useful Relationships

By assuming instead that each customer pays $1 per unit time that 
they are in service, we have

the average rate at which the system earns = LS

the average amount an entering customer pays = WS

The basic cost identity amounts to:

LS = λ WS

Exponential Queuing Models

We now show how to apply these results to queues having 
exponentially distributed interarrival times and service times. These 
types of queues are the most tractable mathematically. 

Some of the queues we’ll look at:

M/M/1

M/M/S

M/M/1/C (finite capacity C)

Queues with more general state definition



MS&E 121 Handout #25     
Introduction to Stochastic Processes & Models February 19, 2002

Exponential Queuing Models: 
The M/M/1 Queue

0 1 2 3 ….

µ µ µ µ

λ λ λ λ
λ λi i= f o r a l l ≥ 0

µ µi i= ≥f o r a l l 1

The simplest example of a queue that has exponentially distributed interarrival 
and service times is the by-now familiar  M/M/1 queue. This is a queue for 
which the fundamental quantities are easy to compute. We will do so and also 
apply Little’s law to the M/M/1 case.

Define ρ=λ/µ. This quantity is typically called the traffic intensity for the M/M/1 
queue. We assume henceforth that ρ<1, in which case we know a steady state 
distribution exists and is given by:

P jj j
j= = − =ω ρ ρ( ) , , . . .1 0 1fo r

The arrival rate of entering customers is always λ; therefore λ = λ.

Exponential Queuing Models: 
The M/M/1 Queue

The long run average number of people in the system can be computed using 
the steady state distribution: 

L j P j j
j

j
j

j
j

j

= = = −
=

∞
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∞

=

∞
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µ λ( - )
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Exponential Queuing Models: 
The M/M/1 Queue

We can also compute the long run expected number of customers in the 
queue LQ using the steady state distribution as follows:

L j P j jQ
j
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j
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j j
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The expected number of customers in service LS is

Verify that L = LS + LQ  for this example.

Exponential Queuing Models: 
The M/M/1 Queue

The distribution for the waiting time W of an arbitrary customer (in the long 
run) is computed as follows:
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So W is exponentially distributed with parameter (µ−λ)!
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Exponential Queuing Models: 
The M/M/1 Queue

Now we’ll derive the distribution for the waiting time in the queue WQ of 
an arbitrary customer in the long run. Since an arriving customer who find 
no customers in the queue has no wait, ρ−=== 1)0( 0PP QW
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Exponential Queuing Models: 
The M/M/1 Queue

Let’s now compute W, the expected time a customer spends in the system, 
first using Little’s Law:

The expected time a customer spends in the service is:

Evidently W = WS + WQ  for this example.

Using LQ = λ WQ  we can compute the expected time a customer spends in 
the queue:

It is easy to verify that we get the same result by taking the expected value of W.

Verify by taking the expected value of WQ !

W
L L
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λ
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1 1

W
L L

Q

Q Q= = =
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2 1

( ) ( )

W
L

S
S= = =λ

λ
µ λ µ

1 1 obvious!
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The M/M/1 Queue: Example

EXAMPLE: Security Checkpoint
Airline passengers must pass through a security checkpoint consisting of a 
metal detector and carry-on luggage x-ray machine. Suppose that 
passengers arrive according to a Poisson process with a rate of λ=10 
passengers per minute. The security checkpoint clears customers at a rate of 
µ=12 passengers per minute, with exponentially distributed clearance 
times. What is the probability that a passenger will have to wait before 
being checked?

(or equivalently 1- P(WQ=0) = ρ)

On average, how many customers are waiting in line to be checked?

On average, how long will a customer be detained at the checkpoint?

LQ

6

5
)0( 0 ===> ρρeP QW

= =
−

=
λ

µ µ λ

2 1 0 0

1 2 1 2 1 0

2 5

6( - ) ( )

W =
−

=
1 1

2µ λ minute

The M/M/1 Queue: Example
EXAMPLE: Security Checkpoint, continued
The airline in question wants to determine how many checkpoints to operate 
to minimize the costs associated with operation and customer delays. They 
estimate the cost of delaying a customer 1 hour to be $4. It costs $100 per 
hour to staff and operate a checkpoint. Assume that a passenger is equally 
likely to enter each checkpoint.

Let n be the number of separate checkpoints. Then a given passenger goes to 
any particular checkpoint with probability 1/n. We can model each of the n 
checkpoints as a separate M/M/1 queue with a Poisson arrival process 
having rate λ/n. For any particular checkpoint (say, checkpoint i), the 
average number of customers present is

The expected average cost of operation plus passenger delays per hour that 
the airline faces when they have n checkpoints open is then

where L represents the average total number of people at all checkpoints.

L
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The M/M/1 Queue: Example
EXAMPLE: Security Checkpoint
To find the optimal number of checkpoints to operate, we need to find the 
minimum of the function F(n). 

F n n
n

n
( ) = +

−
1 0 0

4 0

1 2 1 0

F n
n

' ( )
( )

= −
−

1 0 0
4 0 0

1 2 1 0 2

F n
n

' ' ( )
( )

=
−

≥
9 6 0 0

1 2 1 0
03

Clearly the function F(n) is convex, so to find its minimum we need only to set its
derivative equal to zero.

Since we must have at least one checkpoint, the optimal number of checkpoints is 1. 

F n' ( )* = 0 ( )*1 2 1 0 42n − =⇔ ⇔ n * = ± 1

Exponential Queuing Models: 
The M/M/S Queue

λ λi i= f o r a l l ≥ 0

µ µi S i i= ≥m i n { , } f o r a l l 1
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0 1
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Sµ Sµ Sµ

λ λ λ

….

Another important example of a queue with exponentially distributed interarrival 
and service times is the M/M/S queue. For this case we’ll now compute the 
fundamental quantities and apply Little’s law.

Again the arrival rate of entering customers is always λ; therefore λ = λ.

Define ρ=λ/Sµ as the traffic intensity for the M/M/S queue. To ensure the existence
of a steady state distribution, we assume that ρ<1. In this case:

P K0 0
11= = + −ω ( )

P
j

K j S

S S
K j S

j j

j

j

j

j S j

= =
+ ≤

+ >

�

�
��

�
�
�

−

−
−

ω

λ
µ

λ
µ

!
( )

!
( )

1

1

1

1

f o r

f o r

K
i S S

i

i
i

S S

S≡ + −�

�
�

�

�
�

=

− −

�
λ
µ

λ
µ

λ
µ! !1

1 1

1

where
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Exponential Queuing Models: 
The M/M/S Queue

We can compute the long run expected number of customers in the queue 
LQ using the steady state distribution as follows:

L j S P K j S
S SQ
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j S

j
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Now we can apply Little’s law and our other identities to compute:
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WQ = LQ /λ W = WQ + (1/µ) L =  λ W

M/M/S Queue: Example
EXAMPLE: Safeway Checkout Lines
Safeway is trying to decide how many checkout lines to keep open. An 
average of 18 customers arrive per hour according to a Poisson process and 
go to the first empty checkout line. If no checkout line is empty, suppose that 
arriving customers form a single line to wait for the next free checkout line. 
The checkout time for each customer is exponentially distributed with mean 4 
minutes.  It costs $20 per hour to operate a checkout line and Safeway 
estimates that it costs them $0.25 for each minute a customer waits in the 
cash register area. How many registers should the store have open?

The number S of registers open should certainly be enough to ensure that 
λ/Sµ < 1; otherwise the queue will explode. This is true only if S > λ /µ 
=6/5. Since we can only have an integer number of servers, we require S to 
be at least 2.

Now we want to determine the optimal number of servers; i.e., the number 
that minimize Safeway’s total costs. We need to compute the expected costs 
incurred per hour.

First we consider the alternatives of either having 2 or 3 checkout lines open.
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M/M/S Queue: Example

K
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K = 3

If there are 2 open checkout lines, then we plug S=2, λ =18 and µ =15 into the 
formula for K:

and obtain . Then we can compute LQ from:  

L K
SQ

S

= +
−

−( )
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1

1
1

2

λ µ ρ
ρ

which yields LQ = 0.675. From this we compute     

WQ = LQ /λ = LQ /λ = 0.675/18 = 0.0375

From this and the fact that W = WQ + (1/µ), we find that the average length 
of time a person waits in the register area is W = 0.104 hours, and the average 
number of people in the register area is L  = λW = λW = 1.8738.

case a: two checkout lines

ρ
λ
µ

=
S(Recall )

$20S + $15L = $68.11

Since each open checkout line costs Safeway $20 per hour, and each hour that a 
customer waits costs $15, the expected average costs per hour are

M/M/S Queue: Example

K = 2 6 4.

If instead there 3 servers, then after some arithmetic we find

L Q = 0 0 8 7 9.

and     

WQ = LQ /λ = LQ /λ = 0.0879/18 =0.0049

case b: three checkout lines

W = WQ + (1/µ) = 0.0716 hours

The expected average costs per hour in the 3 server case are

$20S + $15L = $79.33

The additional cost of the third checkout line exceeds the benefit of shorter 
lines, so two checkout lines is preferable to three. In fact, 2 is the optimal 
number of checkout lines. (Why?)

L = λW = λW = 1.2888
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Exponential Queuing Models: 
The M/M/1/C Queue

λ λ
λ

i

i

i C

i C

= = −
= =

f o r

f o r

0 1 1

0

, , . . . ,

Now let’s consider the variation on the M/M/1 queue in which the system has 
capacity C. In this type of queue, customers that arrive and find C people in the 
system leave. The birth and death rates are:

(The case ρ=1 is left as an exercise for the reader.)
The average arrival rate of entering customers (when ρ<1) is then: 

Once again we let ρ = λ/µ. Since the queue is finite, a steady state distribution 
exists regardless of whether ρ<1, and can be derived using Theorem 2 from
CTMCs. If ρ<1, then the steady state distribution is:

P j Cj j C
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The long run average number of people in the system (when ρ<1) is:

Exponential Queuing Models: 
The M/M/1/C Queue
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L j P j jQ
j

j
j

j
j

j j
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= − = − = −
=

∞

=

∞
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∞
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∞
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ω ω ω
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=

∞
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L S j
j
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= ⋅ + ⋅ = −
=
�0 1 10
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0ω ω ω

The expected number of customers in service LS is

Clearly L = LS + LQ  for this example.

= − −L ( 1 0ω )

The expected number of customers in the queue LQ is:

Exponential Queuing Models: 
The M/M/1/C Queue

From Little’s law and the other identities, the quantities W, WQ, and WS are 
easily derived.

WQ = LQ /λ W = WQ + (1/µ) L =  λ W

The M/M/1/C Queue: Example

Consider two San Francisco lawyers. Lawyer 1 works with only 1 client at a 
time. If a second client asks for his services while he is helping the first, he will 
turn that client away. He charges $20,000 per client regardless of how long the 
client’s case takes. Lawyer 2 also helps only one client at a time, but he never 
turns away a client. Clients queue up to wait for his services. He charges the 
client he’s working with a daily rate of $300 per day.

Each lawyer receives inquiries from prospective clients according to a Poisson 
process with rate λ=0.01 per day. Also, for each lawyer, the time to finish a 
case is exponentially distributed with mean 50 days.  

Which lawyer makes more money?

We use the basic cost identity to determine the (long-run) average daily income 
of each lawyer:

EXAMPLE: Two Law Practices

average rate lawyer earns =  λ x average amount an accepted client pays
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The M/M/1/C Queue: Example

Let λ i be the average arrival rate of clients and Fi be the average daily income 
of lawyer i, i=1,2.

Since we know for an M/M/1/C queue 
we have for lawyer 1:

Lawyer 2’s system is an M/M/1 queue:

EXAMPLE: Two Law Practices

F1= λ1 x $20,000 = $133.33 per day

λ1 = λ(1−P1) =
−

−
�

�
�

�

�
� =

+
�

�
�

�

�
� =

+
�

�
�

�

�
� = �

�
�

�
�
�λ

ρ
ρ

λ
ρ

λ µ
µ λ

1

1

1

1

0 0 0 0 2

0 0 32

.

.

λ λ
ρ

ρ
=

−
−

�

�
�

�

�
�+

1

1 1

C

C

F2= λ2 x ($300/µ) = λ x ($300/µ) =$150 per day

Lawyer 2 makes more money.

Exponential Queuing Models with More General 
State Definition

In all of the examples we have seen so far, we defined the state of the system to be 
the number of customers in the system. This worked because in these examples, the 
rate of departure from the system was dependent only on the number of customers 
in the system. For example, in the M/M/S server queue, if the number of people in 
the system is j>S, all servers are busy and j-S people are in line. If j<S, then j
servers are busy. Since all servers are assumed to be indistinguishable, we do not 
care which j servers are busy. 

In some service systems, we may have multiple nonidentical servers. In such 
systems it is not sufficient to define the state as simply the number of customers in 
the system. The departure rates from the system depend on which specific servers 
are busy. We now consider two examples of exponential queues in which an 
extended state definition is required. We will see that all of the techniques for 
analyzing CTMCs and standard exponential queues still apply.
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Exponential Queuing Models with More General 
State Definition

Suppose the Stanford post office has 2 employees working at the counter, one 
faster than the other. Customers arrive according to a Poisson process with rate λ
and form one line. Assume there is room for at most 4 customers in the Post Office. 
Server 1 has service times that are exponentially distributed with rate µ1 and server 
2 completes service in times that are exponentially distributed with rate µ2. When 
both servers are free, arriving customers choose the faster server.

How do we define the number of people in the system in this problem? If there are 
2 or more customers in the system at a particular time, then we know both servers 
are busy. If there are no customers in the system, then no servers are busy. But if 
there is exactly one customer in the system, which server is busy? We need to 
distinguish between the two possibilities in that case. 

EXAMPLE: Stanford Post Office

Define states of the process to be:
0 :  no customers present
(1,0) : 1 customer present, being served by server 1
(0,1) : 1 customer present, being served by server 2
n  : n customers present, n=2,3,4

Exponential Queuing Models with More General 
State Definition

EXAMPLE: Stanford Post Office, continued
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EXAMPLE: Stanford Post Office, continued

0

0

0

0
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0 1 1 0 2 2
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Exponential Queuing Models with More General 
State Definition

Suppose λ= µ2=1 per minute and µ1=2 per minute. In this case, solving with Matlab 
gives us:

Exponential Queuing Models with More General 
State Definition

EXAMPLE: Stanford Post Office, continued

From the steady state distribution, we can answer a number of interesting questions:

(1) What proportion of time is each server busy?

server 1’s  proportion of busy time is
server 2’s  proportion of busy time is

(2) What is the average number of customers in service at the Post Office? 

(3) What is the average time a customer spends in service at the Post Office?

minutes

P P P P( , ) .1 0 2 3 4 0 3 6 4 7+ + + =
P P P P( , ) .0 1 2 3 4 0 2 5 8 8+ + + =

L P P P P P P= ⋅ + + + + + =0 1 2 0 6 8 2 40 0 1 0 1 2 3 4( ) ( ) .( , ) ( , )

λ λ

λ

= + + + + = − =

= = =

( ) ( ) .

/ . / . .

( , ) ( , )P P P P P P

W L

0 0 1 1 0 2 3 41 1 0 8 9 4 1

0 6 8 2 4 0 8 9 4 1 0 7 6 3 2
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Exponential Queuing Models with More 
General State Definition

Consider a shoeshine shop with 2 chairs. An entering customer goes to chair 1 to 
get his shoes polished. When the polishing is done, he will either go on to chair 2 
to have his shoes buffed if that chair is empty, or else wait in chair 1 until chair 2 
becomes empty. A potential customer will enter the shop only if chair 1 is empty. 
Potential customers arrive according to a Poisson process with rate λ. The service 
time in chair i exponentially distributed with rate µi for i=1,2.

We’d like to know:

(1) What proportion of potential customers enter the shop?
(2) What is the mean number of customers in the shop?
(3) What is the average amount of time an entering customer spends in the shop?

The state of the system must include more information than simply the number of 
customers in the shop, because the arrival and departure rates depend on where
in the shop the customers are. 

EXAMPLE: Shoeshine Shop

Exponential Queuing Models with More 
General State Definition

EXAMPLE: Shoeshine Shop, continued

Define states of the process to be:
0 :  no customers present
(1,0) : 1 customer present, in chair 1
(0,1) : 1 customer present , in chair 2
(1,1) : two customers present, both being served
(b,1) : two customers present, but the customer in chair 1 is 

waiting for chair 2 to become available

λ

….

(1,1)

µ1

(b,1)

0

λ

(0,1)

(1,0)

µ2

µ1

µ2

µ2
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Exponential Queuing Models with More 
General State Definition

EXAMPLE: Shoeshine Shop, continued
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The transition rate matrix for this process is

which yields the steady state equations.

P P P P P b0 0 1 1 0 1 1 1 1+ + + + =( , ) ( , ) ( , ) ( , )

Exponential Queuing Models with More General 
State Definition

L P P P P b= + + +( , ) ( , ) ( , ) ( , )( )0 1 1 0 1 1 12

We are particularly interested in what proportion of potential customers enter 
the shop:

the average number of customers in the shop:

as well as the average time a customer spends in the shop:

EXAMPLE: Shoeshine Shop, continued
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Exponential Queuing Models with More 
General State Definition

EXAMPLE: Shoeshine Shop, continued
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Let’s suppose that the arrival rate λ=1 customer per minute. Consider first the 
case that µ1=1 and µ2 =2, i.e., the server for chair 2 is twice as fast. In that 
case, the steady state equations are:

From the steady state distribution, we can answer our questions:

(1) the proportion of potential customers entering the shop =

(2) (3)
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Exponential Queuing Models with More 
General State Definition

EXAMPLE: Shoeshine Shop, continued
Now suppose that µ1=2 and µ2 =1, i.e., the server for chair 1 is twice as fast. 
In that case, the steady state equations are:

(1) the proportion of potential customers entering the shop =

(2) (3)

Having the server for the second chair server be faster leads to loss of more potential
customers, but shorter average waits and fewer customers in the shop on average.
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Networks of Markovian Queues

Queueing systems often provide more than a single service. Many real-
world systems involve customers receiving a number of different services, 
each at a different service station, where each station has a queue for 
service. We can model systems of this kind using networks of queues. 
There are two types of queueing networks: open and closed. An open 
queueing network is one in which customers can enter and leave the 
system. A closed queueing network is one in which there are a fixed 
number of customers that never leave; new customers never enter.

We will be concerned with networks of Markovian queues called Jackson 
networks. These networks have exponentially distributed service times at
each service station and exponentially distributed interarrival times of new 
customers. The sequence of stations visited is governed by a probability 
matrix. We’ll consider first open and then closed Jackson networks. We’ll 
start off with an important result that will help with the analysis.

The Equivalence Property

Poisson 
arrivals 

with rate λ

Poisson 
departures 
with rate λ

S servers, 
each with 
service 
times 

~exp(µ)

In an M/M/S queue which is positive recurrent (i.e., λ < Sµ), 
the steady state output of the system is a Poisson process with 
the same rate as the input process. Note: S may be infinite.

The Equivalence Property
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….
wash

(1 server)
µ1=60/hr

….
wax

(1 server) 
µ2=45/hr

λ=30/hr

Example: Car Wash (a tandem network)

From the equivalence principle, the departure 
process of the wash station is a Poisson process 
with rate λ=30/hr in steady state. Thus, in 
steady state both stations are effectively 
M/M/1 queues with arrival rate λ=30/hr. 

Open Jackson Networks: Example

Example: Car Wash, continued
In order to analyze this system, we need to keep track of the number of cars at
each station. Thus our state definition is a vector with 2 elements X(t)=(n1, n2) 
where n1 represents the number of cars being washed or in queue to be 
washed and n2 represents the number of cars being waxed or in queue to be 
waxed.

Even for such a simple network,
the rate diagram is a mess.

We would like to find the steady state 
distribution ω={ωn1,n2

} for X(t)=(n1, n2). To 
do this we would need to solve the system
ωQ=0, ωe=1. But the Q matrix is difficult 
to write down.To make our lives easier, 
recall that the equations ωQ=0 simply 
state that the rate into any state equals 
the rate out of that state.

….

λ λ

(0,0)

λ λ

(1,0) (2,0) (3,0)

….(0,1) (1,1) (2,1) (3,1)

….(0,2) (1,2) (2,2) (3,2)

λ λλ λ
µ1 µ1 µ1 µ1µ2µ2 µ2

λ λλ λ
µ1 µ1 µ1 µ1µ2µ2 µ2

…
.

…
.

…
.

…
.

µ2

µ2

Open Jackson Networks: Example
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Open Jackson Networks: Example

Example: Car Wash, continued

The equations ωQ=0 are given by

state rate out = rate in
(0,0) λω0,0 = µ2ω0,1 
(n1,0); n1>0 (λ + µ1)ωn1,0 = µ2ωn1,1  +  λωn1-1,0 
(0,n2); n2>0 (λ + µ2)ω0,n2

= µ2ω0,n2+1  + µ1ω1,n2-1 
(n1,n2); n1,n2>0 (λ + µ1 + µ2)ωn1,n2

= µ2ωn1,n2+1  + µ1ωn1+1,n2-1 +  λωn1-1,n2

To compute the steady state probabilities 
Pn1,n2

= ωn1,n2
we must solve the above 

equations along with

….
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Open Jackson Networks: Example

Example: Car Wash, continued
Rather than solve the steady state equations directly, let’s guess at a solution.
First, by the equivalence principal, we know station i is an M/M/1 queue with 
arrival rate λ and service rate µi. Assuming ρi = λ/µi <1 for i=1,2, we know

( )P n

n

n( )1
1 1

1 1

1

11 1at w ash s ta tio n =
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�
� −

�

�
�

�
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µ ρ ρ

P n
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n( ) ( )2
2 2
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2

21 1a t w a x s ta tio n =
�

�
�
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�
� −

�

�
�

�

�
� = −

λ
µ

λ
µ

ρ ρ

Now, if it were true that the number of cars at the wash and wax stations at
any time were independent random variables, then we would know that

P P n n

P n P n

n n

n n

1 2

1 2

1 2

1 2 1 1 2 21 1

, ( )

( ( ) ( ) ( )

=

= = − −

at wash station and at wax station

at wash station) at wax station ρ ρ ρ ρ
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Example: Car Wash, continued
As it turns out, our guess is correct. Verify for yourself that ωn1,n2

= Pn1,n2
given by

Pn n
n n

1 2

1 2
1 1 2 21 1, ( ) ( )= − −ρ ρ ρ ρ

satisfies the steady state equations

state rate out = rate out
(0,0) λP0,0 = µ2P0,1 
(n1,0); n1>0 (λ + µ1) Pn1,0 = µ2Pn1,1  +  λPn1-1,1 
(0,n2); n2>0 (λ + µ2) P0, n2

= µ2P0,n2 +1  + µ1P1,n2 -1 
(n1,n2); n1,n2>0 (λ + µ1 + µ2) Pn1,n2

= µ2Pn1,n2 +1  + µ1Pn1+1,n2 -1 +  λPn1-1,n2

and

Open Jackson Networks: Example

Pn n
nn

1 2

21 00

1,
=

∞

=

∞

�� =

Example: Car Wash, continued

The result

is called the product form solution for the steady state distribution of the state 
of the queueing network. 

What is its significance? It tells us that the numbers of cars at the wash and wax 
stations at any given time are, in fact,  independent random variables! 

This result depends heavily on the fact that the queue in front of each station has
infinite capacity. If not, the numbers of cars at the two stations would not be 
independent.

Open Jackson Networks: Example

Pn n
n n

1 2

1 2
1 1 2 21 1, ( ) ( )= − −ρ ρ ρ ρ



MS&E 121 Handout #25     
Introduction to Stochastic Processes & Models February 19, 2002

Example: Car Wash, continued
The product form solution of the the steady state distribution makes it easy to 
calculate the expected number of cars in the system:
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1
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1
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1 1

3 0
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1
1
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ρ
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ρ
ρ
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Notice that this equals the sum of the expected 
numbers of cars at the two stations, respectively.

Open Jackson Networks: Example

= − + −
=

∞

=

∞

� �n nn

n

n

n
1 1 1

0
2 2 2

0

1

1

2

2

1 1ρ ρ ρ ρ( ) ( )

Example: Car Wash, continued

Using this last result and Little’s Law, we can compute the average time a car
spends at the car wash:

W
L L

= = =
−

+
−

= + =

λ λ µ λ µ λ
1 1

1

3 0

1

1 5

1

1 0

1 2

h o u r = 6 m i n

Notice that this equals the 
sum of the average time a car
spends at each of the two 
stations, respectively.

What made the computation of L and W easy in this example was the product
form solution of the steady state distribution. It turns out that there is a much more
general framework under which a product form solutions are available. These are
called Jackson networks.

Open Jackson Networks: Example
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Open Jackson Networks

An Open Jackson Network is a network of m service stations, where 
station i has

(1) an infinite queue

(2) customers arriving from outside the system according to a Poisson 
process with rate ai

(3) si identical servers, each with an exponential service time distribution  
with rate µi

(4) the probability that a customer exiting station i goes to station j is pij

(5) a customer exiting station i departs the system with probability 1
1

−
=� pijj

m

Open Jackson Networks: Example

2: Berry Weighing 
Station
1 server

4: Cashiers
3 servers

….

….

Example: Ward’s Berry Farm

3: Farmstand
(self-service)

1: Strawberry Field
(self-service)

a1 =10/hr

a3 =30/hr
µ3 =6/hr

µ2 =60/hr

µ1 =2/hr

µ4 =20/hr

p24 =0.6

p21=0.1

p23 =0.3

p34 =0.9

0.1

Recall from homework: self-
service is effectively equivalent 
to having infinitely many servers. 

p12=1
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Open Jackson Networks: Traffic Equations

Traffic Equations for Open Jackson Networks

Define:

λ i = total arrival rate to station i 
(including external and internal arrivals)

The values {λ i, i=1,2…,m} must satisfy the following equations:

λ λi i j ji
j

m

a p i m= + =
=
�

1

1 2for , , . . . ,

total arrival 
rate into 
station i

external arrival 
rate into station i

total arrival rate 
from other stations

λ λi i j ji
j

m

a p i m= + =
=
�

1

1 2fo r , , . . . ,

Open Jackson Networks: Example
Example: Ward’s Berry Farm, continued
In this example, our traffic equations look like:

Solving these simultaneously gives us:

λ λ λ

λ λ λ

λ λ λ

λ λ λ λ

1 1 1
1

2

2 2 2
1

1

3 3 3
1

2

4 4 4
1

2 3

1 0 0 1

3 0 0 3

0 6 0 9

= + = +

= + =

= + = +

= + = +

=

=

=

=

�

�

�

�

a p

a p

a p

a p

j j
j

m

j j
j

m

j j
j

m

j j
j

m

( . )

( . )

( . ) ( . )

λ λ

λ

λ

1 2

3

4

1 0 0

9

3 0
3

1 0

1 0 0

9

1 0 0

3
6

1 0

1 0 0

9

9

1 0

1 0 0

3

1 1 0

3

= =

= + =

= + =
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Open Jackson Networks: 
The Product Form Solutions

The state of the system is a vector of length m:

X(t)=(n1 , n2 , n3 ,…, nm) means n1 customers at station 1,
n2 customers at station 2,

…
nm customers at station m. 

It turns out that if λ i /siµi <1 for each station i=1,2,…,m, then, as in the 
car wash example, the steady state distribution has a product form 
solution:

P P n n n m

P n P n P n m

n n n m

m

m1 2 1 2

1 2

, ,... , ( )

( ( ) ( )

=

=

a t s t a t io n 1 , a t s ta t io n 2 , . . . a t s t a t io n

a t s ta t io n 1 ) a t s ta t io n 2 a t s ta t io n�

Product Form Solution for Open Jackson Networks

Example: Ward’s Berry Farm, continued
To determine the steady state distribution for the entire network in this example, 
we first recall what we know about the M/M/1, M/M/3 and M/M/∞ queues to 
determine whether each of the 4 stations has a steady state distribution of its own:

stations 1 and 3 have steady state distributions because the M/M/∞ queue
always does!

station 2: λ2 =(100/9) < µ2 =60 station 2 has a steady state distribution  

station 4: λ4 =(110/3) < s4µ4 =3(20)=60 station 4 has a steady state 
distribution 

Open Jackson Networks: Example
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Example: Ward’s Berry Farm, continued
We compute each station’s own steady state distribution using what we already 
know about the M/M/1, M/M/3 and M/M/∞ queues:

P j
j

e
j

(
( )

!
a t s t a t i o n 1 ) = −λ µ λ µ1 1 1 1

P j j( ( ) ( )a t s t a t i o n 2 ) = −1 2 2 2 2λ µ λ µ

P j j
K j

K j

j

j

j

(

( )

!
( )

( )

!
( )

a t s t a t i o n 4 )
f o r

f o r

=
+ ≤ ≤

+ ≥

�

�
��

�
�
�

−

−
−

λ µ

λ µ

4 4 1

4 4
3

1

1 0 3

3 3
1 4

w h e r e K
i

i

i

= +
−

�

�
�

�

�
�

=
�

( )

!

( )

! ( )

λ µ λ µ
λ µ

4 4

0

2
4 4

3

4 43

1

1 3

P j
j

e
j

(
( )

!
a t s t a t i o n 3 ) = −λ µ λ µ3 3 3 3

Open Jackson Networks: Example

Example: Ward’s Berry Farm, continued
We express the steady state distribution of the entire network in product form:

P

P n P n P n P n

n n n n1 2 3 4

1 2 3 43 4

, , ,

( ( ) ( ) ( )= a t s ta tio n 1 ) a t s ta tio n 2 a t s ta tio n a t s ta tio n

= ⋅ −

⋅ ⋅
+ ≤ ≤
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�
�
�

−

−

−

−
−
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!
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( )
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!
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!
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λ µ
λ µ λ µ

λ µ
λ µ

λ µ

λ µ

λ µ

1 1

1
2 2 2 2

3 3

3

4 4

4

1
4

4 4
3

1
4

1

1 1 2

3

3 3

4

4

4

1

1 0 3

3 3
1 4

n
n

n

n

n

n

n
e

n
e

n
K n

K n

i f

if

6

1556.5556.5

1
22

104962.1

)11.71()185.01(

)1()1( 3311

−

−−−

−−−

×=

+−=

+−=

ee

Kee µλµλ µλP0 0 0 0, , ,

This looks cumbersome but is easily evaluated for any particular state vector 
(n1, n2, n3, n4). An example is (n1, n2, n3, n4) = (0,0,0,0):

Open Jackson Networks: Example
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Open Jackson Networks
Steps to Analyze an Open Jackson Network

(1) Solve the traffic equations

(2) Check that λ i < si µi for each station i=1,…,m. 
If  NO, the number of customers in the network blows up, 

so there is no steady state distribution. 
If  YES, go to step 3.

(3) For each station i, calculate the steady state distribution 
for an M/M/si queue with arrival rate λ i and the service rate µi.

(4) The steady state probability that there are n1 customers at station 1, 
n2 customers at station 2,…., nm customers at station m is just

ω ω ω ωi i i i= ( , , , . . . )0 1 2

P P n P n P nn n n m

n n n
m

m

m

1 2

1 2

1 2

1 2

, ,..., ( ) ( ) ( )=

= ⋅ ⋅

a t s ta t io n 1 a t s ta t io n 2 a t s ta t io n m�

�ω ω ω

λ λi i j ji
j

m

a p i m= + =
=
�

1

1 2fo r , , . . . ,

Open Jackson Networks
In the special case that all n stations have a single server (si=1 for all i) then 
the analysis is particularly easy:

(1) Solve the traffic equations

(2) Check that ρi = λ i/µi <1 for each station i=1,…,m. 
If  NO, there is no steady state distribution. 
If  YES, go to step 3.

(3) For each station i, the steady state distribution 
for an M/M/1 queue with arrival rate λ i and the service rate µi is:

(4) The steady state probability that there are n1 customers at station 1, 
n2 customers at station 2,…., nm customers at station m is just

ω ω ω ωi i i i= ( , , , . . . )0 1 2

Pn n n n n n
m n n

m m
n

i
i

m

i
n

m m

m

i

1 2 1 2

1 21 2
1 1 2 2

1

1 1 1

1

, ,... , ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

= ⋅ = − − −

= −
=

∏

ω ω ω ρ ρ ρ ρ ρ ρ

ρ ρ

� �

ω ρ ρj
i

i i
j= −( )( )1

λ λi i j ji
j

m

a p i m= + =
=
�

1

1 2fo r , , . . . ,
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Example: Ward’s Berry Farm, continued
Ward’s Berry Farm makes, on average, $15 per hour that a single customer 
spends picking berries. What is their average hourly income from the berry field? 
It’s

where

Thus, their average hourly income from the berry field alone is $83.40.

115$ L

Open Jackson Networks: Example

56.5
2

100/9

1

1
1 ===

µ
λ

L

Example: Ward’s Berry Farm, continued
What is the average number of people at Ward’s Berry Farm at a given 
point in time in steady state? By the product form solution for Open Jackson 
Networks, we know the answer is

where Li is the average number of people at station i in steady state. 

4321 LLLLL +++=

Open Jackson Networks: Example

20.
)1(!3
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))9/100(-60(
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3
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L
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4
4 3 µ

λ
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λρ ==
S

where

6.114321 =+++= LLLLL

is the average steady state number of people at the farm.
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Example: Ward’s Berry Farm, continued
What is the average duration time a visiting customer spends at the farm?
It turns out we can’t just add average times they spend at each station, 
because the customer doesn’t necessarily visit each station exactly once.  
Instead, we can just use Little’s Law:

where λ represents the average total external arrival rate to the entire 
system, i.e.,

So a visiting customer spends, on average, 

hours at the farm.

WL λ=

Open Jackson Networks: Example

4030104321 =+=+++= aaaaλ

29.40/6.11/ === λLW

Closed Jackson Networks

A closed Jackson network of queues is a network with a fixed 
number n of customers and m service stations, where station i has

(1) an infinite queue

(2) si identical servers, each with an exponential service time distribution 
with rate µi

(3) the probability that a customer exiting station i goes to station j is pij

(4) no customers exiting the system, i.e., 

(5) no arrivals of customers from outside the system

p ijj

m

=� =
1

1
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Closed Jackson Networks

Traffic Equations for Closed Jackson Networks

As in the open network case, we let

λ i = total arrival rate to station i

where this time there are no external arrivals.

Now the values {λ i, i=1,2…,m} must satisfy:

λ λ

λ

i j ji
j

m

i
i

m

p i m= =

=

=

=

�

�

1

1

1 2

1

for , , . . . ,

Closed Jackson Networks
Steps to Analyze a Closed Jackson Network

(1) Solve the traffic equations

If a solution exists, go to step 2. 
If not, there is no steady state distribution.

(2) For each station i, calculate the steady state distribution 
for an M/M/si queue with arrival rate λ i and the service rate µi.
(If λ i exceeds µi, and si=1, then it’s okay to use the steady state 
distribution anyway.)

ω ω ω ωi i i i= ( , , , . . . )0 1 2

λ λ λi j ji
j

m

i
i

m

p i m= = =
= =
� �

1 1

1 2 1for , , . . . , ,

continued….
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Closed Jackson Networks

P

n n n n
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n n n
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n n n
m
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j j j
j j j n
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m

m

m
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+ + ≠
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⋅
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�

�
�

�

�
�

≥
+ + + =

�

i f .

i f .
ω ω ω

ω ω ω
�

�

(3) The steady state probability that there are n1 customers at station 1, 
n2 customers at station 2,…., nm customers at station m is just

Steps to Analyze a Closed Jackson Network

Closed Jackson Networks: Example

Example: Roommate Network
Suppose that between yourself and your two roommates, you own 2 Gameboys. 
When you get your hands on one, you tend to use it for a time that’s exponentially 
distributed with mean of 1 hour. When you’re tired of it, you give it to your 
roommate Barbara with with probability 0.8 or your other roommate Joyce with 
probability 0.2. The lengths of time that Barbara and Joyce keep a Gameboy is 
exponentially distributed with mean of 1.5 hours and 2 hours, respectively. 
Barbara will always give the one she’s been playing with to you when she’s 
through, whereas Joyce give it to you only 60% of the time; the rest of the time 
she’ll let Barbara have it next. What’s the probability that each of your roommates 
has Gameboy, but you don’t? 

You
(µ1=1)

1

Barbara
(µ2=2/3)

2
Joyce

(µ3=1/2)

3

p12=0.8 p13=0.2

p21=1 p31=.6

p32=.4
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Closed Jackson Networks: Example

Example: Roommate network, continued
(1) First we solve the traffic equations to obtain the arrival rates are each “station”:

The resulting arrival rates are:

λ λ λi j ji
j

m

i
i

m

p i m= = =
= =
� �

1 1

1 2 1for , , . . . , ,

λ λ λ
λ λ λ
λ λ
λ λ λ

1 2 3

2 1 3

3 1

1 2 3

0 6

0 8 0 4

0 2

1

= +
= +
=
+ + =

( . )

( . ) ( . )

( . )

You
(µ1=1)

1

Barbara
(µ2=2/3)

2
Joyce

(µ3=1/2)

3

p12=0.8 p13=0.2

p21=1 p31=.6

p32=.4

λ λ λ1 2 3

2 5

5 2

2 2

5 2

5

5 2
= = =, ,

Closed Jackson Networks: Example

(2) We now calculate the steady state distribution for each station i by 
modeling it as an M/M/1 queue with arrival rate λ i and the service rate µi.

station 1 (you): 

station 2 (Barbara):

station 3 (Joyce):

(3) Now we want to compute the steady state probability that each of your 
roommates has a Gameboy. This probability is denoted by

Example: Roommate network, continued

ω j
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P0 1 1, ,
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Closed Jackson Networks: Example
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The steady state probability that there are n1 Gameboys with you, n2 
Gameboys with Barbara, and n3 Gameboys with Joyce is

Let’s first compute the denominator:

Example: Roommate network, continued

ω ω ωj j j
j j j
j j j

1 2 3
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1 2 3

0
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Closed Jackson Networks: Example

j j j j j j1 2 3 1 2 30 2, , ,≥ + + =
There are six feasible combinations of indices (j1, j2, j3) that appear in the sum, 
namely those satisfying

(j1, j2, j3)

(2, 0, 0)

(0, 2, 0)

(0, 0, 2)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

Example: Roommate network, continued
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we’re using:
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Closed Jackson Networks: Example
Example: Roommate network, continued
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Example: Roommate network, continued

Closed Jackson Networks: Example
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The probability that each of your roommates has a Gameboy and you don’t is 
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Queuing Models with Nonexponential Service 
Distribution

• M/G/1 queue
• M/D/1 queue
• M/Ek/1 queue

The exponential distribution is a very convenient choice for modeling 
service and interarrival time distributions. As we have seen, it leads to 
very tractable results in characterizing system behavior. In some contexts, 
however, it is not a realistic choice of distribution. In some service 
systems, the service time might be known to have a different distribution. 
One important example of this situation is when the service times are 
completely predictable (i.e., deterministic). We will consider the following 
types of non-exponential queues.

Nonexponential Service:
The M/G/1 Queue

• Poisson input process with rate λ
• single server
• arbitrary service time distribution (iid for all customers)

with mean 1/µ and variance σ2

• infinite capacity queue

For this class of queues, if ρ=λ/µ<1, then and 

LQ =
+

−
λ σ ρ

ρ

2 2 2

2 1( )

For an M/G/1 queue,

if ρ=λ/µ<1.

POLLACZEK-KHINTCHINE EQUATION for M/G/1

LQ =
+

−
λ σ ρ

ρ

2 2 2

2 1( )
P0 1= − ρ

Additional quantities of interest (W, WQ, L , LS) can be derived from LQ and P0. 
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The M/G/1 Queue: Example

Suppose that customers arrive at the McDonald’s drive-thru at a rate of 30 
per hour. The time to until any given car completes service is uniformly 
distributed on the interval [0,3] minutes. 

(1) What is the average amount of time a car spends waiting to be served? 
(2) What is the average number of cars being served or waiting to be 
served?

The mean service time is 1.5 minute (obtained by taking the mean of a 
uniform [0,3] random variable) so the average service rate µ is 2/3 
cars/minute. Thus ρ=λ/µ=3/4.  The variance of the service time is σ2 = 
(3)2/12 = 3/4. The average waiting time in queue for each car, measured in 
minutes, is computed using the P-K equation and our useful relationship 
between LQ and WQ :  

EXAMPLE: McD’s Drive Thru

W
L L

Q

Q Q= = =
+
−

=
+

=
λ λ

λ σ ρ
λ ρ

2 2 2 2 2

2 1

0 5 0 7 5 0 7 5

2 0 5 0 2 5
3

( )

( . ) ( . ) ( . )

( . )( . )
m in u te s

The M/G/1 Queue: Example

The average number of cars being served or waiting to be served is 

L = LQ + LS

Since LS = (1-P0) = ρ for an M/G/1 queue, L equals

EXAMPLE: McD’s Drive Thru

L L LQ S= + =
+

−
+

=
+

+ =

λ σ ρ
ρ

ρ
2 2 2

2 2

2 1

0 5 0 7 5 0 7 5

2 0 2 5
0 7 5 2 2 5

( )

( . ) ( . ) ( . )

( . )
( . ) . c a rs
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Nonexponential Service:
The M/D/1 Queue

• Poisson input process with rate λ
• single server
• service time is deterministic and equal to 1/µ 
• infinite capacity queue

LQ =
−

ρ
ρ

2

2 1( )

For an M/D/1 queue,

where ρ=λ/µ

POLLACZEK-KHINTCHINE EQUATION for M/D/1

L Q =
−

ρ
ρ

2

2 1( )

P0 1= − ρ
This is a special case of the M/G/1 queue in which σ2=0. As in the 
general case,if ρ=λ/µ<1, then . Moreover, in this case the P-
K equation reduces to

The M/D/1 Queue: Example

Let’s compare two different employees at the drive thru window. Ann’s service 
time is uniformly distributed on the interval [0,3] minutes. Jim is slower on 
average, but more consistent: he completes service for every car in exactly 1.55 
minutes every time. Which server makes customers wait less time from entry in 
the queue until completing service?

We’ve already seen that Ann’s service performance leads to: 

so

EXAMPLE: McD’s Drive Thru, again

W W WQ S= + = + =3 1 5 4 5. . m in u te s

W
L L

Q

Q Q= = =
+
−

=
+

=
λ λ

λ σ ρ
λ ρ

2 2 2 2 2

2 1

0 5 0 7 5 0 7 5

2 0 5 0 2 5
3

( )

( . ) ( . ) ( . )

( . ) ( . )
m in u te s



MS&E 121 Handout #25     
Introduction to Stochastic Processes & Models February 19, 2002

The M/D/1 Queue: Example

Since Jim’s service time is deterministic, the variance of his service time is zero. 
In his case, ρ=λ/µ=0.775. By contrast, Jim has people wait in queue on average

Although Ann’s average service time is faster, Jim’s consistency leads to shorter 
waits.

EXAMPLE: McD’s Drive Thru, continued

W W WQ S= + = + =2 6 6 9 4 1 5 5 4 2 1 9 4. . . m in u t e s

W
L L

Q

Q Q= = =
−

= =
λ λ

ρ
λ ρ

2 2

2 1

7 7 5

2 0 5 2 2 5
2 6 6 9 4

( )

( . )

( . ) ( . )
. m in u te s

Nonexponential Service:
The M/Ek/1 Queue

Now we consider another special case of the M/G/1 queue, namely the 
M/ Ek/1 queue. The notation Ek  stands for the Erlang distribution with shape 
parameter k. To motivate this type of queue, we first mention some important
facts about the Erlang distribution. 

A random variable X having an Erlang distribution with parameters (µ, 
k) has probability density function

and mean and variance E X( ) =
1

µ

f x
k x e

k
x

k k k x

( )
( )

( ) !
=

−
≥

− −µ µ1

1
0f o r

V a r ( )X
k

=
1

2µ

The Erlang (µ,k) random variable is also called a Gamma (k,µk) random 
variable.

Note: if k = 1, then X is exponentially distributed with parameter µ

The Erlang Distribution
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The Erlang Distribution

Let be independent and identically distributed 
exponential random variables with parameter nµ. Then the random 
variable

has an Erlang distribution with parameters (µ, n).

Y Y Yn1 2, , . . . ,

Y Y Y Yn= + + +1 2 . . .

Useful Fact About the Erlang Distribution

The Erlang distribution is of particular significance in queueing theory because 
of this useful fact. To see why, imagine a queuing system where the server (or 
servers) performs not just a single task that takes an exponential length of time 
but instead a sequence of n tasks, where each task takes an exponential length 
of time. When each task’s time has parameter nµ (mean 1/nµ) then the length 
of time to complete all tasks has an Erlang distribution with parameters (µ, n).

Nonexponential Service:
The M/Ek/1 Queue

• Poisson input process with rate λ 
• single server
• Erlang (µ,k) service time distribution; mean 1/µ and variance 1/kµ2

• infinite capacity queue

As for the general M/G/1 case, if ρ=λ/µ<1, then . 
Applying the P-K equation to this case yields

For an M/Ek/1 queue,

if ρ=λ/µ<1.

POLLACZEK-KHINTCHINE EQUATION for M/Ek/1

L
k k

Q =
+

−
=

+
−

λ µ ρ
ρ

ρ
ρ

2 2 2 2

2 1

1 1

2 1

/

( )

(( / ) )

( )

P0 1= − ρ

L
k

Q =
+

−
ρ

ρ

2 1 1

2 1

(( / ) )

( )



MS&E 121 Handout #25     
Introduction to Stochastic Processes & Models February 19, 2002

The M/Ek/1 Queue: Example

Students working on their EESOR 121 homework send email asking for help at a 
rate of 1 email per hour. When an email arrives I get right to work answering 
that person’s email if I am not busy answering another student’s email at the 
time. Each student’s email asks one question for each of the 7 problems on the 
homework.) The time each question takes me to answer is exponentially 
distributed with mean 3 minutes, so I am capable of replying to one email every 
21 minutes on average.

(1) What is the average time a student waits for a reply?

(2) If I would like to spend only 10% of of my time answering homework 
questions, how many homework problems should I assign each week?

EXAMPLE: Homework Questions

The M/Ek/1 Queue: Example

It is given that the time to answer each question is exponentially distributed with 
parameter 3. Since there are n=7 questions one each homework set, letting 
1/nµ=3 implies that the time it takes me to answer one entire email has an Erlang
distribution with parameters (µ, n)=(1/21,7). 

In this example ρ=λ/µ = 7/20. The P-K equation tells us 

We also know 

(1) The average time a student waits for a reply is

EXAMPLE: Homework, continued

L
n

Q =
+

−
=

+
=

ρ
ρ

2 21 1

2 1

7 2 0 1 7 1

2 1 3 2 0

7

6 5

(( / ) )

( )

( / ) (( / ) )

( / )

L PS = − = =1 1
7

2 00( ) ρ

W L L LS Q= = + = +�
�
�

�
�
� = �

�
�

�
�
�/ ( ) /λ λ 6 0

7

2 0

7

6 5
6 0

1 1 9

2 6 0

= 2 7 .4 6 m in u te s = 0 .4 5 7 7 h o u r s
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The M/Ek/1 Queue: Example

(2) Let n be the number of questions on the homework. My rate of replying to 
emails is then µ = 1/3n per hour. If I would like to spend at most 10% of of my 
time answering homework questions, then I require

This holds only if  

or  

I should assign at most 2 problems per week. 

EXAMPLE: Homework, continued

1 0 10− ≤P .

1
3

6 0 2 0
0 10− = = = = ≤P

n n
ρ

λ
µ .

n ≤ 2


