Problem 3
[25 pts]

Consider a continuous-time signal z.(¢), and assume that its continuous-time Fourier trans-
form (CTFT) is as given in Figure 2.

—Qn Qn
Figure 2: Spectrum of z.(t).

[Ipts]  (a) According to the sampling theorem, what is the smallest sampling frequency €2 at which
reconstruction of z.(t) from the samples is possible?
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(b) Assume that we sample z.(t) at a sampling frequency Q. = 3Qx. Let u[n] be the sample

sequence, i.e., uln] = z.(nT7), where T! = 2¢. Is perfect reconstruction of z.(t) possible

from the sample sequence u[n|?

(c) Sketch the discrete-time Fourier transform (DTFT) U(e?*) of the sample sequence u[n]
for w € [—3m, 37]. Make sure to label all the important points on both axes.

(d) Assume that we upsample u[n| by a factor of 2 to obtain v[n], i.e,

In] = ul3] if n is even,
vt = 0  ifnisodd.

Sketch the DTFT V(e?*) of the new sequence v[n] for w € [—3m, 3n]. Again, label all
the important points on both axes.

(e) Now, we use sinc interpolation on v[n] to construct a continuous-time signal y.(t) (using
Q) = 3Qy). In other words,

wlt) = Y olnsine(" =0T,

n=—oo

Sketch the CTFT Y.(52) of y.(t). Make sure to label all the important points on both
axes.

(f) According to the sampling theorem, what is the smallest sampling frequency Q, at which
reconstruction of y.(¢) from the samples is possible?

(g) Assume that we sample 3.(t) at a sampling frequency €, = 2Qy to obtain the sample
sequence w(n]. Sketch the DTFT W (e’¥) of the sample sequence w[n| for w € [—3m, 37].
Make sure to label all the important points on both axes.

(h) Is perfect reconstruction of y.(t) possible from the sample sequence w[n|? If yes, explain
how. If not, explain why. (You can give your answer in terms of diagrams and some
explanations.)

Problem 4
[17 pts]

Consider the system given in Figure 3, where § is a time-variant operator which acts on its
input u[n] as follows:

uln| if n is even
v[n] = S{uln]} = { uln] + Lufn — 1] if n is odd,

N[

(a) Compute v[n] in terms of z[n] and y[n].
Hint: First write down v[0], v[1], v[2] and v[3], and then generalize.

(b) Rewrite the system under the form given in Figure 4. All you are allowed to do is fill in
the gaps in the rectangles and circles. All the filters that you use should be linear and
time-invariant.

Hint: You are allowed to put d[n] in some of the filters.
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Figure 3: Multirate system

Figure 4: Equivalent multirate system

[Ipts]  (c) Compute the Z-transform V' (z) of the system output as a function of X (z) and Y (2).

[2pts]  (d) Now we feed v[n] into the system given in Figure 5. Compute a[n] and b[n|. Express
the result in terms of z[n| and y[n|.

v[n]

d[n + 1] @ b[n]

Figure 5: Continuation of the multirate system

[2pts]  (e) Find a system that inverts the system in Figure 3, i.e., your system should have input
v[n] and outputs z[n| and y[n]. Draw the system diagram and determine all the opera-
tions and filters used. All the filters that you use should be linear and time-invariant.
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Problem 3

(a) From the sampling theorem, we know that {25 = 2Q is such that any sampling frequency
larger than Qg allows perfect reconstruction of z.(t).

(b) Yes, perfect reconstruction is possible, because Q) > €.
(¢) The DTFT of the sample sequence u[n| is given in Figure 2.
U(ed®)

T/

s

—3r —27 - ™ 2 3T

Figure 2: Problem 3 (c)

(d) Upsampling by a factor of 2 has the effect of “contracting” the DTFT horizontally by a
factor of 2. Hence, we obtain the DTFT in Figure 3.

V(el?)
1
+ + + + + > W
-3 —2m —T m 27 3
Figure 3: Problem 3 (d)
(e) Consider first the continuous-time function
oo
w(t)= 3 olnls(t - nTy)
n=—00
This is just a sequence of delta-pulses, whose amplitudes are v[0],v[1],v[2],... (we call

this a pulse-train). The CTFT of y,(t) is given in Figure 4. The sinc interpolation of v[n]
is
oo
. t—nT!
ye(t) = Z v[n] sinc ( T 2).

n=—oo

Hence, it can be shown that y.(t) = ys(t) = sinc(47). In the frequency domain, this
convolution corresponds to the multiplication
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Figure 4: Problem 3 (e)

where the box function 717 1[ 2, al) is simply the CTFT of smc(%). The resulting CTFT
R s

Y.(592) is given in Figure 5.

Ye(562)
1
T
x w Q
o Q’ o o
T2 6 6 2

Figure 5: Problem 3 (e)

Q9
2 7] 5 ,
the limit sampling frequency is equal to the width of this support, namely s = 2% = Q..

(f) Here, the spectrum Y.(j€2) has support [— . According to the sampling theorem,

(g) To find out how to sketch the DTFT of w[n|, we observe that the support of Y.(j€2) is
[—%, %] [— %QN, %QN] Now, we sample y.(t) at Q. = 2Qy, which will correspond to
27 in the DTFT sketch. Hence, the support of one “copy” of the spectrum in the DTFT

is [~3m, 37]. The result is shown in Figure 6.

(h) Yes, perfect reconstruction is possible. We can see this because there is no aliasing in
the DTFT in Figure 6. First, we sketch the CTFT of §4(¢), which is the pulse-train that
corresponds to w[n|. This sketch is shown in Figure 7.

To recover y.(t), we can use a filter that combines a low-pass and a band-pass filter. Such
a filter H,(j€) is shown in Figure 8.

Mathematically, the frequency response of the filter is

T, if|Q € 30,3
H.(jQ) =4 T, if|Q €[0,10,],
0

otherwise.
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Figure 6: Problem 3 (g)
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Figure 7: Problem 3 (h)
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Figure 8: Problem 3 (h)



Problem 4

(a)

Since the system from z[n] and y[n] to u[n] is LTI, we can simply write
u[n] = Ua([n]) + Va(y[n]) * o[n — 1].
So, is it clear that
uln] = z[5] if n is even
T %] ifnis odd.
Therefore, after the time-variant operator, S, we get

vln] = S{uln]} = { Lofk] + Ly[k] ifn=2k+1. M)

The system shown in Fig. 9 is equivalent to the system considered in the problem. Note
that all the filters used in the equivalent system are linear and time-invariant.

z[n]

—@H
aCa

Figure 9: Equivalent multirate system

It is clear from the equivalent system that
1 1
v[n] = Ua(z[n]) * d[n] + Ua(z[n]) * ié[n — 1]+ Ua(y[n]) * 55[n —1].

Therefore,

1 1

21X (%) + 52_1Y(z2)
1

2 HX(2) + 52_1Y(z).

V(z) = X(2*) +
1
2

O |

=1+
a[n] is just the down-sampled version of v[n] by a factor 2, i.e., it only contains the
even-index samples of v[n]. So, from (1), it is clear that
aln] = v[2n] = z[n].

We can can also easily see that b[n] takes the odd-indices of the input sequence. Therefore,

1 1
bln] = Da(v[n] * 6[n + 1]) = Da(v[n + 1]) = v]2n+ 1] = ix[n] + §y[n]
Having the system in part (d), it is easy to do a little modification to come up with the
inverse system. Note that x[n] is already produced at one of the output branches, and we
only have to scale the other output, and subtract z[n]. Hence, we obtain the following
System.
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Figure 10: Inverse system
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