
x[n] u[n]

u[n − 2]

−
+ +

2δ[n] − 3δ[n − 1]

δ[n − 1]

11δ[n − 1]

y[n]

Figure 1: System with Impulse Response h[n].

(d) Compute h[n]. (Assume that y[n] = 0 for n < 0.)[5pts ]

Hint: In case you find a Z-transform of the form H(z) = z−1H̃(z), you can first deter-
mine h̃[n].

(e) Is the system linear?[1pts ]

(f) Is the system time-invariant?[1pts ]

(g) Is the system stable?[1pts ]

Problem 3

[25 pts]

Consider a continuous-time signal xc(t), and assume that its continuous-time Fourier trans-
form (CTFT) is as given in Figure 2.

Ω

Xc(jΩ)

ΩN−ΩN

1

Figure 2: Spectrum of xc(t).

(a) According to the sampling theorem, what is the smallest sampling frequency Ωs at which[1pts ]
reconstruction of xc(t) from the samples is possible?
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(b) Assume that we sample xc(t) at a sampling frequency Ω′

s = 3ΩN . Let u[n] be the sample[1pts ]
sequence, i.e., u[n] = xc(nT ′

s), where T ′

s = 2π
Ω′

s

. Is perfect reconstruction of xc(t) possible

from the sample sequence u[n]?

(c) Sketch the discrete-time Fourier transform (DTFT) U(ejω) of the sample sequence u[n][4pts ]
for ω ∈ [−3π, 3π]. Make sure to label all the important points on both axes.

(d) Assume that we upsample u[n] by a factor of 2 to obtain v[n], i.e,[3pts ]

v[n] =

{

u[n
2 ] if n is even,

0 if n is odd.

Sketch the DTFT V (ejω) of the new sequence v[n] for ω ∈ [−3π, 3π]. Again, label all
the important points on both axes.

(e) Now, we use sinc interpolation on v[n] to construct a continuous-time signal yc(t) (using[6pts ]
Ω′

s = 3ΩN). In other words,

yc(t) =
∞

∑

n=−∞

v[n] sinc(
t − nT ′

s

T ′

s

).

Sketch the CTFT Yc(jΩ) of yc(t). Make sure to label all the important points on both
axes.

(f) According to the sampling theorem, what is the smallest sampling frequency Ω̃s at which[1pts ]
reconstruction of yc(t) from the samples is possible?

(g) Assume that we sample yc(t) at a sampling frequency Ω̂s = 2ΩN to obtain the sample[3pts ]
sequence w[n]. Sketch the DTFT W (ejω) of the sample sequence w[n] for ω ∈ [−3π, 3π].
Make sure to label all the important points on both axes.

(h) Is perfect reconstruction of yc(t) possible from the sample sequence w[n]? If yes, explain[6pts ]
how. If not, explain why. (You can give your answer in terms of diagrams and some
explanations.)

Problem 4

[17 pts]

Consider the system given in Figure 3, where S is a time-variant operator which acts on its
input u[n] as follows:

v[n] = S
{

u[n]
}

=

{

u[n] if n is even
1
2u[n] + 1

2u[n − 1] if n is odd.

(a) Compute v[n] in terms of x[n] and y[n].[7pts ]
Hint: First write down v[0], v[1], v[2] and v[3], and then generalize.

(b) Rewrite the system under the form given in Figure 4. All you are allowed to do is fill in[5pts ]
the gaps in the rectangles and circles. All the filters that you use should be linear and
time-invariant.
Hint: You are allowed to put δ[n] in some of the filters.
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x[n]

y[n]

↑ 2

↑ 2 δ[n − 1]

+
u[n]

S v[n]

Figure 3: Multirate system

x[n]

y[n]

v[n]

Figure 4: Equivalent multirate system

(c) Compute the Z-transform V (z) of the system output as a function of X(z) and Y (z).[1pts ]

(d) Now we feed v[n] into the system given in Figure 5. Compute a[n] and b[n]. Express[2pts ]
the result in terms of x[n] and y[n].

v[n]

↓ 2 a[n]

δ[n + 1] ↓ 2 b[n]

Figure 5: Continuation of the multirate system

(e) Find a system that inverts the system in Figure 3, i.e., your system should have input[2pts ]
v[n] and outputs x[n] and y[n]. Draw the system diagram and determine all the opera-
tions and filters used. All the filters that you use should be linear and time-invariant.
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Problem 3

(a) From the sampling theorem, we know that Ωs = 2ΩN is such that any sampling frequency
larger than Ωs allows perfect reconstruction of xc(t).

(b) Yes, perfect reconstruction is possible, because Ω′

s ≥ Ωs.

(c) The DTFT of the sample sequence u[n] is given in Figure 2.

ω

U(ejω)

π−π 2π−2π 3π−3π

1
T ′

s

Figure 2: Problem 3 (c)

(d) Upsampling by a factor of 2 has the effect of “contracting” the DTFT horizontally by a
factor of 2. Hence, we obtain the DTFT in Figure 3.

ω

V (ejω)

π−π 2π−2π 3π−3π

1
T ′

s

Figure 3: Problem 3 (d)

(e) Consider first the continuous-time function

ys(t) =
∞

∑

n=−∞

v[n]δ(t − nT ′

s).

This is just a sequence of delta-pulses, whose amplitudes are v[0], v[1], v[2], . . . (we call
this a pulse-train). The CTFT of ys(t) is given in Figure 4. The sinc interpolation of v[n]
is

yc(t) =
∞

∑

n=−∞

v[n] sinc
( t − nT ′

s

T ′
s

)

.

Hence, it can be shown that yc(t) = ys(t) ∗ sinc( t
T ′

s

). In the frequency domain, this
convolution corresponds to the multiplication

Yc(jΩ) = Ys(jΩ)T ′

s1[−Ω′
s
2

,
Ω′

s
2

]
,

4
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Ω

Ys(jΩ)

Ω′

s−Ω′

s

1
T ′

s

Figure 4: Problem 3 (e)

where the box function T ′

s1[−Ω′
s
2

,
Ω′

s
2

]
is simply the CTFT of sinc( t

T ′
s

). The resulting CTFT

Yc(jΩ) is given in Figure 5.

Ω

Yc(jΩ)

Ω′
s

2−Ω′
s

2
Ω′

s

6−Ω′
s

6

1
T ′

s

Figure 5: Problem 3 (e)

(f) Here, the spectrum Yc(jΩ) has support [−Ω′
s

2 , Ω′
s

2 ]. According to the sampling theorem,

the limit sampling frequency is equal to the width of this support, namely Ω̃s = 2Ω′
s

2 = Ω′

s.

(g) To find out how to sketch the DTFT of w[n], we observe that the support of Yc(jΩ) is

[−Ω′
s

2 , Ω′
s

2 ] = [−3
2ΩN , 3

2ΩN ]. Now, we sample yc(t) at Ω̂s = 2ΩN , which will correspond to
2π in the DTFT sketch. Hence, the support of one “copy” of the spectrum in the DTFT
is [−3

2π, 3
2π]. The result is shown in Figure 6.

(h) Yes, perfect reconstruction is possible. We can see this because there is no aliasing in
the DTFT in Figure 6. First, we sketch the CTFT of ŷs(t), which is the pulse-train that
corresponds to w[n]. This sketch is shown in Figure 7.

To recover yc(t), we can use a filter that combines a low-pass and a band-pass filter. Such
a filter Hr(jΩ) is shown in Figure 8.

Mathematically, the frequency response of the filter is

Hr(jΩ) =







T̂s if |Ω| ∈ [12 Ω̂s,
3
4 Ω̂s],

T̂s if |Ω| ∈ [0, 1
4 Ω̂s],

0 otherwise.
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ω

W (ejω)

π−π 2π−2π 3π−3π

1
T̂s

Figure 6: Problem 3 (g)

Ω

Ŷs(jΩ)

Ω̂s

2− Ω̂s

2
Ω̂s−Ω̂s

1
T̂s

Figure 7: Problem 3 (h)

Ω

Hr(jΩ)

Ω̂s

2− Ω̂s

2
Ω̂s−Ω̂s

1
T̂s

T̂s

Figure 8: Problem 3 (h)
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Problem 4

(a) Since the system from x[n] and y[n] to u[n] is LTI, we can simply write

u[n] = U2(x[n]) + U2(y[n]) ∗ δ[n − 1].

So, is it clear that

u[n] =

{

x[n
2 ] if n is even

y[n−1
2 ] if n is odd.

Therefore, after the time-variant operator, S, we get

v[n] = S
{

u[n]
}

=

{

x[k] if n = 2k
1
2x[k] + 1

2y[k] if n = 2k + 1.
(1)

(b) The system shown in Fig. 9 is equivalent to the system considered in the problem. Note
that all the filters used in the equivalent system are linear and time-invariant.

x[n]

y[n]

↑ 2

↑ 2

1
2δ[n − 1]

1
2δ[n − 1]

+

↑ 2 δ[n]

+ v[n]

Figure 9: Equivalent multirate system

(c) It is clear from the equivalent system that

v[n] = U2(x[n]) ∗ δ[n] + U2(x[n]) ∗
1

2
δ[n − 1] + U2(y[n]) ∗

1

2
δ[n − 1].

Therefore,

V (z) = X(z2) +
1

2
z−1X(z2) +

1

2
z−1Y (z2)

= (1 +
1

2
z−1)X(z) +

1

2
z−1Y (z).

(d) a[n] is just the down-sampled version of v[n] by a factor 2, i.e., it only contains the
even-index samples of v[n]. So, from (1), it is clear that

a[n] = v[2n] = x[n].

We can can also easily see that b[n] takes the odd-indices of the input sequence. Therefore,

b[n] = D2(v[n] ∗ δ[n + 1]) = D2(v[n + 1]) = v[2n + 1] =
1

2
x[n] +

1

2
y[n].

(e) Having the system in part (d), it is easy to do a little modification to come up with the
inverse system. Note that x[n] is already produced at one of the output branches, and we
only have to scale the other output, and subtract x[n]. Hence, we obtain the following
system.

7
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v[n]

↓ 2 x[n]

2δ[n + 1] ↓ 2 +
−

y[n]

Figure 10: Inverse system

Problem 5

(a) Using the Noble identities, we can transform the given filter bank as shown in Figure 11.
The resulting filters are

H1(z)

H1(z)

H0(z)

H0(z)

↓ 2

↓ 2

↓ 2

↓ 2

H1(z)

H0(z)

H1(z)

H0(z)

↓ 2

↓ 2

↓ 2

↓ 2

⇒

H1(z)

H1(z)

H0(z)

H0(z)

H1(z2)

H0(z2)

H1(z2)

H0(z2)

↓ 4

↓ 4

↓ 4

↓ 4

Figure 11: Transformation of the filter bank of Problem 5(a) using the Noble identities.

h̃(1)[n] =
1

2
(δ[n] − δ[n + 1] − δ[n + 2] + δ[n + 3])

h̃(2)[n] =
1

2
(δ[n] − δ[n + 1] + δ[n + 2] − δ[n + 3])

h̃(3)[n] =
1

2
(δ[n] + δ[n + 1] − δ[n + 2] − δ[n + 3])

h̃(4)[n] =
1

2
(δ[n] + δ[n + 1] + δ[n + 2] + δ[n + 3]).

This can be seen either visually, computing directly the convolution of the respective
filters, or by going through the Z-transform, which, for instance, gives for the first branch

H(1)(z) =
1

2
(1 − z)(1 − z2) =

1

2
(1 − z − z2 + z3).

h(1)[n] then follows easily from the correspondence zi ↔ δ[n + i].

(b) We can write the output of branch i as

vi = (x ∗ h(i))[0] =
3

∑

k=0

x[k]h(i)[−k],
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