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Up to now… ./011-,0/$233()0,4: assumes ! is !"#"$%&'&(#&)

This has a few ramifications:

• Variance of the estimate could depend on !

• In Monte Carlo simulations:  

– * runs done at the (+%" !, 

– must do *,runs at each ! of interest

– averaging done over data 

– '-,+."$+/&'/,-."$,! .+01"(

2{} is 

w.r.t. 3(5;!)

60781-0&$233()0,4: assumes ! is $+'!-% with pdf 3(!9

This has a few ramifications:

• Variance of the estimate CAN’T depend on !

• In Monte Carlo simulations:  

– "+)4 run done at a $+'!-%05 chosen !, 

– averaging done over data 678 over ! values

2{} is 

w.r.t. 3(5,!)

joint pdf
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!"#$%"&&'($)*#('+*,-
1. Sometimes we have prior knowledge on ! " some values are 

more likely than others

2. Useful when the classical MVU estimator does not exist 

because of nonuniformity of minimal variance

!

)(2
ˆ !
!
!

#

1!

2!

3. To combat the “signal estimation problem”… estimate signal '

. = ' + / If ' is deterministic and is the 

parameter to estimate, then 0 = 1

Classical Solution: $ % ..111' &&
'

""
1

ˆ Signal Estimate is 

the data itself!!!

2"($!+(,(3$4+56(3$+'$*$)*#('+*,$7(6"&8$6&$9&7:*6$6"+';;



4

!"#$%&'()'%*+),-./0.%1+/%234(514()+

Bayesian Data Model:

• Parameter is “chosen” randomly w/ known “prior PDF”

• Then data set is collected

• Estimate value chosen for parameter

Every time you collect data, the parameter has a different value, 

but some values may be more likely to occur than others

This is how you think about it mathematically and how you run 

simulations to test it.

This is what you know ahead 

of time about the parameter.
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!"#$%&$'()*+,(-$.,*/0%,-12$!3,11*4$5%6(1,%-$

Emitters are where they are and don’t randomly jump around each 

time you collect data.     7%$/8)$18*$'()*+,(-$3%9*:;

(At least) Three Reasons

1. You may know from maps, intelligence data, other sensors, 

etc.   that certain locations are more likely to have emitters

• Emitters likely at airfields, unlikely in the middle of a lake

2. Recall Classical Method:  Parm Est. Variance often depends 

on parameter

• It is often desirable (e.g. marketing) to have a single

number that measures accuracy.

3. Classical Methods try to give an estimator that gives low 

variance at !"#$ ! value.  However, this could give large 

variance where emitters are likely and low variance where 

they are unlikely. 
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!"#$%&"'()*&+$*&"(,$-$'.(/'(0/&'+(1,2

There are several different optimization criteria within the 

Bayesian framework.  The most widely used is…

Minimize the Bayesian MSE: !"#$ ! "
## $%

$%

%!%&!'!!

!!(!

333 )()](ˆ[

)ˆ()ˆ(

2

2
Take E{} w.r.t. 

joint pdf of 3 and &

Can Not Depend on & Joint pdf of 3 and &

To see the difference… compare to the Classical MSE:

! "
# $%

$%

333 %!'!!

!!(!"#$

);()](ˆ[

)ˆ()ˆ(

2

2

pdf of 3 parameterized by &Can Depend on &
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!"#$%&'()*&+$,-.$/0$1(2(3 Zero-Mean White Gaussian

Same as before…     !["] = # + $["] %(#)

-#&

1/2#&

#& #

But here we use the following model: 

• that # is random w/ uniform pdf

• RVs # and $["] are independent of each other

Now we want to find the estimator function that maps data " into 

the estimate of #'that minimizes Bayesian MSE:

! " """

""

(%(##%##

(#(#%###)*+,

# #

##

$%

$%

)()|(]ˆ[

),(]ˆ[)ˆ(

2

2 Now use… 

%(",#) = %(#|")%(")

Minimize this for each " value

This works because %(") & 0

So… fix ", take its partial derivative, set to 0
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Finding the Partial Derivative gives:

!!

!

!!

"#$

##$

%

#%
$#

%

%

!""#"!"""#

!""#""

!""#
"

""
!""#""

"

)|(ˆ2)|(2

)|(]ˆ[2

)|(
ˆ

]ˆ[
)|(]ˆ[

ˆ

2
2

!!

!

!!

=1
Setting this equal to zero and solving gives:

& '!

!

|

)|(ˆ

"$

!"""#"

$

$ !
Conditional mean 

of " given data !

Bayesian Minimum MSE Estimate = The Mean of “posterior pdf”

MMSE So… we need to explore how to compute 

this from our data given knowledge of the 

Bayesian model for a problem
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Compare this Bayesian Result to the Classical Result:

… for a given observed data vector x look at

MVUE !"!

##$%#$

&(#|!)

&(!;#)

MMSE !"'{#|!}

Before taking any data… what is the best “estimate” of #?

• Classical: No best guess exists!

• Bayesian: Mean of the Prior PDF… 

– observed data “updates” this “("&)*$)*” estimate into 

an “("&$+,-)*$)*” estimate that balances “prior” vs. data
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So… for this example we’ve seen that we need !{"|!}.

How do we compute that!!!??  Well…

!"

"

#"""$

"!"

)|(

}|{ˆ

!

!

So… we need the $%&'()*%) pdf of " given the data… which 

can be found using Bayes’ Rule:

!
"

"

#""$"$

"$"$

$

"$"$
"$

)()|(

)()|(

)(

)()|(
)|(

!

!

!

!
!

Allows us to write one 

cond. PDF in terms of 

the other way around

Assumed KnownMore easily found than $("|!)… very much 

the same structure as the parameterized PDF 

used in Classical Methods
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So now we need !(!|")…   For #[$] = " + %[$]    we know that

! " #
$

%
&
'

(
))*

)*

)*

2

22
][

2

1
exp

2

1

)][(

)|][()|][(

"$#

"$#!

""$#!"$#!

%

%#

+,+

For " known, #[$] is the 

known " plus random %[n]

PDF of #

Because %[$] and " are 

assumed Independent  

Because %[$] is White Gaussian they are independent… thus, the 

data conditioned on " is independent:

! "
! "

#
#
$

%

&
&
'

(
))* -

)

*

1

0

2

22/2
][

2

1
exp

2

1
)|(

&

$
&

"$#"!
+,+

!

Same structure as the parameterized PDF used in Classical Methods… 

"#$ here " is an RV upon which we have conditioned the PDF!!! 
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Now we can use all this to find the MMSE for this problem:

MMSE Estimator…

A function that maps 

observed data into the 

estimate… No Closed 

Form for this Case!!!

! "
! " # $

! "
! " # $

! "

! "% &
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"

"
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"
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ˆ
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1
exp

2

1

)()|(
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/
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/0/
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!

!
!! Using 

Bayes

’ Rule

Use 

Prior 

PDF

Use Parameter-

Conditioned PDF

"#$%

&%'())

*%+#,-.

/0123#4
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How the Bayesian approach balances !"#$%&$% and !"#&'()$%&$%"info:

**&+*&

#(*)

,{*}

No Data

**&+*&

#(*|!)

,{*|!} !

Short Data

Record

**&+*&

#(*|!)

!! !}|{*,

Long Data

Record
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!"#"$%&'(#)*+,-)'.$/0'12%03&"

1. After collecting data: our knowledge is captured by the 

posterior PDF !(! |2)

2. Estimator that minimizes the Bmse is "{! |2}… the mean of 

the posterior PDF

3. Choice of prior is crucial: 

Bad Assumption of Prior   " Bad Bayesian Estimate!

(Especially for short data records)

4. Bayesian MMSE estimator always exists!

But not necessarily in closed form

(Then must use numerical integration)
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!"#$%&'(()*+,%-%./*(/%.01

Choice is crucial:

1. Must be able to justify it physically

2. Anything other than a Gaussian prior will likely result in 

no closed-form estimates

We just saw that a uniform prior led to a non-closed form

We’ll see here an example where a Gaussian prior gives a 

closed form

So… there seems to be a trade-off between:

• Choosing the prior PDF as accurately as possible

• Choosing the prior PDF to give computable closed form
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!"#$%&#%'$()$*+$,-.$/*01$-2344*2+$56*76$5(8

We assume our Bayesian model is now:  !["] #$%$&$'["]

with a prior PDF of
),(~ 2
%%(% !"

AWGN

So… for a given value of the RV % the conditional PDF is

# $
# $

%
%
&

'

(
(
)

*
++, -

+

,

1

0

2

22/2
][

2

1
exp

2

1
)|(

(

"
(

%"!%)
!.!

"

Then to get the needed conditional PDF we use this and the *$

)+,-+, PDF for % in Bayes’ Theorem:

/
,

.%%)%)

%)%)
%)

)()|(

)()|(
)|(

"

"
"
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Then… after much algebra and gnashing of teeth we get:

See the 

Book! "
#
#
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&
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|

2
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2

1
exp

2

1
)|( !"

!"!"

""# +
,-,

!

which is a Gaussian PDF with
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|
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"
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/

0

1

2
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4
* Weighted Combination of %&

#'()'(& and sample means

“Parallel” Combination of %&

#'()'(& and sample variances

So… the main point here so far is that by assuming:

• Gaussian noise

• Gaussian %&#'()'(&PDF on the parameter

"#$%#&$'$(')**+', a posteriori -./$012$3'4#*+',$#*&+5'&+1,66
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Now recall that the Bayesian MMSE was the conditional 

!"#$%&'()$()"mean: ! "!|ˆ *+* #

Because we now have a Gaussian !"#$%&'()$()"PDF it is easy to 

find an expression for this:
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After some algebra we get:
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(
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)
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,

-
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-

*

Easily Computable Estimator:

• Sample mean computed from data

• % known from data model

• $* and %* known from prior model

22

2
| 1

1
}|var{}ˆvar{

*

,* -
**

%%

%
,

### !

Little or Poor Data:

Much or Good Data:

** *- $%% 2// ˆ/22

,*-* 233 ˆ/22 %%
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Comments on this Example for Gaussian Noise and Gaussian Prior

1. Closed-Form Solution for Estimate!

2. Estimate is… Weighted sum of prior mean & data mean

3. Weights balance between prior info quality and data quality

4. As ! increases…

a. Estimate "{#|!" moves

b. Accuracy var{#|!" moves 

$#!"

!# /22
## !

%(#|!)

#
1#̂

$# $2
ˆ

N#> N$> 0

#&# "%ˆ

!&'= 0
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2
|)ˆ( !""#$%& !"Bmse for '()% Example:

To see this: # $ # $

# $ # $

# $ # $ # $

# $ # $% & # $' '

''

''

""

("

("

("

)
*
+

,
-
. ("

!!!!

!!!!

!!

!

*+*""+","

*"*+"+","

*"*"+""

"","#$%&

!""

!!!! "!!!! #$

2
|}|var{

2

2

2

2

}|{

}|{

,ˆ

ˆˆ

!

"#$#%&'()#*+',-(./*#(0(12*,#%32%(4&%3&$5#(&4#%&6#7(24#%(89:(2;(!

In this case !"|! is not a function of !:

# $ # $ 2
|

2
|

ˆ
!"!" *+"#$%& !! "" ' !!
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!"#$%&'$("&)'$("*($("&+$#,*-./#$+"01+:

Gaussian Data & Gaussian Prior gives Closed-Form MMSE Solution

This will hold in general!


