Ch. 12
Linear Bayesian Estimators




Introduction

In chapter 11 we saw:
the MMSE estimator takes a simple form when x and O are
jointly Gaussian — it is linear and used only the 1%t and 29 order
moments (means and covariances).

Without the Gaussian assumption, the General MMSE estimator
requires integrations to implement — undesirable!

So what to do if we can’t “assume Gaussian’” but want MMSE?

Keep the MMSE criteria
But...restrict the form of the estimator to be LINEAR
:> “LMMSE EStlmatOI'” Something
similar to
BLUE!

[LMMSE Estimator = “Wiener Filter”]
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_— = —

MMSE MAP Other
“Squared” Cost Function “Hit-or-Miss™ Cost
(Nonlinear Estimate) Cost Function kFu e S)

Estimate: 6 = E{9|X}
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[ Bayesian Linear Model J

(Yields Linear Estimate)

Estimate : ézE{9}+C9HT(HC9HT +CW)_1(X—H;19)

1
Err.Cov.: M = Cy —CQHT(HCOHT +CWT HC,




12.3 Linear MMSE Estimator Solution

Scalar Parameter Case:

Estimate: 0, a random variable realization
Given: data vector x = [x[0] x[1] . . x[N-1] ]
Assume:

— Joint PDF p(x, 0) is unknown
— But...its 1%t two moments are known

— There 1s some statistical dependence between x and 0
e E.g.,Could estimate 0 = salary using x = 10 past years’ taxes owed

e E.g.,Can’t estimate 6 = salary using x = 10 past years’ number of Christmas
cards sent

Goal: Make the best possible estimate while using an affine form

for the estimator
ﬁ Handles Non- j
Zero Mean Case

Choose {a_} to minimize Bmse(é’) =FE, p{(0 - é)z}
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Derivation of Optimal LMMSE Coefficients

Using the desired affine form of the estimator, the Bmse i1s

N

'S

) N-1 2
Bmse(0)=Eq| 0 — Zanx[n] +ay
n=0

Step #1: Focus ona,  0Bmse(0) _

8aN
. N-1
Passing 0/0ay through E{} gives -2E{6- ) a,x[n]+ay}=0
n=0

N-1
‘ ay = E{0}~ Y a, E{x(n]}

n=0

Note: a,=0 1if E{0} =FE{x[n]} =0



Step #2: Plug-In Step #1 Result for a

N-1 2
Bmse(0) = E ﬂ > a, (x[n]- E{x[n]}) — (0- E{H})} }
n=0

-

2
—E - {?T (x — E{x})— (0 - E{ﬁ})}

scalar scalar

V

\

where a =[a,a, ... ay 1"

\[Only up to N—lj

Note: a' (x — E{x}) = (x — E{x})'a since it is scalar




Thus, expanding out [aT (x — E{x}) — (@—- E{60})] ? gives
Bmse(0) = E {aT (x — ELxM)(x — E{&x)) a }+ Etc.
—a'E {(x — E{x))(x — E{&xM)! }a + Etc.

= aTCXXa + Etc.
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Y
- T
cross-covariance |Cyy = E{x0} Cyy = E{OX" }
vectors =
——— T _
Cox = Cxo

Bmse(0) = aTCXXa — 2aTcX9 + Cpy




Step #3: Minimize wr.t. a, a,,

cee o aN_l
OBmse(0) B \EOnly Ly i 1 '1]

0
oa

2Cxa-20 =0 D |a=Ciley|  al =¢pCyl

Step #4: Combine Results
N-1
6= Zanx[n] +ay
n=0

This is where the statistical dependence
between the data and the parameter is
used... via a cross-covariance vector

=alx+ [E{e}— al E{x}]: E{@y+a’ (x - E{x})
So the Optimal LMMSE Estimate is:
0 = E{0}+ ¢, Cy (x — E{x})

A

9 = CQXC;;X

[Nofe: LMMSE Estimate Only Needs 15 and 2" Moments... not PDFs!!] q




Step #5: Find Minimum Bmse
Substitute into Bmse result and simplify:

Bmse(0) = aTCXXa - 2aTcX9 + Cop

—1
— c@xcxxcxxcxxcxe 2c<9xcxxcx6 + Coy

-1
— c@xcxxcxe 2c¢9xcxch<9 + Cog

Bmse(@) = Cpp — CHXC;;CXQ

Note: If 0 and x are statistically independent then C,_ =0

‘ 0 = E{O}

Bmse(0) = cyy

\

Totally based on
prior info... the
data is useless



Ex. 12.1 DC Level in WGN with Uniform Prior

Recall: Uniform prior gave a non-closed form requiring integration
...but changing to a Gaussian prior fixed this.

Here we keep the uniform prior and get a simple form:

* by using the Linear MMSE

For this problem the LMMSE estimate is: 4= ¢ 4, C ;;X

( C,, = E{(Al +w)dl+w) }

Need < T uncorrelated
Cox = E{Ax}:E{A(AlJrW) }

N >
I
=|
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12.4 Geometrical Interpretations

Abstract Vector Space

Mathematicians first tackled “physical” vector spaces like RY
and CV,etc.

But... then abstracted the “bare essence’ of these structures into
the general idea of a vector space.

We’ve seen that we can interpret Linear LS in terms of “Physical”
vector spaces.

We’ll now see that we can interpret Linear MMSE in terms of
“Abstract” vector space ideas.
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Abstract Vector Space Rules

An abstract vector space consists of a set of “mathematical objects”
called vectors and another set called scalars that obey:

1.

2.

3.

There 1s a well-defined operation of “addition” of vectors that
gives a vector 1n the set, and...
“Adding” 1s commutative and associative

There is a vector in the set — call it 0 — for which “adding” it to any
vector in the set gives back that same vector

For every vector there is another vector s.t. when the 2 are added you get
the 0 vector
There 1s a well-defined operation of “multiplying” a vector by a
“scalar” and it gives a vector in the set, and...
“Multiplying” 1s associative
Multiplying a vector by the scalar 1 gives back the same vector
The distributive property holds
Multiplication distributes over vector addition

Multiplication distributes over scalar addition
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Examples of Abstract Vector Spaces

1.

Scalars = Real Numbers
Vectors = N'" Degree Polynomials w/ Real Coefficients

Scalars = Real Numbers
Vectors = MxN Matrices of Real Numbers

Scalars = Real Numbers
Vectors = Functions from [0,1] to R

Scalars = Real Numbers
Vectors = Real-Valued Random Variables with Zero Mean

Colliding Terminology...
a scalar RV 1s a vector!!!
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Inner Product Spaces

An extension of the idea of Vector Space... must also have:

There 1s a well-defined concept of inner product s.t. all the rules of
“ordinary” inner product still hold

/J/N ot needed for Real IP Spaces ’

¢ X+ AXy,,¥> = A <X,¥> 4+ a,<X,,y>

¢ IX,V> = <Yy, X>

e xx>2>0;<xx>=0 1i1ff x=0
Note: an inner product “induces” a norm (or length measure):
IxII? = <x x>

So an inner product space has:
1. Two sets of elements: Vectors and Scalars
Algebraic Structure (Vector Addition & Scalar Multiplication)
3. Geometric Structure
e  Direction (Inner Product)
e Distance (Norm)



Inner Product Space of Random Variables
Vectors: Set of all real RVs w/ zero mean & finite variance (ZMFV)

Scalars: Set of all real numbers
Inner Product: <X,Y>= E{XY} Inner Product 1s Correlationj

Uncorrelated = Orthogonal

Claim... This 1s an Inner Product Space

First... this is a vector space...

Addition Properties: X+Y is another ZMFV RV
1. Itis Associative and Commutative: X+(Y+2) = (X+Y)+Z; X+Y = Y+X
2. The zero RV has variance of 0 (What is an RV with var = 077?)
3. The negative of RV X 1s —X

Multiplication Properties: For any real # a, aX is another ZMFV RV
1. Itis Associative: a(bX) = (ab)X

2. 1 X=X
Next... This is an inner product space...

Distributive Properties: o <a X+ aX, V> = E{(a, X+ a,X,)Y}
I. aX+Y)=aX+aY
= a,E{X,Y}+ a,E{X
2. (ath)X = aX+bX @RI BT
o IXI?P=<X,X>=E{X?} =var{X} >0
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Use IP Space Ideas for Section 12.3

Apply to the Estimation of a zero-mean scalar RV: 6= a,x[n]
n=0

Trying to estimate the realization of RV 6 via a
linear combination of N other RVs x[0], x[1],
x[2],... x[N-1]

Zero-Mean...
don’t need a,,

Now...using our new vector space view of RVs, this 1s the same
structural mathematics that we saw for the Linear LS !

"~ e{-f |- smsd

0 — v~
A Connects to Geometry Connects to MSE

N =2 Case Minimize: HH _0

Recall Orthogonality Principlelll

g .

Each RV is j Estimation Error L Data Space
or

viewed as a vect l

E{(H — HA)x[n] } =0
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Now apply this Orthogonality Principle...
E{(6-6)x"}=0" with 6=a’x

E{(Q—aTx)xT}:()T = E{é’xT}:aTE{xxT} = E{x@T}:E{xxT}a

Cix@=Cxg| “The Normal Equations”

Assuming that C_, 1s invertible...

a= C;icxg m) (0=alx= CQXC;;X

Same as beforelll



12.5 erctor LMMSE Estimator

Meaning a “Physical” Vector ’

Estimate: Realization of 9=[<91 O, - ep]T

A

Linear Estimator: 0=Ax+a

Goal: Minimize Bmse for each element

View i row in A and i element in a as forming a scalar
LMMSE estimator for &,

Already know the individual element solutions!
* Write them down
» Combine into matrix form
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Solutions to Vector LMMSE

The Vector LMMSE estimate is:

= £{0) + C0,C

Cilx— x[X - E{x}]

0
Now... pxN Matrix..
Cross-Covariance Matrlx
fE{0}=0 & E{x}=0 ‘

St111 . NxN Matrlx
Covariance Matrlx

0=Cq,CLix

Can show similarly that Bmse Matrix is

M; = E{(0-0)(0-0)")

M, = Cee Cex

—1
XXCXO

prlor Cov. Matri

PXp j PXN NxN Nxp
X




Two Properties of LMMSE Estimator

1. Commutes over affine transformations

A

If a=A0+b and 0 is LMMSE Estimate

Then @ = A(A) +b is LMMSE Estimate for o

2.1f =0, + 0, then &zéﬁ—éz
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for the BLUE

Bavesian Gauss-Markov Theorem_/| LikeG-M Theoremj

et the data be modeled as x = HO + w.

—\ Nx1 random\
><1 random A T
mean p, Cov Mat C,

Cov Mat Cg, (Not Gaussian)/
\(Not Gaussmn)/

Application of previous results, evaluated for this data model gives:

VaN

1
0=pg+CooH' (HCOBHT + Cw) [x—Hpg]
MMSE Matrix: M, =C
T T - 0 &
CS = COO — CGQH HCBBH + CW HCGB
Same forms as for Bayesian Linear Model (which include Gaussian assumption)

Except here... the result is suboptimal... unless the optimal estimate is linear

In practice... generally don’t know if linear estimate is optimal... but we use
LMMSE for its simple form!

The challenge 1s to “guess” or estimate the needed means & cov matrices
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