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Ch. 12 
Linear Bayesian Estimators
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
In chapter 11 we saw: 

the MMSE estimator takes a simple form when  and  are 
jointly Gaussian – it is linear and used only the 1st and 2nd order 
moments (means and covariances).

Without the Gaussian assumption, the General MMSE estimator 
requires integrations to implement – undesirable!

So what to do if we can’t “assume Gaussian” but want MMSE?

Keep the MMSE criteria 

But…restrict the form of the estimator to be 

 “LMMSE Estimator” 




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


“Hit-or-Miss” 
Cost Function

 
  


|ˆ :Cov. Err.

ˆ  :Estimate








“Squared” Cost Function

(Nonlinear Estimate)







 Linear Estimate
: E{},E{}, C

Jointly Gaussian  and 
(Yields Linear Estimate)

    







1

ˆ

1

 :Cov. Err.

ˆ  :Estimate






      







1

ˆ

1

 :Cov. Err.

ˆ  :






 Estimate

Bayesian Linear Model
(Yields Linear Estimate)

     

  






1

ˆ

1

 :Cov. Err.

ˆ  :Estimate













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
Scalar Parameter Case:
Estimate: , a random variable realization
Given: data vector  = [[0] [1] . . .[-1] ]
Assume:

– Joint PDF (, ) is unknown
– But…its 1st two moments  known
– There is some statistical dependence between  and 

• E.g., Could estimate  = salary using  = 10 past years’ taxes owed
• E.g., Can’t estimate  = salary using  = 10 past years’ number of Christmas 

cards sent

:  Make the best possible estimate while using an affine form 
for the estimator







1

0
][ˆ




 

Handles Non-
Zero Mean Case 

})ˆ{()ˆ( 2   Choose {n} to minimize
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
Using the desired affine form of the estimator, the Bmse is
























 





21

0
][)ˆ(




  

0)ˆ(






 

0}][{2
1

0
 








  

Step #1:  Focus on 

Passing / through {} gives







1

0
}][{}{




  

  = 0   if { } = {[]} = 0
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Step #2:  Plug-In Step #1 Result for 























































 





2

21

0

}){(}){(

}){(]})[{][()ˆ(





















where  = [0 1  1]T

-1

 T ( – {}) = ( – {}) since it is scalar
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Thus, expanding out [T ( – {}) – ( – { })] 2 gives 

 
 




































 .

.}){})({(

.}){})({()ˆ(

 1 1 11






 











 }{}{cross-covariance
vectors 


     2)ˆ(
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Step #3:  Minimize w.r.t. 1, 2, … , -1

-1
0)ˆ(








 1 1  
   22

This is where the statistical dependence 
between the data and the parameter is 
used… via a cross-covariance vector

Step #4:  Combine Results

   }{}{}{}{

][ˆ
1

0

 












 








So the Optimal LMMSE Estimate is:

 
1ˆ   }{}{ˆ 1       

Note: LMMSE Estimate Only Needs 1st and 2nd Moments… not PDFs!!
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Step #5:  Find Minimum Bmse
Substitute into Bmse result and simplify:




































11

111

2

2

2)ˆ(

   1)ˆ( 

Note: If  and  are statistically independent then  

}{ˆ  
Totally based on 
prior info… the 
data is useless )ˆ(
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
Recall: Uniform prior gave a non-closed form requiring integration

…but changing to a Gaussian prior fixed this.

Here we keep the uniform prior and get a simple form:

• by using the Linear MMSE

 
1ˆ  For this problem the LMMSE estimate is:

   



22  








  





 



 
2

}{




Need & are 

uncorrelated
& are 

uncorrelated























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


Mathematicians first tackled “physical” vector spaces like 
and  , etc.

But… then abstracted the “bare essence” of these structures into 
the general idea of a vector space.

We’ve seen that we can interpret Linear LS in terms of “Physical” 
vector spaces.

We’ll now see that we can interpret Linear MMSE in terms of 
“Abstract” vector space ideas.
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
An abstract vector space consists of a set of “mathematical objects” 
called vectors and another set called scalars that obey:
1. There is a well-defined operation of “addition” of vectors that 

gives a vector in the set, and…
• “Adding” is commutative and associative
• There is a vector in the set – call it  – for which “adding” it to any 

vector in the set gives back that same vector 
• For every vector there is another vector s.t. when the 2 are added you get 

the vector
2. There is a well-defined operation of “multiplying” a vector by a 

“scalar” and it gives a vector in the set, and…
• “Multiplying” is associative 
• Multiplying a vector by the scalar 1 gives back the same vector

3. The distributive property holds
• Multiplication distributes over vector addition
• Multiplication distributes over scalar addition
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

1. Scalars = Real Numbers   
Vectors = th Degree Polynomials w/ Real Coefficients

2. Scalars = Real Numbers                                          
Vectors = Matrices of Real Numbers

3. Scalars = Real Numbers                                          
Vectors = Functions from [0,1] to 

4. Scalars = Real Numbers                                          
Vectors = Real-Valued Random Variables with Zero Mean

Colliding Terminology… 
a  RV is a !!!
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There is a well-defined concept of inner product s.t. all the rules of 
“ordinary” inner product still hold

• <,>  =  <>*

• <11+ 22,>  =  1<1,>  + 2<2,> 
• <,>   0; <,>  =  0   iff  = 

Note: an inner product “induces” a norm (or length measure):

||||2 = <,>
So an inner product space has:

1. Two sets of elements: Vectors and Scalars
2. Algebraic Structure (Vector Addition & Scalar Multiplication) 
3. Geometric Structure

• Direction (Inner Product)
• Distance (Norm)

Not needed for Real IP Spaces


An extension of the idea of Vector Space… must also have:
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
: Set of all real RVs w/ zero mean & finite variance (ZMFV)
: Set of all real numbers
:  <,> = {}
… This is an Inner Product Space 

Inner Product is Correlation!
 = 



Addition Properties: + is another ZMFV RV
1. It is Associative  and Commutative: +() = (+)+ = +
2. The zero RV has variance of 0  (What is an RV with var = 0???)
3. The negative of RV   is  –

Multiplication Properties: For any real # ,  is another ZMFV RV
1. It is Associative: () ()
2. 1 = 

Distributive Properties:
1. (+) =  + 
2. () + 


• <11+ 22,>  = {(11+ 22)}   

= 1{1}+ 2{2}
• ||||2 = <, > = {2} = var{}  0
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






1

0
][ˆ




 Apply to the Estimation of a zero-mean scalar RV:

Trying to estimate the realization of RV  via a 
linear combination of other RVs   [0], [1], 
[2],… [-1]

Zero-Mean… 
don’t need 

Now…using our new vector space view of RVs, this is the same 
 mathematics that we saw for the Linear LS !

    ˆˆˆ 22
 







 N  Minimize: 

Each RV is 
 as a vector 



[0]
[1] ̂

Connects to Geometry Connects to MSE

Recall Orthogonality Principle!!!

Estimation Error  Data Space

0][ˆ }{ )(   
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Now apply this Orthogonality Principle…
   }{ )( ̂ with ̂

 }{}{}{}{}{ )(    

    Normal Equations”

Assuming that  is invertible…

 1  
1ˆ   

Same as before!!!
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
Meaning a “Physical” Vector

  21: Realization of 

:  ˆ

: Minimize Bmse for each element

View th row in  and th element in a as forming a scalar 
LMMSE estimator for 

Already know the individual element solutions!   

• Write them down

• Combine into matrix form
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

}]{[}{ˆ 1     
The Vector LMMSE estimate is:

Now… Matrix…
Cross-Covariance Matrix

Still… Matrix…
Covariance Matrix

 
1ˆ If {} = & {} = 

Can show similarly that Bmse Matrix is

})ˆ)(ˆ{(ˆ
  

  1
ˆ




prior  Cov. Matrix

 
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
1. Commutes over affine transformations

If   and ̂ is LMMSE Estimate

Then   ˆˆ is LMMSE Estimate for 

2. If  1 + 2  then 21
ˆˆˆ  
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 Like G-M Theorem 
for the BLUE

 Let the data be modeled as

known
1 random

mean 
Cov Mat 

(Not Gaussian)

1 random
zero mean 

Cov Mat 
(Not Gaussian)

  ][ˆ 1
  



Application of previous results, evaluated for this data model gives:

   
1

 
MMSE Matrix:   ˆ

Same forms as for Bayesian Linear Model (which include Gaussian assumption) 

Except here… the result is suboptimal… unless the optimal estimate  linear

In practice… generally don’t know if linear estimate is optimal… but we use
LMMSE for its simple form!

The challenge is to “guess” or estimate the needed means & cov matrices


