So far, detection under:

- Neyman-Pearson criteria (max P_D s.t. P_{FA} = constant): likelihood ratio test, threshold set by P_{FA}
- minimize Bayesian risk (assign costs to decisions, have priors of the different hypotheses): likelihood ratio test, threshold set by priors+costs
 - minimum probability of error = maximum a posteriori detection
 - maximum likelihood detection = minimum probability of error with equal priors
- known deterministic signals in Gaussian noise: correlators

Now we look at detecting random Gaussian signals

Motivation

- Some processes are better represented as random (e.g. speech)
- rather than assume completely random, assume signal comes from a random process of known covariance structure

Consider a binary hypothesis testing model of the following form:

$$\mathcal{H}_0: x[n] = w[n]$$

$$\mathcal{H}_1: x[n] = s[n] + w[n],$$

where $\mathbf{w} \sim \mathcal{N}(0, \mathbf{C_w})$ and $\mathbf{s} \sim \mathcal{N}(\mu_{\mathbf{s}}, \mathbf{C_s})$ and \mathbf{s}, \mathbf{w} are independent. We have $n = 0, 1, \dots, N-1$ (N samples).

The problem

Consider a binary hypothesis testing model of the following form:

$$\mathcal{H}_0: x[n] = w[n]$$

$$\mathcal{H}_1: x[n] = s[n] + w[n],$$

where $\mathbf{w} \sim \mathcal{N}(0, \mathbf{C}_{\mathbf{w}})$ nd $\mathbf{s} \sim \mathcal{N}(\mu_{\mathbf{s}}, \mathbf{C}_{\mathbf{s}})$ and \mathbf{s}, \mathbf{w} are independent. We have $n = 0, 1, \dots, N-1$ (N samples).

We thus can discriminate between the two hypothesis based on both their means and covariances. Taking the likelihood ratio and simplifying, our test statistic $T(\mathbf{x})$ can be shown to be:

$$T(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \left[\mathbf{C_w}^{-1} \mathbf{C_s} (\mathbf{C_s} + \mathbf{C_w})^{-1} \right] \mathbf{x} + \mathbf{x}^T (\mathbf{C_s} + \mathbf{C_w})^{-1} \mu_s$$
(1)

The test statistic has a quadratic term in \mathbf{x} (intuitively account for the different variances) as well as a linear term in \mathbf{x} accounting for the different means.

Example 1: does this reduce to previous results for deterministic signals?

Deterministic signals? Take $C_s = 0$, $\mu_s = s$ for s a known signal. Then our test statistic becomes $T(\mathbf{x}) = \mathbf{x}^T C_{\mathbf{w}}^{-1} \mathbf{s}$, the generalized matched filter!

Example 2: zero mean WSS signal in white noise

Energy detectors? Suppose we have WGN of variance σ^2 and a signal which is a zero-mean Wide Sense Stationary Gaussian process with variance σ_s^2 ?

Then $\mathbf{C_s} = \sigma_s^2 \mathbf{I}$, $\mu_s = \mathbf{0}$ and $\mathbf{C_w} = \sigma^2 \mathbf{I}$. Then the test statistic becomes $T(\mathbf{x}) = \sum_{n=0}^{N-1} x^2[n]$ which is then compared to a threshold. This is just an energy detector, which makes sense as the only difference between the signal and the noise is its variance.

We can derive its performance as tails $(Q_{\mathcal{X}_N^2}(x))$ of chi-squared random variables with N degrees of freedom (\mathcal{X}_N^2) .

Example 3: correlated signal covariance in white noise

Estimator-correlator? Suppose we have WGN of variance σ^2 and a signal of zero mean and covariance $\mathbf{C_s}$. Then the test statistic becomes $T(\mathbf{x}) = \sigma^2 \mathbf{x}^T \left[\mathbf{C_s} (\mathbf{C_s} + \sigma^2 \mathbf{I})^{-1}) \mathbf{x} \right]$, which may be re-written as a new test statistic $T'(\mathbf{x} = \mathbf{x}^T \hat{\mathbf{s}} \text{ for } \hat{\mathbf{s}} = \mathbf{C_s} (\mathbf{C_s} + \sigma^2 \mathbf{I})^{-1}) \mathbf{x}$. In

Interestingly, $\hat{\mathbf{s}}$ is the Minimum Mean Squared Error Estimate of the signal \mathbf{s} given the received data \mathbf{x} (we will see this later). So what we are in essence doing is correlating the received signal with an *estimate* of the signal \mathbf{s} , hence the name *estimator-correlator*.

Example 4: canonical form

The canonical form of the estimator-correlator? When dealing with matched filters with colored noise, we could "whiten" it, when we have a signal with a general covariance matrix $\mathbf{C_s}$ we can try to de-correlate the received data \mathbf{x} before using a variant of an energy detector on it. That is, suppose the signal covariance matrix $\mathbf{C_s}$ has eigendecomposition $\mathbf{C_s}\mathbf{V} = \wedge_{\mathbf{s}}\mathbf{V}$, where $\wedge_{\mathbf{s}}$ is a diagonal matrix with eigenvalues $\lambda_{s_0}, \dots \lambda_{s_{N-1}}$ of $\mathbf{C_s}$ on the diagonal and \mathbf{V} is a matrix with the corresponding eigenvectors as its columns. Then if we take the received data \mathbf{x} and multiply it to obtain $\mathbf{y} = \mathbf{V}^T\mathbf{x}$ we can show that the test statistic becomes

$$T(\mathbf{x}) = \mathbf{y}^T \wedge_s \left[\wedge_{\mathbf{s}} + \sigma^2 \mathbf{I} \right]^{-1} \mathbf{y} = \sum_{n=0}^{N-1} \frac{\lambda_{s_n}}{\lambda_{s_n} + \sigma^2} y^2[n]$$

We have a weighted energy detector!

Example 5: correlated signal in colored noise

Estimator-correlator with colored noise? We now have $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C_w})$ and $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{C_s})$. The test statistic becomes

$$T(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \left[\mathbf{C_s} (\mathbf{C_s} + \mathbf{C_w})^{-1}) \mathbf{x} \right] = \frac{1}{2}\mathbf{x}^T \mathbf{C_w}^{-1} \hat{\mathbf{s}}$$

This looks like the generalized matched filter (matched filter in colored noise), where $\hat{\mathbf{s}}$ is now an estimate of the signal given by $\hat{\mathbf{s}} = \mathbf{C_s}(\mathbf{C_s} + \mathbf{C_w})\mathbf{x}$ rather than the known signal we had before.

Example 6: Linear Model

Linear model? We now have

$$\mathcal{H}_0 : \mathbf{x} = \mathbf{w}$$

 $\mathcal{H}_1 : \mathbf{x} = \mathbf{H}\theta + \mathbf{w},$

where $\mathbf{w} \sim \mathcal{N}(0, \mathbf{C}_{\mathbf{w}})$, \mathbf{H} is a known $N \times p$ observation matrix, and $\theta \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_{\theta})$ and θ , \mathbf{w} are independent. We have $n = 0, 1, \dots, N-1$ (N samples).

The test statistic becomes

$$T(\mathbf{x}) = \mathbf{x}^T \left[\mathbf{C_s} (\mathbf{C_s} + \mathbf{C_w})^{-1} \mathbf{x} \right]$$
$$= \mathbf{x}^T \mathbf{H} \mathbf{C_{\theta}} \mathbf{H}^T (\mathbf{H} \mathbf{C_{\theta}} \mathbf{H}^T + \mathbf{C_w})^{-1} \hat{\mathbf{x}}$$

Example of linear model: Rayleigh Fading Sinusoid

When the signal is present, we observe

$$x[n] = A\cos(2\pi f_0 n + \phi) + w[n], \quad n = 0, 1, \dots N - 1$$

= $a\cos(2\phi f_0 n) + b\sin(2\pi f_0 n), \quad \text{where } a = A\cos(\phi), b = -A\sin(\phi)$

where $0 < f_0 < 1/2$ and w[n] is WGN of variance σ^2 . Due to fading characteristics of the wireless channel, we assume the following statistics on the fading coefficients $[a\ b]^T$:

$$\theta = \begin{bmatrix} a \\ b \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \sigma_s^2 \mathbf{I})$$

Find the detector.