Binary hypothesis testing

Decide between two hypotheses: Hg or H;.

To do so we find a decision rule which maps the observation x into either Hg or H;.
Because the observation process is modeled probabilistically, the following errors

may be made:
e P(Hop; Hp) = prob(decide Hy when H) is true) = prob of correct non-detection

o P(Ho;H1) = prob(decide Hp when H; is true) = prob of missed detection :=
Py

e P(Hi;Hp) = prob(decide Hy when Hy is true) = prob of false alarm := Pp 4

e P(Hi;H1) = prob(decide H; when H; is true) = prob of detection := Pp

More generally P(H;;H,) is the probability of deciding H; when hypothesis H; is
true.

Binary hypothesis testing

We want to design a “good” detection/decision rule, so need a criterion for “good”.
Two in this course:

1. Neyman-Pearson (NP): maximize Pp subject to a desired fixed Pp 4.

2. Generalized Bayesian risk: minimize the Bayesian risk (cost function) for
arbitrary costs C;; for deciding H; when H; is true. Takes into account prior
probabilities P(H;). Reduces to the following for specific choices of costs Cj;
and priors P(H;):

e Minimum probability of error (min Pg) or maximum a posteriori (MAP):
Cn' == O,Cij =1 for i 75_]

e Maximum likelihood (ML): C;; = 0,C;; = 1 for ¢ # j AND all priors are
equal, i.e. P(H;) = P(H;), Vi, .




Neyman-Pearson hypothesis testing

Neyman-Pearson Theorem 3.1 (pp.65)
To maximize Pp for a given Prs = «, decide H; if

p(x;H1)
L(z) := —/———= > 7, 1
(z) oo Hy) (1)
where the threshold  is found from
Ppa = / p(x;Ho)dx = « (2)
{x:L(x)>7}

L(x) is the likelihood ratio, and comparing L(x) to a threshold is termed the likeli-
hood ratio test.

Example 1

Consider the two hypotheses:

HO : .CIJ'[O]

N(0,1) (u=0)
Hi: z[0] 1,1

N1 (p=1)

Based on the single observation z[0], decide which hypothesis it was generated from.
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Useful problem 2.1

If T ~ N(u,o0?), then
_ YoM
i (122)

Example 2

We are given N observations z[n],n = 0,1, --- N —1, which are i.i.d. and, depending
on the hypothesis, are generated as
N(0,09)

Ho: z[n] 0,05
N(0,0%) (of > af)

Hi: zx[n]

~
~

Determine the Neyman-Pearson hypothesis test.




Example 3

We are given N observations z[n],n = 0,1, -

-N — 1, which, depending on the
hypothesis, are generated as

Ho : x[n] =wn] wln] ~ N(0,0?) i.id.
Hi: xn]=A+whn] wn]~N(0,0?)iid.

Determine the Neyman-Pearson hypothesis test.

Deflection coefficient

The deflection coefficient d is defined, for a test statistic T, as

(E(T;Hy) — E<T;Ho))2
var(T; Ho) ’

d? =

and is useful in characterizing the performance of a detector. Usually, the larger

the deflection coefficient, the easier it is to differentiate between the two signals,
and thus the better the detection performance.




Receiver Operating Characteristics (ROC)

The Receiver Operating Characteristics (ROC) is a graph of Pp (y-axis) versus
Pr 4 (x-axis), showing the tradeoff between the two. For v = 400 you have Ppy =
Pp =0, while for v = —oco you have Pry = Pp = 1. For intermediate v you lie on
a curve above the Pr4 = Pp line.

[different terminology - can you map it to ours?]
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Bayesian risk

Associate with each of the four detection possibilities a cost, i.e. Cj; is the cost
of deciding hypothesis H; when hypothesis H; is true. In the binary hypothesis
testing case, i,j € {0,1}. Let P(H;|H,) be the probability of deciding H; when H;
is true, and P(H;) be the prior probability of hypothesis H;. Note the Bayesian
formulation, assigning priors to the hypotheses is different than in the classical
Neyman-Pearson criterion.

Bayes risk := R = E[C] =Y > Ci;P(H;[H;) P(H;) (1)

i=0 j=0
Under the assumption that Ci9 > Cyg, Co1 > C11, the detector that minimizes the
Bayes risk is to decide H; if

p(x[H1) > (Cr0 — Coo) P(Ho) _
p(xIHo) ~ (Cor — Coi)P(Hy) |




Bayesian risk

The Bayesian risk detection framework encompasses:
e Minimum probability of error (min Pg) or maximum a posteriori (MAP)
(same): Cy; = 0,C;; =1 for i # j. These detectors decide H; if

p(x[H1)  P(Ho) _
Pl Ho) > PHy) =

— MAP: P(H;|x) > P(Hol|x)

— min Pg :

e Maximum likelihood (ML): C;; = 0,C;; = 1 for ¢ # j AND all priors are
equal, i.e. P(H;) = P(H;), Vi,j. This detector decides H; if

— ML: P(X‘?‘h) > P(X’Ho)

Bayesian risk example

Find the detection rule that minimizes the probability of error for the following
binary hypothesis testing problem:

Ho: z[n] = win] wln] ~ N(0,0?) iid.
Hy: z[n]=A+wn] wn]~N(0,0?) iid. ,A>0

Also determine the probability of error achieved by this detector.




Multiple hypothesis testing

In binary hypothesis testing we detected one of 2 hypothesis. We now wish to detect
one of M > 2 hypotheses. Neyman-Pearson is possible, see reference pp. 81, we
only consider Bayes risk minimization, i.e. we wish to minimize

M—-1M-1

R=Y_ > CijP(HiH;)P(H;)

i=0 j=0

The detector that minimizes the Bayes risk choses the hypothesis H; for which

M—1
Ci(x) := Y CiP(Hi|H;)P(H;)
§=0
is minimal over all ¢ = 0,1,--- , M — 1 (picks the one with minimal cost).

Multiple hypothesis testing

Once again, the Bayes risk is a generalization of MAP and ML detectors, which in
the multiple hypothesis case reduce to:

e Minimum probability of error (min Pg) or maximum a posteriori (MAP)
(same): Cj = 0,C;; = 1 for i # j. These detectors decide H; if P(H;|x) >
P (Hj‘X), Vj

e Maximum likelihood (ML): C;; = 0,C;; = 1 for ¢ # j AND all priors are
equal, i.e. P(H;) = P(H;), Vi,j. This detector decides H; if P(x|H;) >
P(x|H;), Vi




Multiple hypothesis testing example

Assume that we have three hypotheses

Ho: zn|=-A+wn n=0,1,--- N—-1
Hi: z[n] =wn] n=0,1,--- .N—1
He: znj=A+whn| n=0,1,--- N—-1

where A > 0 and w[n| is white Gaussian noise with variance o?. Assuming equal
priors on the hypotheses, find the detector that minimizes the probability of error
and find an expression for this probability of error.




