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Abstract

The report provides an extensive summary on the outcome of the research conducted within
WP2.3 of the COFCLUO project. It addresses several clearance criteria concerning both integral
(aeroelastic) and nonlinear models of a generic passenger aircraft. Clearance criteria have been
formulated as robustness analysis problems. Several different techniques, based on parameter-
dependent Lyapunov functions or µ-analysis, have been considered for the robustness analysis of
systems with LFR uncertainty. Such techniques are applied to closed-loop LFR models, derived
from the aircraft integral and nonlinear models, with the aim of finding the largest region in the
uncertain parameter space and/or in the flight envelope, for which robust stability is guaranteed.
The trade-off between conservatism and computational burden is analyzed on a broad selection
of integral and nonlinear models for each considered technique.
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Part I

Lyapunov-based robustness analysis for

clearance problems

Authors: Andrea Garulli, Alfio Masi, Simone Paoletti, Ercüment Türkog̃lu (UNISI)
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1 Introduction

The aim of this report is to summarize the outcomes of WP2.3 within the COFCLUO project. The
objective of WP2.3 was to develop convex optimization techniques for solving robustness analysis
problems, arising in the clearance of flight control schemes.

Robustness analysis of linear systems depending on uncertain parameters has been a subject of
notable interest in the systems and control community for several decades, and Lyapunov theory has
played a pivotal role in this context. The development of computationally efficient techniques for
solving convex optimization problems involving Linear Matrix Inequalities (LMIs) [1] has motivated
research efforts towards more and more sophisticated sufficient conditions for assessing robust
stability of uncertain systems.

Within the context of Lyapunov theory, robustness of linear systems can be analyzed through the
search for Lyapunov functions which are either parameter independent, or parameter dependent.
The notion of quadratic stability, namely the existence of a common quadratic Lyapunov function for
all the admissible systems, allows one to address also time-varying uncertainties, but it usually leads
to conservative results. This shortcoming has instigated research efforts on Lyapunov functions that
are parameter-dependent. Sufficient conditions for the existence of parameter-dependent Lyapunov
functions depending affinely or polynomially on the uncertain parameters have been proposed in
the literature (the reader is referred to [2] and references therein). The main drawback of most of
these approaches is that they either assume an affine dependence of the system on the uncertain
parameters, or they consider polytopic uncertainty models given as convex combinations of known
nominal models. However, in real-world systems, like flight control schemes, the dependence on the
uncertain parameters is much more involved (usually rational) and is modeled by linear fractional
representations (LFRs) [3].

In the literature, a number of sufficient conditions for robust stability of systems with LFR un-
certainty, and based on parameter-dependent Lyapunov functions, have been proposed by several
authors. Within the COFCLUO project, the attention has been focused on three specific techniques.
The first one, proposed in [4], combines the constant scaling technique for LFR systems with the
use of (rationally) parameter-dependent Lyapunov functions. This technique can also deal with
time-varying parameters with bounded variation rate. The other two techniques considered rely on
ideas from the classical multiplier approach adopted in the absolute stability theory, which finds
useful applications in robustness analysis of uncertain systems [5]. While several authors propose
the use of constant multipliers, less conservative conditions are usually obtained if parameter-
dependent multipliers are adopted. Two different approaches along this line, which employ multi-
affine parameter-dependent Lyapunov functions, have been presented in [6] and [7]. Relationships
between these approaches have been investigated in [8].

The three techniques recalled above have been employed in two specific clearance problems
defined within the COFCLUO project: the aeroelastic stability criterion for integral models [9] and
the un-piloted stability criterion for nonlinear models [10]. Uncertain aircraft models have been
provided as LFR systems derived from physical models of the aircraft [11, 12]. A large number of
LFR systems have been derived, at different points of the flight envelope and with different values
of the uncertain parameters, by employing the techniques described in [13–15]. The LFR models
considered in this report are representative of the closed-loop longitudinal dynamics of the aircraft.
The objective of the clearance problem is to find the largest region in the uncertain parameter
space or in the flight envelope, for which the LFR system is robustly stable. Several relaxations
of the considered Lyapunov-based robustness analysis techniques have been proposed, which rely
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on the choice of specific structures for the Lyapunov function and for the multipliers. Under the
assumption that the uncertain parameters are time-invariant, the uncertainty domain has been
partitioned in order to obtain more accurate and less conservative results. In this respect, two
alternative approaches, denoted as progressive and adaptive partitioning, have been introduced.

A Graphical User Interface (GUI) based environment has been developed to facilitate a user
interactive set-up for the considered clearance problems. A detailed description of the GUI and
instructions for its use are provided in [16].

The document is organized as follows. In Section 2, LFR of an uncertain autonomous system
is introduced and the sufficient conditions for robust stability analysis of systems in LFR form
are described. Application of the above conditions to the specific clearance problems at hand
is addressed in Section 3. Sections 4 and 5 present a collection of results concerning aeroelastic
stability of integral models and un-piloted stability of nonlinear models, respectively. Finally, some
conclusions based on the outcomes of the robustness analysis are presented in Section 6.

2 Robustness analysis using Lyapunov functions

In this section, we present several methods, for testing the robust stability of systems whose depen-
dence on the uncertain parameters is rational, i.e. systems in LFR form. Sufficient conditions are
provided in terms of a finite number of LMIs whose feasibility render the existence of a quadratic
or parameter-dependent Lyapunov function. As a way to overcome the resulting computational
complexity, described in terms of the number of free variables and the size of LMIs, structures
of certain matrices (and multipliers) within the methods considered have been altered to yield
more conservative but computationally less demanding sufficient conditions, hereafter referred to
as “relaxed”. These conditions offer a new approach in trading LMIs structural complexity with
computational workload.

2.1 Problem statement in LFR framework

Consider the autonomous system
ẋ(t) = A(θ)x(t), (1)

where x ∈ R
n is the state vector and A(θ) is a function of the parameter θ ∈ R

nθ according to the
relation

A(θ) = A + B∆(θ)(I − D∆(θ))−1C, (2)

with
∆(θ) = diag(θ1Is1

, . . . , θnθ
Isnθ

). (3)

and θi denotes the i-th component of vector θ. An equivalent linear fractional representation of the
system (1)-(3) is given by:







ẋ(t) = Ax(t) + Bq(t)
p(t) = Cx(t) + Dq(t)
q(t) = ∆(θ)p(t),

(4)

where q ∈ R
d, p ∈ R

d, with d =
∑nθ

i=1 si, and A, B, C, D are real matrices of appropriate
dimensions. In view of the stability analysis of the LFR system (4), matrix A is assumed to be
Hurwitz.
The uncertain parameter vector θ is supposed to belong to a hyper-rectangle Θ. Hereafter, we shall
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refer to the 2nθ vertices of Θ as Ver[Θ]. The uncertain parameters are assumed to be constant (i.e.,
θ̇(t) = 0).
System (4) is said to be:

• quadratically stable if there exists a common quadratic Lyapunov function V (x) = xT Px, for
all matrices A(θ), θ ∈ Θ;

• robustly stable if A(θ) is Hurwitz, for all θ ∈ Θ.

Clearly, quadratic stability implies robust stability, while the converse is not true. Moreover,
quadratic stability is also a sufficient condition for global exponential stability of the equilibrium
x = 0 when the uncertain parameters θi are time-varying.
In the following, we briefly review several sufficient conditions for robust stability of system (4),
based on parameter-dependent Lyapunov functions.

2.2 Wang-Balakrishnan conditions

In [4], several sufficient conditions for robust stability analysis of LFR systems are proposed. Here,
we recall two of them, where both are formulated for the special case when uncertainties are time-
invariant. A sufficient condition for quadratic stability of system (4) is stated as follows.

Proposition 2.1 (WBQ) System (4) is quadratically stable if there exist P ∈ R
n×n, P = P T > 0

and M ∈ R
d×d, M = MT > 0, such that

[

AT P + PA + CTMC PB(θ) + CT MD(θ)

B(θ)TP + D(θ)T MC − M + D(θ)TMD(θ)

]

< 0 (5)

for all θ ∈ Ver[Θ], with B(θ)=B∆(θ) and D(θ)=D∆(θ).

To establish whether such condition is verified, one has to verify the feasibility of a set of 2nθ

LMI constraints of dimension n + d, one LMI of dimension d and one LMI of dimension n. This
results in a family of LMIs with a total number of free variables nvar = d(d+1)

2 + n(n+1)
2 .

A less conservative condition for robust stability of system (4), also presented in [4], exploits
parameter-dependent Lyapunov functions of the form V (x) = xT Q(θ)−1x with Q(θ) = Q0 +
∑nθ

j=1 θjQj.

Proposition 2.2 (WB) System (4) is robustly stable if there exist nθ + 1 symmetric matrices
Q0, . . . , Qnθ

∈ R
n×n, and N ∈ R

d×d, N = NT > 0, such that











Q(θ) > 0
[

AQ(θ)+Q(θ)AT +B(θ)NB(θ)T Q(θ)CT + B(θ)ND(θ)T

CQ(θ) + D(θ)NB(θ)T D(θ)ND(θ)T −N

]

<0
(6)

for all θ ∈ Ver[Θ].

In order to verify the condition in Proposition 2.2, it is necessary to solve a set of 2nθ LMIs of
dimension n, 2nθ LMIs of dimension n + d, and one LMI of dimension d. The number of free
variables is nvar = (nθ + 1)n(n+1)

2 + d(d+1)
2 .
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It is important to note that when the uncertainty set Θ is symmetric with respect to the origin,
the feasibility of the condition in Proposition 2.2 implies that the system is also quadratically stable,
i.e. the LMIs (6) admit also a solution with Qi = 0, i = 1, . . . , nθ.

In order to obtain a condition which is computationally less demanding, one can reduce the
number of free variables by imposing a structure on matrices M and N . For example, the choice
of a diagonal M in the WBQ condition, or a diagonal N in the WB condition, can significantly
speed up the solution of the LMI feasibility problem when d is much larger than n, however, at the
price of a higher conservatism. Hereafter we will refer to these relaxations of the WBQ and WB
conditions as WBQ-dM condition and WB-dN condition, respectively.

2.3 Fu-Dasgupta conditions

Another approach which provides sufficient conditions for robust stability, and is based on parameter-
dependent Lyapunov functions, is the parametric multiplier approach. It can be seen as a gener-
alization of the traditional multiplier approach, used in absolute stability theory [17], employing
parameter-dependent multipliers. The main idea of the approach presented in [6], is to seek for a
transfer matrix with affine structure, called affine multiplier, which, when cascaded with another
matrix related to the uncertain system, will result in a strictly positive real transfer matrix. This
affine multiplier can be found by solving a set of LMIs, whose feasibility guarantees the existence
of a parameter-dependent multi-affine Lyapunov function for the uncertain LFR system.

In order to cast the problem into the framework adopted in [6] let us introduce the matrices

C(θ) := ∆(θ)C =
∑nθ

i=1 θiCi

D(θ) := −I + ∆(θ)D = D0 +
∑nθ

i=1 θiDi,

where Ci = TiC, D0 = −I, Di = TiD, for i = 1, . . . , nθ, and

Ti = blockdiag(0s1
, . . . , 0si−1

, Isi
, 0si+1

, . . . , 0snθ
).

A sufficient condition for robust stability of system (4) is introduced in the next result, by using
a candidate Lyapunov function whose dependence on the uncertain parameter is multi-affine, i.e.
V (x) = xT P (θ)x, where

P (θ) = P0 +

nθ
∑

j=1

θjPj +

nθ
∑

i=1

nθ
∑

j=i+1

θiθjPij + . . . (7)

is a generic multi-affine matrix function of θ.

Proposition 2.3 (FD) System (4) is robustly stable if there exist 2nθ + 2 matrices Cµ,i ∈ R
d×n,

Dµ,i ∈ R
d×d for i = 0, . . . , nθ such that

[

CT
i

DT
i

]

[

Cµ,i Dµ,i

]

+

[

CT
µ,i

DT
µ,i

]

[

Ci Di

]

≤ 0 (8)

for i = 1, . . . , nθ, and










P (θ) > 0
[

AT (θ)P (θ) + P (θ)A(θ) Π1,2(θ)
ΠT

1,2(θ) Π2,2(θ)

]

< 0,
(9)
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for all θ ∈ Ver[Θ], where P (θ) is given by (7) and

Π2,2(θ) = −
(

Dµ(θ)D−1(θ) + D−T (θ)DT
µ (θ)

)

Π1,2(θ) = P (θ)BD−1(θ) − CT
µ (θ) + CT (θ)D−T (θ)DT

µ (θ)

with
Cµ(θ) = Cµ,0 +

∑nθ

i=1 θiCµ,i

Dµ(θ) = Dµ,0 +
∑nθ

i=1 θiDµ,i .

The family of LMIs (8)-(9) is composed by nθ + 2nθ constraints of dimension n + d, and 2nθ

constraints of dimension n. The total number of free variables is nvar = (nθ + 1)(nd + d2) +

2nθ

(

n(n+1)
2

)

, the rightmost term being due to the multi-affine parametrization of P (θ) in (7).

The number of free variables in the sufficient condition of Proposition 2.3 can be reduced by
simplifying the structure of the affine parametric multiplier and/or the structure of the Lyapunov
function, at the price of a higher degree of conservatism, but with significant benefits in terms of
reduced computational complexity. In this paper, we will consider two possible relaxations of the
FD condition:

• FD-cµ: full constant multipliers Cµ(θ) = Cµ,0, Dµ(θ) = Dµ,0 (i.e., Cµ,i = 0, Dµ,i = 0, for
i = 1, . . . , nθ);

• FD-cdµ: constant diagonal multipliers, which is the same as FD-cµ, but with nonzero elements
only on the main diagonal of matrices Cµ,0 and Dµ,0.

Moreover, we will consider the following simplified structure for the Lyapunov function:

• common Lyapunov function (clf), P (θ) = P0;

• affine parameter dependent Lyapunov function (apdlf), P (θ) = P0 +
∑nθ

j=1 θjPj .

2.4 Dettori-Scherer conditions

Another way to assess robust stability of system (4) by jointly using multi-affine parameter de-
pendent Lyapunov functions and parameter-dependent multipliers has been proposed in [7]. The
resulting sufficient condition can be stated as follows.

Proposition 2.4 (DS) System (4) is robustly stable if there exist two matrices S0, S1 ∈ R
d×d

such that


























P (θ) > 0








I 0
A B

0 I
C D









T




0 P (θ) 0
P (θ) 0 0

0 0 W (θ)













I 0
A B

0 I
C D









< 0
(10)

for all θ ∈ Ver[Θ], where P (θ) is given by (7) and

W (θ) =

[

S1 + ST
1 −S0 − S1∆(θ)

−ST
0 − ∆(θ)ST

1 ST
0 ∆(θ) + ∆(θ)S0

]

, (11)

with ∆(θ) given by (3).
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The set of constraints (10) required to be solved for robustness certification, consists of 2nθ

LMIs of dimension (n + d) and 2nθ LMIs of dimension n, with a total number of free variables

nvar = 2d2 + 2nθ

(

n(n+1)
2

)

. Once again, one can introduce relaxed versions of the DS condition by

imposing structure on the free matrices S0 and S1, and/or the structure of the Lyapunov matrix.
We will refer to the robustness stability test (10) with diagonal matrices S0 and S1 in (11), as DS-dS
condition. Moreover, we will consider both common and affine parameter-dependent structures for
the Lyapunov function, denoted by clf and apdlf, respectively.

Table 1 summarizes the sufficient conditions for robust stability presented in this section and
the related LMI dimensions and number of optimization variables.

Remark 2.1 In [8], it has been proved that the FD-cµ condition (with full constant multipliers
Cµ,0, Dµ,0) and the DS condition (with full free matrices S0, S1) are equivalent. However, it is
not clear at present whether one can establish a relationship between these techniques, when a more
restrictive structure of the multipliers is imposed (e.g. between FD-cdµ and DS-dS). A preliminary
comparison between the above methods and relaxations on some academic examples has been reported
in [18].

3 Clearance criteria

In this section, we briefly recall the considered clearance criteria and we formulate them as robust-
ness analysis problems for the LFR models which have been derived from physical models of the
aircraft.

3.1 Aeroelastic stability clearance criterion

Within the COFCLUO project, several clearance criteria have been presented in [9] for the certification
process of the integral model of an aircraft [12].

The aeroelastic stability clearance criterion is described in [9, Section 4.1]. In order to clear the
closed-loop model within the uncertain parameter domain, the largest real part of the closed-loop
eigenvalues (λ1, λ2, · · · , λn) has to be negative, i.e.

max
j∈[1,n]

Re(λj) < 0,

for all possible values taken by the uncertain parameters. The presence of positive real eigenval-
ues indicates the presence of unstable modes, hence the associated regions accommodating these
eigenvalues cannot be certified as cleared.

The techniques presented in Section 2 are applied to certify that the LFR models describing
the aeroelastic dynamics of the aircraft satisfy the above eigenvalue criterion for all uncertain
parameters and flight envelope variables, i.e. to prove that such models are robustly stable.

3.2 LFR models for aeroelastic stability

Several LFR models of the open-loop longitudinal dynamics of a civil aircraft have been derived
in [13,14], from a set of linear aeroelastic models dependent on:

• the mass configuration (expressed in terms of fullness of two fuel tanks and a payload);

10



Method number of LMIs, [dimension] nvar

WBQ
1, [d]
1, [n]

2nθ , [n + d]

d(d+1)
2 + n(n+1)

2

WBQ-dM
1, [d]
1, [n]

2nθ , [n + d]
d + n(n+1)

2

WB
1, [d]

2nθ , [n]
2nθ , [n + d]

d(d+1)
2 + (nθ + 1)n(n+1)

2

WB-dN
1, [d]

2nθ , [n]
2nθ , [n + d]

d + (nθ + 1)n(n+1)
2

FD (mapdlf)
2nθ , [n]

nθ2
nθ , [n + d]

(nθ + 1)(nd + d2) + 2nθ

(

n(n+1)
2

)

FD (apdlf)
2nθ , [n]

nθ2
nθ , [n + d]

(nθ + 1)(nd + d2) + (nθ + 1)
(

n(n+1)
2

)

FD (clf)
2nθ , [n]

nθ2
nθ , [n + d]

(nθ + 1)(nd + d2) + n(n+1)
2

FD-cµ (mapdlf)
2nθ , [n]

nθ2
nθ , [n + d]

(nd + d2) + 2nθ

(

n(n+1)
2

)

FD-cµ (apdlf)
2nθ , [n]

nθ2
nθ , [n + d]

(nd + d2) + (nθ + 1)
(

n(n+1)
2

)

FD-cµ (clf)
2nθ , [n]

nθ2
nθ , [n + d]

(nd + d2) + n(n+1)
2

FD-cdµ (mapdlf)
2nθ , [n]

nθ2
nθ , [n + d]

min(n, d) + d + 2nθ

(

n(n+1)
2

)

FD-cdµ (apdlf)
2nθ , [n]

nθ2
nθ , [n + d]

min(n, d) + d + (nθ + 1)
(

n(n+1)
2

)

FD-cdµ (clf)
2nθ , [n]

nθ2
nθ , [n + d]

min(n, d) + d + n(n+1)
2

DS (mapdlf)
2nθ , [n]

2nθ , [n + d]
2d2 + 2nθ

(

n(n+1)
2

)

DS (apdlf)
2nθ , [n]

2nθ , [n + d]
2d2 + (nθ + 1)

(

n(n+1)
2

)

DS (clf)
2nθ , [n]

2nθ , [n + d]
2d2 + n(n+1)

2

DS-dS (mapdlf)
2nθ , [n]

2nθ , [n + d]
2d + 2nθ

(

n(n+1)
2

)

DS-dS (apdlf)
2nθ , [n]

2nθ , [n + d]
2d + (nθ + 1)

(

n(n+1)
2

)

DS-dS (clf)
2nθ , [n]

2nθ , [n + d]
2d + n(n+1)

2

Table 1: Sufficient conditions for robustness analysis.
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• the trim flight point (characterized by Mach number and conventional air speed).

In order to generate closed-loop models, these LFRs have been combined with the LFRs describ-
ing the longitudinal axis actuators, sensors and the controller dynamics, by employing software tools
for LFR object manipulation [19], [20]. Depending on the parameters θ appearing in the uncer-
tainty block ∆, several different closed-loop LFR models have been considered. For some of these
models, generated in the frequency range [0, 15] rad/sec, the number of states n, the size d of the
associated ∆-block, and the sizes si of the uncertainty sub-blocks associated with the Central tank
(C), Outer tank (O), Payload (P ), Mach number (M), conventional air speed (V ) and the position
of the center of gravity along the longitudinal axis (Xcg), are summarized in Table 2. Each one of
the fuel load parameters and/or flight point values not appearing among the uncertain parameters
θ in Table 2, are fixed to the following constant values: C = 50% P = 0%, O = 50%; M = 0.86,
V = 310 kt, Xcg = 0.

Model n d θ1, s1 θ2, s2 θ3, s3 θs4, s4

C 20 16 C, 16 − − −

CXcg 20 18 C, 14 − − Xcg, 4

OC 20 50 C, 26 O, 24 − −

OCXcg 20 50 C, 24 O, 22 − Xcg, 4

POC 20 79 C, 42 O, 24 P, 13 −

MV 20 54 M, 26 V, 28 − −

Table 2: Longitudinal closed-loop LFR models: uncertainty structure.

For the MV model, bounds on the flight parameters θ are available in terms of a polytope Θ,
representing the considered flight envelope (the polytope bounded by the black line in Figures 1-3).
For models C, OC and POC, the fuel load (C and O) and payload (P) ratios take values between 0
and 1. Hence, the uncertain parameter domain Θ for each of these models is, correspondingly, the
interval [0, 1], a square and a cube whose sides are intervals [0, 1]. In models CXcg and OCXcg,
the position of center of gravity (Xcg) varies within the range 0 and 1, therefore, the uncertain
parameter domain Θ comprise a square and a cube, each of them being with sides of unit length.

3.3 Un-piloted stability of nonlinear models

Within the COFCLUO project, several clearance criteria have been presented in [10] for the certifica-
tion process of the closed-loop nonlinear model of an aircraft [11].

The un-piloted stability clearance criterion is described in [10, Section 4.1]. It requires that the
closed-loop system remains stable, for all admissible values of the position of the center of gravity
assumed by the control law, and for all possible trimmed point values. Because of the presence
of pilot-in-the-loop control, the stability requirement can be relaxed to include slowly divergent
modes, provided that the time of doubling of the divergent variables is more than 6 sec.. When the
closed-loop system is represented by an LFR model as (1)-(2), this corresponds to verify that the
largest real part of the eigenvalues of the closed-loop matrix A(θ) is smaller than log(2)/6. Notice
that, due to the structure of A(θ) in (2), this can be imposed by simply replacing the open-loop

matrix A by the shifted matrix A− log(2)
6 I. Hereafter, this relaxed stability condition will be referred

to as “weak stability”.
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Due to the presence of saturations and rate limiters in the aircraft actuators, the ∆ block of the
resulting LFR models contains both uncertain parameters and memoryless nonlinearities (dead-
zones). In the following, we will consider two different un-piloted stability clearance problems.

• LFR models containing only flight envelope variables and/or uncertain parameters in the ∆
block, with dead-zones set to their nominal values (which corresponds to assuming that actu-
ator saturations are not active): in this case, all the robustness analysis techniques described
in Section 2 can be applied.

• LFR models containing dead-zones in the ∆ block: in this case, dead-zones are treated as
sector-bounded time-varying uncertainties, within the sector [0, 1]. Therefore, the robustness
analysis techniques of Section 2 can still be applied, provided that a common Lyapunov
function and parameter-independent multipliers are chosen.

Less conservative Lyapunov-based conditions for dealing with LFR models with dead-zones have
been recently proposed in [21, 22]. However, they do not consider the presence of time-invariant
parametric uncertainties in the LFR structure.

3.4 LFR models for nonlinear stability

The longitudinal nonlinear aircraft dynamics is described by the LFR models developed in [14] and
successively modified in [15]. There are 16 different models corresponding to different regions of the
flight envelope. The flight parameters are treated as linear time-invariant uncertain parameters.
The actuator saturations are transformed into dead-zones in the LFR models. The full model
includes four flight parameters (mach number, conventional air speed, aircraft mass, center of
gravity) and eight dead-zones (four related to the elevator and four to the trimmable horizontal
stabilizer). Table 3 summarizes the dimensions si of the ∆ block corresponding to the flight
parameter θi, in some of the complete closed-loop LFR models. All the dead-zones enter in the ∆
block with dimension 1. The meaning of parameter symbols is explained in Table 4.

Model number n mach, s1 VCAS , s2 cg, s3 m, s4

1 14 46 37 37 21

2 14 38 45 23 35

5 14 38 45 23 35

6 14 38 45 37 21

9 14 38 40 22 35

10 14 38 41 36 21

13 14 38 40 36 21

14 14 30 48 22 35

Table 3: Longitudinal nonlinear closed-loop LFR models: uncertainty structure.

Since the full models have ∆ blocks of dimension up to 141, with 4 uncertain parameters and
eight dead-zones, a collection of simpler models have been considered in order to speed up the
robustness analysis. The dead-zones related to the trimmable horizontal stabilizer have been set
to their nominal values (assuming the related position and rate limiters as not active). Then, five

13



Symbol Description

m mass

VCAS conventional air speed

cg center of gravity

mach Mach number

PA DQ DZ dead-zone related to elevator position limiter in the aircraft

PC DQ DZ dead-zone related to elevator position limiter in the controller

RA DQ DZ dead-zone related to elevator rate limiter in the aircraft

RC DQ DZ dead-zone related to elevator rate limiter in the controller

Table 4: Parameter symbols used in the model description.

different simplified LFR model classes have been defined, by considering only a subset of uncertain
flight parameters and/or elevator dead-zones in the full LFRs, and setting the remaining ones to the
corresponding nominal values. For notational convenience, the simplified models are name-coded
in the following format:

CL lon nl AC number class

where number refers to the Model Number reported in Table 3, while class characterizes the
set of uncertain flight parameters or dead-zones θi in the model, according to Table 5. For exam-

class θ1 θ2 θ3 θ4

a mach VCAS

b cg m

c PA DQ DZ PC DQ DZ RA DQ DZ RC DQ DZ

d cg m PA DQ DZ PC DQ DZ

e mach VCAS PA DQ DZ PC DQ DZ

Table 5: Simplified LFR model classes.

ple, for all models in the class CL lon nl AC number a, the values of cg and mach are set to the
nominal values reported in [15], while the values of all the dead-zones are set to 0 (corresponding
to assuming that the related actuator saturations and rate limiters are not active).

3.5 Progressive and adaptive tiling

Since all the conditions presented in Section 2 are only sufficient, they may be too conservative to
clear the entire uncertainty domain, but they may succeed in clearing portions of this domain. This
is still acceptable for the considered criteria, because the uncertain flight parameters are assumed to
be time-invariant. This has motivated the formulation of two approaches, namely the progressive
tiling and the adaptive tiling, which rely on partitioning of the uncertainty domain. These are
described next.

In the progressive tiling, the idea is to progressively partition the flight/uncertainty domain Θ
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into hyperbox regions (hereafter, tiles), and then, apply the robustness analysis conditions pre-
sented in Section 2 to each tile. The clearance procedure starts with a coarse tiling of the domain
and is carried out by successively reducing the sizes of the uncleared tiles; this step involves bisec-
tion of each side of an uncleared tile. The size of each uncleared tile is reduced until the whole
domain is cleared, or the predefined maximum number of bisection steps is reached. In all the
performed numerical tests, the initial tile has been set equal to the whole uncertainty domain (or
a hyper-rectangle containing the actual flight domain, for models whose flight envelope is a generic
polytope). For each tile, the LFR system (4) has been re-parameterized, so that the resulting un-
certainty region is centered in the origin of the normalized uncertainty space. If the LFR contains
memoryless nonlinearities, such as dead-zones, these are treated as sector-bounded time-varying
uncertainties. Hence, partitioning is not performed with respect to the corresponding parameters,
but only with respect to the time-invariant flight parameters (if there are any in the considered
model).

With the objective of improving the efficiency of the clearance process, one may choose to
combine progressive tiling with an adaptive choice of the clearance condition. The idea is to proceed
as in the progressive tiling approach, but to change the robustness condition when a predefined
partitioning level has been reached. For example, one may first employ conservative (but fast)
methods in the attempt to clear large regions of the uncertainty domain which are “easy” (in the
sense that they can be cleared by conservative techniques). Then, in a second stage, one can employ
more powerful (and more computationally demanding) techniques only for smaller “difficult” tiles,
namely, those that have not been cleared by the first technique. In order to test this idea, adaptation
with respect to the choice of the Lyapunov function has been considered and implemented in
the clearance software (clearly, adaptation with respect to the multipliers structure can also be
considered). The user can choose up to three different classes of LFs (constant, affine, multi-affine)
and decide to switch from the simplest one to the more complex, as long as the partitioning of the
uncertainty domain (Θ) continues. Application of this procedure to the clearance of the integral
MV closed-loop LFR model is presented in Subsection 4.2.

3.6 Gridding

The flight/uncertainty domain of interest may contain models which are unstable. Since a model
corresponds to an aircraft configuration with known values for the uncertain parameters and fixed
values for the flight parameters, such unstable models will render the entire flight/uncertainty
domain unclearable. Hence, in order to save computational time, before attempting to clear each
tile by applying one of the selected method presented in Section 2, a gridding of the tile is performed.
This involves a selection of rnθ models within the tile, chosen on a uniformly spaced grid (in the
tests presented in the next sections, r has been set equal to 10). If any one of these models is
found to be unstable, clearance of the tile is not attempted and the tile containing the model
is temporarily marked as unstable. Conversely, if there are no unstable models within the tile
grid then the selected clearance method is applied. Notice that as the partitioning of the domain
proceeds, tiles that have been marked as unstable are successively partitioned and portions of them
can be later cleared. When the maximum number of partitions is reached, the tiles containing
unstable models found by gridding are finally marked as unstable. Clearly, by suitably defining the
maximum number of partitions (and hence the minimum tile size), one can obtain an approximation
to the desired precision of the domain which can be cleared by the considered robustness analysis
technique.

15



4 Results on aeroelastic stability of integral models

This section presents a collection of results on aeroelastic stability of several closed-loop integral
LFR models generated in the frequency range [0, 15] rad/sec and representative of the longitudinal
dynamics of an aircraft. The considered models are those reported in Table 2.

The computations were performed with 64-bit Matlab 2007b, running under Linux Ubuntu, on
a PC-station equipped with an Intel XEON 5150 processor and 4 Gbyte of DDRII RAM.

4.1 Progressive tiling

We first present results obtained by applying the techniques in Section 2 with progressive tiling
and maximum number of partitions set to 6 (corresponding to a minimum tile side equal to 1

64 of
the corresponding initial side of the uncertainty domain).

4.1.1 C model

Table 6 summarises clearance results for model C obtained by applying the progressive tiling ap-
proach with different robustness analysis conditions, and different structure of the Lyapunov func-
tion (clf and apdlf). The first column (Rate) represents the portion of the uncertainty segment
[0, 1] which has been cleared; the second column (NOPs) denotes the number of convex optimization
problems that have been solved (corresponding to the number of tiles attempted to be cleared),
while the third column provides the corresponding computational times (in seconds).

Method Rate NOPs Time (sec)

DS (clf) 1 1 9.7820
DS (apdlf) 1 1 10.9726

DS-dS (clf) 1 3 10.155
DS-dS (apdlf) 1 1 4.1577

FD-cµ (clf) 1 1 5.8172
FD-cµ (apdlf) 1 1 8.7717

FD-cdµ (clf) 1 3 8.4335
FD-cdµ (apdlf) 1 1 4.9377

WBQ-dM 1 3 4.3888

Table 6: Progressive tiling: C model.

4.1.2 OC model

Results from the robustness stability analysis carried out on the model OC are shown in Table 7
(note that here times are expressed in hours).

It can be seen that the methods and relaxations that had been employed have managed to
certify robust stability of both C and OC model within the whole uncertainty domain. As expected,
the conditions involving affine parameter-dependent Lyapunov functions (apdlf) have to solve in
general a smaller number of optimization problems, with respect to those formulated with common
Lyapunov functions (clf). Nevertheless, this leads to a reduction of the computational time only if
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Method Rate NOPs Time (hours)

DS-dS (clf) 1 73 0.4424
DS-dS (apdlf) 1 41 0.5311

FD-cµ (clf) 1 33 2.9252
FD-cµ (apdlf) 1 1 0.1032

FD-cdµ (clf) 1 85 0.3668
FD-cdµ (apdlf) 1 49 0.5308

WBQ-dM 1 169 0.2468

Table 7: Progressive tiling: OC model.

the number of solved optimization problems turns out to be significantly smaller (in this respect,
see e.g. the different behavior of FD-cµ and FD-cdµ for model OC). Comparison of different
relaxations of the same method indicates that reducing the number of free variables by choosing
structurally simpler multipliers, can increase the time required for robustness certification if the
number of optimization problems to be solved grows too much (for example, this is the case of FD
relaxations with apdlf for model OC).

4.1.3 POC model

Table 8 presents performance indicators of the stability analysis performed on the POC model
by adopting the progressive tiling approach. It can be observed that, as the number of uncertain
parameters θ and the size of the uncertainty block ∆(θ) grow, the computational workload increases
significantly. The considered techniques have managed to clear the entire uncertainty domain.
Other techniques have been tested, e.g. using apdlf instead of clf, but they turned out to be
significantly more computationally demanding.

Method Rate NOPs Time (hours)

DS-dS (clf) 1 993 33.7136
FD-cµ (clf) 1 105 142.6362

Table 8: Progressive tiling: POC model.

4.1.4 CXcg model

Table 9 compiles clearance analysis data for the LFR model with C and Xcg uncertain values in the
∆-block. All the considered techniques have managed to clear the entire 2-D uncertainty domain.
Note that an increase in the number of OPs solved also increases computational overhead (where
computational times are expressed in seconds).

4.1.5 COXcg model

Table 10 presents results from the progressive clearance analysis performed on COXcg closed-loop
LFR model.
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Method Rate NOPs Time (seconds)

DS (clf) 1 1 30.8872
DS (apdlf) 1 1 44.4729

DS-dS (clf) 1 5 48.5942
DS-dS (apdlf) 1 1 16.3342

FD-cµ (clf) 1 1 18.6065
FD-cµ (apdlf) 1 1 32.3051

FD-cdµ (clf) 1 5 32.3783
FD-cdµ (apdlf) 1 1 18.918

WBQ-dM 1 5 9.1653

Table 9: Progressive tiling: CXcg model.

Method Rate NOPs Time (hours)

DS (clf) 1 185 327.008
DS (apdlf) 1 1 3.1230

DS-dS (clf) 1 745 11.1694
DS-dS (apdlf) 1 265 10.8935

FD-cµ (clf) 1 185 41.5262
FD-cµ (apdlf) 1 1 0.2965

FD-cdµ (clf) 1 841 8.8738
FD-cdµ (apdlf) 1 385 13.5763

WBQ-dM 1 2129 4.57005

Table 10: Progressive tiling: COXcg model.

Notable is that theoretically more conservative relaxations, although in need of significantly
higher number of LMI optimization problem runs, have proved to be less computationally demand-
ing with respect to their less conservative forms. Hence, an increase in the number of free variables
(e.g. DS and FD-cµ) has indeed reduced the number of optimization problems solved, however,
have resulted in computationally more involved optimization problems.

It is also interesting to note that in Tables 6, 9 and 10, the times elapsed for clearance by DS
method are always larger than those employed by FD-cµ (recall that the two methods are equivalent,
see Remark 2.1). This seems to suggest that the parametrization of the FD-cµ condition is more
efficient.

4.1.6 MV model

Table 11 presents results on robust stability analysis for the MV model.
Progressive tiling has been employed in the assessment of the flight envelope. The maximum

number of partitions has been increased to 7, since this is the first example in which the clearance
rate is not equal to 1 for all the considered techniques. It is worth remarking that the Rate
is computed as the ratio of the cleared domain and the portion of the domain which does not
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Method Rate NOPs
Time

(h:m:s)
Time/OP
(h:m:s)

DS-dS (clf) 0.9875 1282 12 : 32 : 13 0 : 0 : 35
DS-dS (apdlf) 0.9931 1030 24 : 35 : 25 0 : 1 : 25

FD-cµ (clf) 0.9993 218 34 : 0 : 29 0 : 9 : 21
FD-cµ (apdlf) 1 174 30 : 9 : 45 0 : 10 : 24

FD-cdµ (clf) 0.9895 1346 8 : 28 : 2 0 : 0 : 22
FD-cdµ (apdlf) 0.9921 1202 20 : 59 : 54 0 : 1 : 2

Table 11: Progressive tiling: MV model.

contain unstable models found by gridding. This means that it can be interpreted as a measure of
effectiveness of the considered technique (when the rate is less than 1, there are regions that could
not be cleared even if the gridding was not able to find unstable models).

By inspecting the results in Table 11 one can observe that, while an increase in the number
of free variables (e.g. from FD-cdµ to FD-cµ) has led to a reduction in the number of optimiza-
tion problems solved, this has not translated into computationally less demanding optimization
problems. However, it is notable that the least conservative and most computationally demanding
method (FD-cµ with apdlf) was the only one able to clear the entire flight envelope.

Figures 1-3 offer a detailed picture of the certified regions provided by the considered techniques.
The red tiles contain closed-loop models that have been found to be unstable by gridding; the green
tiles show the areas which have been cleared, and the white tiles indicate the regions which have
neither been cleared nor found to contain unstable models by gridding. The different tiling patterns
testify the different level of conservatism of the relaxations. It can be seen that the condition FD-cµ
in Figure 2 provides the largest cleared region, and was the only one to completely clear the actual
flight envelope (denoted by the polytope in black). Clearly, a more precise approximation of the
robust stability domain boundary can be obtained by further reducing the minimum tile size.

4.2 Adaptive tiling: MV model

The adaptive procedure described in Subsection 3.5 has been tested on the model MV, and the
adaptation has been performed on the structure of the Lyapunov function. The conditions DS-
dS, FD-cµ and FD-cdµ have been first applied with progressive tiling with a common Lyapunov
function; then, the same relaxations with an affine parameter-dependent Lyapunov function have
been applied to the tiles previously uncleared. Table 12 reports the clearance results obtained
for the model MV by employing the adaptive tiling. Columns 2 and 3 in Table 12 indicate the
number of bisections for which the clf and apdlf conditions have been employed, respectively. For
example, clf=2 and apdlf=5 means that in the first two partitions we applied the corresponding
condition with clf, while apdlf has been employed in the subsequent 5 partitions (clf=0 and apdlf=7
is equivalent to the progressive approach with apdlf, reported in Table 11).

The rate of cleared uncertainty region refers only to the clearable tiles (those not containing
an unstable closed-loop model found by gridding). As expected, it is confirmed that the FD-cµ
relaxation is the only one that has been able to clear all the clearable tiles, at the price of a higher
computational time. When comparing times, it turns out that the adaptation has proved to be
effective for both DS-ds and FD-cdµ. On the contrary, it has led to an increase of computational
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Figure 1: a) Clearance by partitioning using DS-ds and clf. b) Clearance by partitioning using
Ds-ds and apdlf.
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Figure 2: a) Clearance by partitioning using FD-cµ and clf. b) Clearance by partitioning using
FD-cµ and apdlf.
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Figure 3: a) Clearance by partitioning using FD-cdµ and clf. b) Clearance by partitioning using
FD-cdµ and apdlf.

times for FD-cµ. Adaptation on the WBQ-dM condition has not been performed, because it
is known a priori that WB-dN is as conservative as WBQ-dM, being the uncertainty domain
symmetric after the reparameterization.

Method clf apdlf Rate NOPs
Time

(h:m:s)
Time/OP
(h:m:s)

DS-dS 0 7 0.9931 1030 24 : 35 : 25 0 : 1 : 25
2 5 0.9931 1042 27 : 27 : 54 0 : 1 : 34
4 3 0.9931 1110 25 : 20 : 0 0 : 1 : 22
6 1 0.9931 1236 20 : 10 : 37 0 : 0 : 58

FD-cµ 0 7 1 174 30 : 9 : 45 0 : 10 : 24
2 5 1 179 31 : 19 : 19 0 : 10 : 29
4 3 1 188 32 : 21 : 30 0 : 10 : 19
6 1 1 206 36 : 5 : 11 0 : 10 : 30

FD-cdµ 0 7 0.9921 1202 20 : 59 : 54 0 : 1 : 2
2 5 0.9921 1214 23 : 13 : 35 0 : 1 : 8
4 3 0.9921 1266 21 : 18 : 30 0 : 1 : 0
6 1 0.9921 1362 15 : 39 : 18 0 : 0 : 41

Table 12: Adaptive tiling: MV model.

Remark 4.1 On the whole, the results show that it is not possible to establish a priori which
combination of robustness condition, relaxation and structure of the Lyapunov function will give
the best performance in terms of overall computational time, because this depends on the trade-
off between computational burden and conservatism of each condition, whose impact may in turn
depend on the considered example. Experience accumulated in employing the sufficient conditions
in the clearance process indicates that the FD-cµ method is the most powerful one among those
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implemented, but it may sometime require an excessive computational effort. On the other hand,
the FD-cdµ, DS-dS and WBQ-dM relaxations often provide a good trade-off between computational
complexity and conservatism (see e.g., both progressive and adaptive results on the MV model).
Concerning the selection of the structure of the Lyapunov function, starting with clf and then
switching to apdlf to clear only the “most difficult” tiles, as in the adaptive approach, has proven
to be useful in several cases.

5 Results on un-piloted stability of nonlinear models

In this section we report results obtained by applying the proposed techniques on some LFR models
described in Section 3.4, representing the longitudinal nonlinear closed-loop aircraft dynamics.

5.1 CL lon nl AC # b models

The uncertain flight parameters in this class of models are cg and mass. The other flight parameters
(mach, VCAS) are set to their corresponding nominal values, and the dead-zones are set to zero.

The analysis utilized progressive tiling approach employing FD-cµ method, with affine parameter-
dependent Lyapunov functions (apdlf). Tables 13 and 14 summarize the analysis results for a subset
of the 16 available LFRs. Table 13 refers to the standard robust stability analysis, while Table 14
concerns “weak stability” analysis, which allows for the presence of slowly divergent modes (corre-
sponding to right shifting the imaginary axis by log(2)/6). The first column (Model) represents the
model analyzed. The second column (NOPs) denotes the number of optimization problems that
have been solved (i.e., the number of tiles attempted to be cleared). The third column (t) provides
the time elapsed in the course of the clearance procedure, whereas the fourth column (t/OP), shows
the average time elapsed per optimization problem. All times are shown in hour:minute:second
(h:m:s) format, and are referred to computations performed on an Intel XEON 5150 processor with
4 GB RAM.

The ratio (in %) of the cleared domain to the whole uncertainty domain is given in column
Cleared. The percentage of the whole uncertain parameter domain, which was found to host
closed-loop unstable models after gridding, is given in column Unstable. The column Unknown
shows the percentage of the whole uncertainty domain which could not be defined as unstable after
gridding, yet with the tested method it could not be certified as cleared either.

It can be observed that when using the standard notion of stability, unstable models have been
found almost everywhere within the flight uncertainty domain. For some models, the clearance
process lasted hours as a fine tiling has been required (see e.g., Figures 4a and 5a). Conversely,
when “weak stability” is considered (i.e., slowly divergent modes are allowed), all models are fully
cleared by solving one single optimization problem, without tiling the uncertainty domain. The
computational times are in the order of few minutes. This testifies that slowly divergent modes are
indeed present in the closed-loop system and motivated us to address only “weak stability” in the
subsequent analysis.

5.2 CL lon nl AC # a models

This class of models treats mach and VCAS as uncertain flight parameters, the other uncertain
parameters (Xcg, mass) are set to their corresponding nominal values, and the dead-zones are set
to zero.
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Model NOPs
t

(h:m:s)
t/OP

(h:m:s)
Cleared

(%)
Unstable

(%)
Unknown

(%)

CL lon nl AC 1 b 8 0:49:8 0:6:8 0.195 99.805 0.0

CL lon nl AC 2 b 69 4:26:28 0:3:51 3.442 96.558 0.0

CL lon nl AC 5 b 91 6:35:25 0:4:20 9.839 90.161 0.0

CL lon nl AC 6 b 57 3:40:39 0:3:52 2.20 97.80 0.0

CL lon nl AC 9 b 1 0:4:24 0:4:24 0.024 99.976 0.0

CL lon nl AC 10 b 5461 0:6:55 0:0:0 0.0 100.0 0.0

CL lon nl AC 13 b 14 1:1:16 0:4:22 0.488 99.512 0.0

CL lon nl AC 14 b 5461 0:6:2 0:0:0 0.0 100.0 0.0

Table 13: Clearance analysis for CL lon nl AC # b models: standard robust stability analysis.

Model NOPs
t

(h:m:s)
t/OP

(h:m:s)
Cleared

(%)
Unstable

(%)
Unknown

(%)

CL lon nl AC 1 b 1 0:4:13 0:4:13 100.0 0.0 0.0

CL lon nl AC 2 b 1 0:4:17 0:4:17 100.0 0.0 0.0

CL lon nl AC 5 b 1 0:3:27 0:3:27 100.0 0.0 0.0

CL lon nl AC 6 b 1 0:3:17 0:3:17 100.0 0.0 0.0

CL lon nl AC 9 b 1 0:3:13 0:3:13 100.0 0.0 0.0

CL lon nl AC 10 b 1 0:7:4 0:7:4 100.0 0.0 0.0

CL lon nl AC 13 b 1 0:3:13 0:3:13 100.0 0.0 0.0

CL lon nl AC 14 b 1 0:4:22 0:4:22 100.0 0.0 0.0

Table 14: Clearance analysis for CL lon nl AC # b models: “weak stability”.

The “weak stability” analysis utilized progressive tiling approach employing FD-cµ method,
with affine parameter-dependent Lyapunov functions (apdlf). Table 15 summarizes the analysis
results for the models considered. Figures 6-7 report the results of the analysis and the actual flight
envelope boundaries (denoted by thick black lines).

Model NOPs
t

(h:m:s)
t/OP

(h:m:s)
Cleared

(%)
Unstable

(%)
Unknown

(%)

CL lon nl AC 2 a 110 114:31:19 1:2:27 96.14 3.86 0.0
CL lon nl AC 5 a 33 47:23:31 1:26:10 97.93 2.07 0.0

Table 15: Clearance analysis for CL lon nl AC # a models.

It can be observed that the computational times have significantly increased with respect to
CL lon nl AC # b models, due to the larger dimension of the LFR ∆ block. However, it can be
noticed that most of the time is spent in the attempt to clear regions close to the stability boundary,
requiring a much finer partitioning, which lie outside the actual flight envelope of interest. This
information has been kept in this example, in order to show that the partitioning technique allows
one to obtain a detailed approximation of the robust stability domain. In the following analysis,
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Figure 4: a) Standard robust stability analysis of CL lon nl AC 5 b. b) Robust “weak stability”
analysis of CL lon nl AC 5 b.
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Figure 5: a) Standard robust stability analysis of CL lon nl AC 6 b. b) Robust “weak stability”
analysis of CL lon nl AC 6 b.

we will exploit the option FE restriction, present in the GUI [16], ensuring that the tiles which are
completely outside the flight envelope are omitted from the analysis.

5.3 CL lon nl AC # c models

In this class of models, all flight parameters are set to their corresponding nominal values, except
the four dead-zones PA DQ DZ, PC DQ DZ, RA DQ DZ and RC DQ DZ, which are treated
as sector-bounded nonlinearities.
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Figure 6: Robust “weak stability” analysis of CL lon nl AC 2 a.
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Figure 7: Robust “weak stability” analysis of CL lon nl AC 5 a.
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After performing analysis of the models with FD-cµ method, common Lyapunov function (clf)
and dead-zones considered as sector-bounded uncertainties in the sector [0, 1], none of the considered
models have been cleared. Moreover, in all cases it has been possible to find constant values in
the interval [0, 1], for the dead-zones parameters, such that the resulting models have eigenvalues
with real part greater than log(2)/6. For example, in model CL lon nl AC 1 c, if PA DQ DZ =
PC DQ DZ = RA DQ DZ = 0 and RC DQ DZ = 0.8, one obtains a A(θ) matrix in (2) with a
pair of conjugate eigenvalues whose real part is 0.1290 > log(2)/6.

In order to check for robust stability of models with smaller sector bounds, the dead-zones have
been considered as sector-bounded uncertainties, within the sector [0, γ]. Table 16 reports the
maximum values of γ for which robust “weak stability” has been certified by applying the FD-cµ
method. These values of γ allow one to compute the maximum ranges of the input signals of the
dead-zones for which the system remains stable.

Model γ

CL lon nl AC 1 c 0.62

CL lon nl AC 2 c 0.64

CL lon nl AC 5 c 0.62

CL lon nl AC 9 c 0.60

CL lon nl AC 13 c 0.60

Table 16: Maximum values of γ for which CL lon nl AC # c models have been cleared (“Weak
stability”).

The same clearance procedure has been applied to LFR models with dead-zones PA DQ DZ and
PC DQ DZ set as uncertain parameters, sector-bounded in sector [0, 1], and all other parameters
(including rate limiter dead-zones: RA DQ DZ, RC DQ DZ) set to their nominal values. All
such models have been cleared. On the other hand, LFR models accommodating only RA DQ DZ,
RC DQ DZ dead-zones, and with all the remaining parameters (including the actuator dead-zones
PA DQ DZ and PC DQ DZ) set to their nominal values, have not been cleared. This suggests
that the rate limiter dead-zones play a critical role in the clearance analysis.

In [21, 22] several approaches have been proposed to address robust stability of systems with
dead-zones. In particular, [22] provides LMI conditions for global exponential stability, which
exploit information on the time derivative of the saturated signals and a generalized Lur’e-Postnikov
Lyapunov function. Unfortunately, also this technique was not able to clear any model in the
CL lon nl AC # c. Then, motivated by the local stability results in Table 16, we applied the
regional analysis techniques proposed in [21], in order to estimate the region of attraction of the
origin in the state space. Two approaches have been considered, which are based on the embedding
of the LFR with dead-zones either in a polytopic differential inclusion (PDI), or a norm-bounded
differential inclusion (NDI). By using these approaches, it has been possible to certify the regional
stability of the systems reported in Table 16 and to obtain a non trivial (spherical) estimate of the
region of attraction. The radius α of the spherical stability region is reported in Table 17, for the
two considered approaches. As expected, the approach based on PDI embedding turned out to be
slightly less conservative.

The extension of the techniques presented in [21,22] to LFRs containing both uncertain param-
eters and dead-zones in the ∆ block is a subject of ongoing research.
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Model α (PDI) α (NDI)

CL lon nl AC 1 c 1.7998 1.7927

CL lon nl AC 2 c 2.9506 2.9372

CL lon nl AC 5 c 1.7867 1.7795

CL lon nl AC 9 c 1.9234 1.9143

CL lon nl AC 13 c 1.92 1.9107

Table 17: Estimation of the stability radius α of CL lon nl AC # c models.

5.4 CL lon nl AC # d models

This class of models treats as uncertain parameters cg and mass, and, as sector-bounded uncer-
tainties, the dead-zones related to the elevator position limiters PA DQ DZ and PC DQ DZ.

The results obtained by applying the FD-cµ method with clf, for robust “weak stability” with
threshold log(2)/6, are given in Table 18. Here the times refer to computations performed on an
Intel Core2 Duo processor with 2 GB RAM.

Model NOPs
t

(h:m:s)
t/OP

(h:m:s)
Cleared

(%)
Unstable

(%)
Unknown

(%)

CL lon nl AC 1 d 1 0:46:26 0:46:26 100.0 0.0 0.0

CL lon nl AC 5 d 1 0:38:11 0:38:11 100.0 0.0 0.0

CL lon nl AC 9 d 1 0:33:44 0:33:44 100.0 0.0 0.0

Table 18: Clearance analysis for CL lon nl AC # d models.

It is worth remarking that these models have been fully cleared by solving one single optimization
problem, i.e., no partitioning of the uncertainty domain, including cg and mass, has been necessary
(although up to 6 partitions have been allowed for such parameters).

5.5 CL lon nl AC # e models

These LFR models include mach and VCAS as uncertain flight parameters, and as sector-bounded
uncertainties, the dead-zones related to the elevator position limiters PA DQ DZ and PC DQ DZ.
Results of “weak stability” analysis, using FD-cµ method with clf, are reported in Table 19.

Model NOPs
t

(h:m:s)
t/OP

(h:m:s)
Cleared

(%)
Unstable

(%)
Unknown

(%)

CL lon nl AC 2 e 21 31:45:29 1:30:44 100.0 0.0 0.0
CL lon nl AC 5 e 5 6:4:19 1:12:51 100.0 0.0 0.0

Table 19: Clearance analysis for CL lon nl AC # e models.

Both the considered models have been fully cleared, by exploiting partitioning with respect to
the time-invariant flight parameters mach and VCAS . The resulting tiling patterns are drawn in
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Figures 8 and 9. It is interesting to compare the slightly different tiling patterns (within the flight
envelope) obtained for models CL lon nl AC 5 a (Figure 7) and CL lon nl AC 5 e (Figure 9). This
is clearly induced by the presence of dead-zones in the latter model, which makes the clearance
problem more difficult.

From Table 19, it can be noticed that the computational times are the order of several hours.
This is due to the fact that ∆ blocks have dimensions around 80. In this case, the use of the FE
restriction (which allows to exclude tiles outside the polytopic flight envelope) has proven to be
very useful.

6 Final remarks

The research activity within WP2.3 of the COFCLUO project has addressed the study and application
of Lyapunov-based robustness analysis techniques to two clearance problems concerning the closed-
loop longitudinal dynamics of a civil aircraft.

The clearance problems have been cast as robust stability problems and three different sufficient
conditions proposed in the literature have been considered. The choice of the conditions has been
driven by the fact that the uncertainty models developed within the project were in LFR form.
The results obtained indicate that there is a key trade-off between performance and computational
burden. This is apparent when robustness conditions are applied within the progressive tiling
strategy. Relaxed conditions, which are conservative if applied directly to the entire uncertainty
region, may perform much better on smaller subregions. This, however, requires the solution of a
large number of LMI optimization problems. The size of the tiles, the number of partitions of the
region under analysis, the structure of the multipliers and/or the Lyapunov matrices turn out to
be key tuning “knobs” in this respect.

Although it is difficult to devise an a priori strategy for choosing the “best” robustness analysis
technique, based on experience accumulated in the testing of the clearance software and in view of
the analysis results, a combined use of structurally simple multipliers in either the FD or DS method,
with an affine parameter-dependent Lyapunov function seems to offer a reasonable compromise
between conservatism and computational feasibility.

The results obtained so far are by no means exhaustive and there are several open issues to be
addressed in future research activities. Some of them can be briefly summarized as follows.

• Robustness analysis of LFR models including memoryless nonlinearities is currently the sub-
ject of active research in the control field. It is believed that the use of such techniques,
combined with those considered in this report, may significantly reduce the conservatism in
clearance problems like un-piloted stability or turn coordination for nonlinear models.

• A possible alternative approach to robustness analysis of models in LFR form concerns the
use of LPV models, which can be generated by exploiting the model reduction tools devel-
oped in [23]. Promising preliminary results have been obtained by applying to these LPV
models standard quadratic stability conditions, or linearly parameter-dependent Lyapunov
functions (e.g., [24]). Numerical tests are ongoing to verify the computational feasibility of
these techniques.

• The robustness techniques presented in this report may provide a valuable tool for validating
the LFR modeling process. Indeed, one of the key points to be addressed is the reliability of
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Figure 8: Robust “weak stability” analysis of CL lon nl AC 2 e.
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Figure 9: Robust “weak stability” analysis of CL lon nl AC 5 e.
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these LFRs, i.e. their potential in representing all the aircraft dynamics of interest, within
the considered flight envelope and for all admissible values of the uncertain parameters. By
comparing the results of Lyapunov-based robust stability analysis with those obtained by
applying the baseline solution (usually based on gridding of the fligh/uncertainty domain,
see [25]), it will be possible to single out the most significant discrepancies between the
physical aircraft models used so far in industrial clearance, and the LFR models developed
within the COFCLUO project. This will provide guidelines for trading off model accuracy and
complexity in the LFR modeling process.
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7 Introduction

Before an aircraft can be tested in flight, it has to be proven to the authorities that the flight
control system is reliable, i.e. it has to go through a certification and qualification process. An
important part of this process is the clearance of flight control laws. It must notably be shown that
the control laws provide sufficient stability margins to guarantee a safe operation of the aircraft
over the entire flight envelope and for all admissible parametric variations. Clearance problems for
both civilian and military aircraft can be formulated as robustness analysis problems, where a set
of suitably defined clearance criteria must be checked to lie within certain limits for all possible
aircraft configurations and flight conditions. The most common clearance criteria are related to
aircraft stability, handling, loads and performance [26].

The current industrial approach consists in gridding the parametric domain, and checking the
considered criteria at each point of the grid [25]. The main drawback of this strategy is that
clearance is restricted only to the considered grid points and nothing can in principle be assessed for
the remaining points in the parametric domain. Moreover, significant time and money is frequently
spent on this task. Enhancement would be provided by automated search of worst-case points.
Some techniques, such as µ-analysis, could be efficiently applied for this purpose, since they allow
to determine whether clearance requirements are fulfilled on a continuous parametric domain. Such
an approach has been investigated by ONERA in the context of the COFCLUO project.

The modeling methodology introduced in [13,14] and the clearance tool presented in [16,18] are
the two main stages towards the development of a modeling and optimization tool dedicated to
the clearance of stability criteria, which is able to meet the industrial needs specified in [25]. In
this context, the purpose of this document is twofold. The work performed by ONERA during the
project is first summarized in section 8. The way how the different contributions can be efficiently
combined and implemented to be incorporated in an industrial process is then discussed in section 9.

8 Overview of the work performed by ONERA

The work performed by ONERA during the COFCLUO project is summarized below. It mainly
aims at developing an efficient method based on µ-analysis to evaluate some of the clearance criteria
that need to be assessed during the certification process of an aircraft. Efforts are notably put on
the eigenvalue and the stability margin criteria [9, 27] for high-order flexible models [12].

1. In the aeronautical industry, the robustness properties of an aircraft are usually assessed
using intensive and time-consuming simulations. Fortunately, several optimization techniques
can be implemented and applied for clearance of flight control laws, in order to improve the
efficiency and reliability of the certification process. Some of them, such as µ-analysis, require
the considered models to be written as Linear Fractional Representations (LFR), which is
unfortunately not the case of the aeroelastic models available in an industrial context. A whole
methodology is thus proposed in [13,14] to convert a set of numerical flexible aircraft models
into a suitable LFR which depends on the aircraft configuration and the flight conditions.
This is a challenging issue, since the size of the initial models is very large and the state
vector does not have the same physical meaning for the whole model set [12]. Nevertheless,
several open-loop longitudinal and lateral LFRs are obtained, which are representative of the
aircraft behavior in the sense that their eigenvalues and frequency responses almost exactly
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match those of the initial flexible models. Moreover, their complexity proves compatible with
the use of robustness analysis tools.

2. A strategy is also detailed in [14], which allows to generate some low-order LFRs of both lon-
gitudinal and lateral controllers. All the Matlab tools that are necessary to build either linear
of nonlinear interconnections and to validate the resulting closed-loop LFRs are available on
the COFCLUO portal.

3. Two efficient algorithms based on µ-analysis are then proposed in [16,18,28] to compute either
a guaranteed robustness margin for a high-order LTI plant with numerous uncertainties,
or a guaranteed stability domain for a high-order (possibly uncertain) LPV plant. Some
possible extensions and variations are highlighted, which allow to handle the trade-off between
conservatism and computational time. The stress is also put on the way these tools can be
more widely exploited to evaluate both the eigenvalue and the stability margin criteria.

4. An easy-to-use Matlab package implementing the aforementioned algorithms and dedicated
to the evaluation of the eigenvalue and the stability margin criteria is finally described in [16]
and is available on the COFCLUO portal. Numerous tests show that the proposed clearance
tool allows to handle high-order flexible plants that cannot be analyzed rigorously using
classical methods. Indeed, conservatism is easily mastered and computational time remains
quite reasonable, even if very demanding problems are considered.

Another clearance requirement is to show that the flight control laws do not cause excessive damage
during a reference flight, in the sense that the fatigue due to mechanical stresses undergone by the
aircraft servomechanisms does not exceed a given threshold. In this context, a way to formulate
and evaluate the damage criterion has been proposed by ONERA.

• A mathematical formulation of the damage criterion is first introduced in [27] and then
implemented in [29]

• The damage criterion is a nonlinear function of the standard deviations of the deflections
and the deflection rates of the actuators. It is thus very sensitive to the saturations of the
actuators. Nevertheless, standard deviations are easily computed only in a linear context.
Some attention must thus be paid to the linearization of these saturations. A stochastic
technique is proposed in [30] to carry out this task.

9 Incorporation in an industrial process

The modeling methodology proposed in [13,14] and the clearance tool presented in [16,18] are the
two main stages towards the development of a modeling and optimization tool dedicated to the
clearance of stability criteria, which is able to meet the industrial needs specified in [25]. The way
how they can be efficiently combined and implemented to be incorporated in an industrial process
is discussed in this section.

9.1 Validation of the LFRs and evaluation of the modeling error

The evaluation of both the eigenvalue and the stability margin criteria consists in examining the
position of the eigenvalues of a suitable closed-loop LFR with respect to the imaginary axis. In
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this context, it seems natural to use a modal indicator to quantify the modeling error, and thus
the accuracy, of this LFR before invoking the clearance tool. This is a necessary precaution, since
several reductions and other simplifying operations are usually performed to generate an LFR,
whose size is compatible with the use of the analysis tools, but which can be quite different from
the reference models.

Assume that the modeling methodology introduced in [13,14] has been applied to get an LFR.
The latter depends on the interpolation of a set of N component models defined on a grid, which
are supposed to be representative of the real aircraft. Thus, it seems natural to compare the real
parts of the eigenvalues of the LFR and of the component models at each point of the grid. The
modeling error can then be defined as follows:

ǫ = max
i

max
j

∣

∣

∣
ℜ

(

λij − λij
ref

)∣

∣

∣
(12)

where λij and λij
ref denote the jth eigenvalue of the LFR in the ith grid point and of the ith

component model respectively. It is also possible to associate a modeling error to each eigenvalue:
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∣
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Remark 9.1 Interpolation is usually performed so that the modeling error remains low on the grid,
which can lead to an optimistic value of ǫ. A more realistic approach consists first in generating
a low-order LFR using a coarse grid and then in computing the modeling error on a denser grid
with Ñ ≫ N points. Unfortunately, this strategy cannot be applied in the context of the COFCLUO
project, since only a very coarse grid is available [9].

9.2 Integration of the modeling error into the bounds of the criteria

The most convenient way to take into account the modeling error during the analysis process is
to incorporate it directly into the bounds of the criteria. More precisely, the idea is to investigate
stability with respect to the boundary a truncated sector instead of the imaginary axis:

• If a single modeling error ǫ is computed, the sector reduces to a vertical line, as shown in
figure 10.

• Otherwise, an exclusion region is defined for each eigenvalue, as depicted in figure 11, where:

mj = min
i

|ℑ (λij)| and Mj = max
i

|ℑ (λij)| (14)

The sector is then defined so as to leave all exclusion regions to its right.

Note that stability can be easily investigated with respect to the boundary of a truncated sector
using the clearance tool described in [16].

9.3 Description of the proposed clearance process

In the light of the previous comments, the modeling methodology proposed in [13, 14] and the
analysis tools introduced in [16,18] can now be integrated into a whole clearance process, which is
likely to be implemented in an industrial context. It is assumed that a set of N open-loop reference
models [12], as well as a reference controller and actuators/sensors models [11] are available.
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Figure 10: Analysis with respect to a vertical line
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Figure 11: Analysis with respect to the boundary of a truncated sector

Procedure 9.1

1. Apply the modeling technique described in chapter 4 of [14] to convert the reference controller,
as well as the actuators and the sensors models, into LFRs.

2. Apply the modeling technique described in chapter 3 of [14] to create a low-order open-loop
LFR from the reference set of N component models corresponding to different flight conditions
and mass configurations.

3. Create a closed-loop LFR and compute the modeling error on a fine grid composed of Ñ ≫ N
points, as explained in section 9.1.
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4. Incorporate the modeling error into the bounds of the clearance criteria of interest, as described
in section 9.2. Evaluate the criteria using the analysis tools introduced in [16, 18]. If the
modeling error is too high and results are conservative, increase N and go back to step 2. If
some critical regions of the parametric domain cannot be cleared, go to step 5 to modify the
reference controller. Otherwise, stop.

5. Modify an elementary gain K(p) of the controller, where p denotes the parameters vector. Let
the new gain be written as K̃(p) = K(p) + ∆K(p). Perform a simple interpolation, so as to
convert ∆K(p) into an LFR. Incorporate this elementary LFR into the one of the controller
and go back to step 3.

Remark 9.2 Increasing N at step 4 of the aforementioned procedure allows to reduce the modeling
error, but is likely to increase the size of the LFR due to higher interpolation orders.

Remark 9.3 If the additional term ∆K(p) remains low compared to K(p), it can be assumed that
the modeling error is not modified by the change in the reference controller. A new validation of
the closed-loop LFR can thus be avoided, or at least alleviated.

9.4 Determination of the most critical parametric combinations

The clearance tool described in [16] can be used to evaluate not only the stability but also the
performance properties of a closed-loop system. The idea is to investigate stability with respect
to a truncated sector instead of the imaginary axis. Such an extension may not be necessary for
certification but it can help the control engineers to identify easily the most critical configurations
for which performance degradations or even loss of stability are most likely to occur if additional
uncertainties or unmodeled dynamics are considered. It also allows to take into account the model-
ing error resulting from the use of simplified LFRs instead of full-order reference models to perform
analysis, as explained in section 9.2. Some results are shown in figure 12 for a closed-loop LFR
with two parameters (Mach number M and calibrated airspeed Vcas) and for a set of sectors char-
acterized by a relative stability degree α = −0.168k and a damping factor ξ = 0.0168k, where
k can take several values between 0 and 1 (see [16] for more details). Each of the subdomains,
on which stability can be guaranteed, is represented by a yellow rectangle. The stability domain
obtained using a standard grid-based approach is also plotted for the sake of comparison (stable
and unstable configurations are represented by green dots and red x-marks respectively).
For example, it can be observed that the configuration (M = −1, Vcas = −1) cannot be cleared
for k ≥ 0.6. It is thus more critical than (M = 1, Vcas = 1), which is in turn more critical than
(M = −1, Vcas = 1). The size of the stability subdomains also provides a confidence level: the
larger a stability subdomain, the higher the guarantee that the real system is actually stable.

9.5 Towards a generalized use of LFRs

At first, the proposed analysis tools can be seen as indicators, which allow to determine quickly
the most critical parametric configurations in terms of system stability or performance. In the
light of the obtained results, it is then possible to concentrate Monte Carlo simulations on reduced
parametric domains, thus decreasing the computational cost. In this perspective, the number of
points Ñ used to validate the closed-loop LFR in step 3 of procedure 9.1 must satisfy Ñ > N , but
not necessarily Ñ ≫ N .
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Figure 12: Guaranteed stability domain with respect to the boundary of a truncated sector

Subsequently, it can be considered to use the proposed analysis tools as real validation means,
thus allowing to get rid of Monte Carlo simulations to compute guaranteed stability domains.
Nevertheless, a thorough validation of the closed-loop LFR becomes necessary to quantify the
modeling error as rigorously as possible. Such a validation can be achieved using Monte Carlo
simulations, which requires to generate a set of Ñ ≫ N models and is thus more computationally
involving than before. However, it is worth being emphasized that these simulations only need to
be achieved once for the reference controller, but not each time an elementary gain is modified (see
remark 9.3). Moreover, several criteria can be evaluated without resorting to any additional Monte
Carlo simulations (eigenvalue and stability margin criteria as detained in [16], but also comfort and
turbulence loads criteria, provided that the proposed clearance tool is slightly adapted to allow the
resolution of skew-µ problems).

The numerous results presented in [16] have demonstrated the benefits of achieving part of the
flight control laws clearance using analysis tools based on µ-analysis. Nevertheless, a delicate issue
remains in the methodology proposed by ONERA, which deals with the conversion of the open-
loop reference models into a suitable LFR. An efficient but quite complicated technique has been
introduced in [14], so as to deal with models, whose state vector strongly varies from one parametric
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configuration to another. But this modeling task usually requires manual intercession. A major
improvement would be to adapt the method for creating the reference models, so as to make them
more coherent. Indeed, it would be very beneficial if their state vector could be the same for all
component models, or at least be perfectly known for all considered parametric configurations,
which is far from being the case at the moment. Such an improvement would pave the way for a
fully automated modeling and clearance tool.

10 Conclusion and future prospects

The current industrial approach to clearance of flight control laws consists in gridding the parametric
domain and checking a set of criteria at each point of the grid. The main drawback of this strategy
is that clearance is restricted only to the considered grid points and nothing can be assessed for
the remaining points in the parametric domain. Moreover, significant time and money is frequently
spent on this task, due to the intensive resort to Monte Carlo simulations.

An efficient strategy has been proposed by ONERA in the context of the COFCLUO project
to overcome these limitations. More precisely, the LFR modeling methodology proposed in [13,14]
is combined with the µ-analysis technique introduced in [16, 18] to develop a whole modeling and
optimization tool dedicated to the clearance of stability and performance criteria, which is able to
meet the industrial needs specified in [25].

It would now be instructive to compare this new approach with a more classical method based
on Monte Carlo simulations, which could not be achieved during the project, since no tools were
available to build an open-loop reference model in any point of the parametric domain. Finally,
it is worth being emphasized that integrating clearance tools based on µ-analysis in an industrial
context seems very promising, as demonstrated in [16]. Nevertheless, it cannot reasonably be
achieved without reconsidering the whole modeling strategy, so as to integrate LFRs from the very
beginning of the process. Such an improvement falls within the competence of Airbus engineers.
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[14] C. Roos, C. Döll, S. Hecker, and A. Varga, “COFCLUO deliverable D1.4.7: Preliminary LFT
models for nonlinear behaviour and complete model of aircraft linear dynamics,” tech. rep.,
ONERA - France, DLR - Germany, December 2008.

[15] S. Hecker, “Corrected LFT models for the longitudinal COFCLUO nonlinear A/C model - (in
addition to D1.4.7),” tech. rep., DLR - Germany, May 2009.

39



[16] A. Masi, E. Turkoglu, D. Benedettelli, S. Paoletti, A. Garulli, C. Roos, and J.-M. Biannic,
“COFCLUO deliverable D2.3.4 - Final sofware developed,” tech. rep., University of Siena -
Italy, ONERA - France, January 2010.

[17] V. M. Popov, “Absolute stability of nonlinear systems of automatic control,” Automation and
Remote Control, vol. 22, pp. 857–875, 1962.

[18] A. Garulli, A. Masi, S. Paoletti, E. Turkoglu, J.-M. Biannic, and C. Roos, “COFCLUO deliv-
erable D2.3.3 - New optimisation techniques developed,” tech. rep., University of Siena - Italy,
2009.

[19] J.-F. Magni, “Linear Fractional Representation Toolbox (version 2.0) for use with Matlab,”
tech. rep., 2006. http://www.cert.fr/dcsd/idco/perso/Magni/.
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