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Research topics

The research activities of the Systems and Control group mainly 
concern the development of methodologies and applications on:

⋄ Modeling, identification and control
⋄ Robotics and Mechatronics
⋄ Wearable Robotics and Healthcare 
⋄ Smart Grids
⋄ Complex Systems
⋄ Multi-Agent Systems
⋄ Aerospace Control

Topics in this presentation (for the others: http://control.diism.unisi.it)

http://control.diism.unisi.it/


Modeling, identification and control
• Set-membership system

identification and estimation
techniques

• Robust control of uncertain
systems

• Convex optimization for analysis
and control of nonlinear systems

• Identification of piecewise affine 
models for nonlinear systems
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Figure 1. The available regression vectors and the partition of the regressor set (which is not assumed to
be known during the identification process) for Example 2.1

3 Initialization using MIN PFS

In the first part of the proposed procedure for solving Problem 2.1, the estimation of the hyperplanes

defining the polyhedral partition of the regressor set is temporarily not addressed. The focus is rather

on determining a suitable number of submodels, classifying the data points and estimating the affine

submodels. By relaxing the estimation of the regions, Problem 2.1 reduces to the following:

Problem 3.1 Given δ > 0 and the system of N linear complementary inequalities
��yk�ϕ 0

kθ
�� δ , k = 1, . . . ,N (9)

find a partition of (9) into a minimum number of feasible subsystems.

The above formulation enables to address simultaneously the fundamental issues of data classification

and parameter estimation, along with the estimation of the number of submodels. Given any solution

of Problem 3.1, the partition of the linear complementary inequalities (9) provides the classification of

the data points, whereas according to the bounded error condition each feasible subsystem defines the

set of feasible parameter vectors for the corresponding affine submodel. Note that each inequality (9) is

termed a linear complementary inequality because it corresponds to the pair of linear inequalities:
(

ϕ 0
kθ  yk +δ

ϕ 0
kθ � yk�δ

(10)

Problem 3.1 consists in finding a Partition of a system of linear inequalities into a Minimum number of

Feasible Subsystems (MIN PFS problem), with the additional constraint that two paired linear inequal-

ities (10) must be included in the same subsystem (i.e., they must be simultaneously satisfied by the
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System Identification or Machine Learning?

• Machine learning has 
received great impulse by 
increased computational 
power (“deep learning”)

• Neural networks have 
been intensively used for 
identification of 
nonlinear systems

• Is SysId just ML?
What can we gain by 
using ML tools in SysId?



Reinforcement Learning Control

Use machine learning 
to train feedback 
control laws

Controller: map from 
measures to input 
(ex.: neural net)

No need for explicit 
model (just 
simulations!)



Multi-agent Systems

• Simultaneous localization and map-building
• Collective motion of multi-agent systems
• Pursuit-evasion games
• Opinion dynamics and consensus
• Distributed estimation and optimization



A new experimental testbed for teams of 
heterogeneous robots

More info at:
http://control.dii.unisi.it/MAS/

http://control.dii.unisi.it/MAS/


Aerospace Control
• Attitude and orbit control
• Autonomous navigation
• Space simulation



Guidance, navigation and control systems

Navigation filter à state estimation
Guidance algorithms à trajectory planning
Control algorithms à reference tracking



Mission analysis and design

Spacecraft

Holding PointTarget Debris

Example Trajectory

Figure 2. Illustration of the state constraint (27), where the forbidden zone is greyed out.

debris, see, e.g., Fig. 2. Notice that δθ = y1, since the spacecraft and the debris orbits are coplanar

during rendezvous, and

δr = a∗
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where we used (9), the orbit radius equation, and the fact that, for circular reference orbits, y3 =

e cos(ψ), y4 = e sin(ψ). Linearizing (28) about y = 0, we are able to approximate (27) as

c1 y1 −
2c2
3
y2 − c2 y3 ≤ d. (29)

According to the above linearization procedure, the constraint (29) is activated only when the

spacecraft gets close to the debris. In the phasing stage, (29) is employed to guarantee that the

spacecraft safely reaches the holding point, i.e., that the resulting path is collision-free, see Fig. 2.

In the terminal rendezvous stage, (29) is enforced to make the spacecraft follow a predefined glide

slope towards the target, so as to ensure that the target remains within the field of view of the

navigation instruments installed on-board the spacecraft [32], see Fig. 8 in Section VI.

The rendezvous control problem consists of finding a state feedback control law v = v(y),

guaranteeing that

lim
λ→∞

y(λ) = 0, (30)

while satisfying (26) and (29). The control system must provide a compromise between fuel con-

sumption and state regulation performance. On a given λ-intervalΛ, the fuel consumption resulting

16 of 32

American Institute of Aeronautics and Astronautics

-6

-5

-4

-3

-2

-1

0

1

2

3

4

X
(k
m
)

×10
4

-4 -2 0 2 4

Y (km)
×10

4

Figure 4. Planar projection of the fuel-optimal GTO-GEO transfer trajectory: thrust phases are colored red,
eclipse phases are colored gray, and optimal coast phases are colored blue.

mesh equal to 126132. The solution for ε = 5 · 10−7 features a fuel consumption of 159.24 kg and

takes a CPU time of 94.6 min. The number of mesh iterations and of NLP variables in the final

mesh amount respectively to 11 and 180444. It can be seen that the optimal cost is approximately

the same for the two solutions, and that the computational load scales reasonably well with the

mesh accuracy. From a qualitative point of view, a lower mesh error tolerance results in a more

accurate localization of the coast arcs. The trajectory obtained for ε = 5 · 10−7, reported in Fig. 4,

covers 165 orbital revolutions and cumulates 420 on-off throttle command transitions. A detail of

the throttle control input profile is shown in Fig. 5.

The mixed time/fuel-optimal problem has been investigated by solving (26)-(27) with α = 0.5.

In this case, the TOF is not assigned and the optimizer has to search for a pareto-optimal solution.

The resulting performance figure is: TOF of 122.6 days, fuel consumption of 162.4 kg and CPU
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• Optimal orbit transfer
• Rendezvous and docking
• Debris removal

More info at:
http://control.dii.unisi.it/Aerospace/

http://control.dii.unisi.it/Aerospace/


Other material at:
http://control.diism.unisi.it

Send your questions to:
andrea.garulli@unisi.it

http://control.diism.unisi.it/
mailto:andrea.garulli@unisi.it

