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Random Variables

Let X be a scalar random variable (rv)

X : Ω → R

defined over the set of elementary events Ω.

The notation

X ∼ FX(x), fX(x)

denotes that:

• FX(x) is the cumulative distribution function (cdf) of X

FX(x) = P {X ≤ x} , ∀x ∈ R

• fX(x) is the probability density function (pdf) of X

FX(x) =

∫ x

−∞

fX(σ) dσ, ∀x ∈ R
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Multivariate distributions

Let X = (X1, . . . , Xn) be a vector of rvs

X : Ω → R
n

defined over Ω.

The notation

X ∼ FX(x), fX(x)

denotes that:

• FX(x) is the joint cumulative distribution function (cdf) of X

FX(x) = P {X1 ≤ x1, . . . , Xn ≤ xn} , ∀x = (x1, . . . , xn) ∈ R
n

• fX(x) is the joint probability density function (pdf) of X

FX(x) =

∫ x1

−∞

. . .

∫ xn

−∞

fX(σ1, . . . , σn) dσ1 . . . dσn, ∀x ∈ R
n
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Moments of a rv

• First order moment (mean)

mX = E[X] =

∫ +∞

−∞

x fX(x) dx

• Second order moment (variance)

σ
2
X = Var(X) = E

[

(X −mX)2
]

=

∫ +∞

−∞

(x−mX)2 fX(x) dx

Example The normal or Gaussian pdf, denoted by N(m,σ2), is defined as

fX(x) =
1√
2πσ

e
−
(x−m)2

2σ2 .

It turns out that E[X] = m and Var(X) = σ2.
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Conditional distribution

Bayes formula

fX|Y (x|y) = fX,Y (x, y)

fY (y)

One has:

⇒ fX(x) =

∫ +∞

−∞

fX|Y (x|y) fY (y) dy

⇒ If X and Y are independent: fX|Y (x|y) = fX(x)

Definitions:

• conditional mean: E[X|Y ] =

∫ +∞

−∞

x fX|Y (x|y) dx

• conditional variance: PX|Y =

∫ +∞

−∞

(x− E[X|Y ])2 fX|Y (x|y) dx
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Gaussian conditional distribution

Let X and Y Gaussian rvs such that:

E[X] = mX E[Y ] = mY

E









X −mX

Y −mY









X −mX

Y −mY





′

 =





RX RXY

R
′
XY RY





It turns out that:

E[X |Y ] = mX +RXY R
−1
Y (Y −mY )

PX|Y = RX −RXY R
−1
Y R′

XY
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Estimation problems

Problem. Estimate the value of θ ∈ R
p, using an observation y of the rv

Y ∈ R
n.

Two different settings:

a. Parametric estimation

The pdf of Y depends on the unknown parameter θ

b. Bayesian estimation

The unknown θ is a random variable
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Parametric estimation problem

• The cdf and pdf of Y depend on the unknown parameter vector θ,

Y ∼ F
θ
Y (x), fθ

Y (x)

• Θ ⊆ R
p denotes the parameter space, i.e., the set of values which θ can

take

• Y ⊆ R
n denotes the observation space, to which belongs the rv Y
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Parametric estimator

The parametric estimation problem consists in finding θ on the basis of an

observation y of the rv Y .

Definition 1 An estimator of the parameter θ is a function

T : Y −→ Θ

Given the estimator T (·), if one observes, y, then the estimate of θ is

θ̂ = T (y).

There are infinite possible estimators (all the functions of y!). Therefore, it

is crucial to establish a criterion to assess the quality of an estimator.
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Unbiased estimator

Definition 2 An estimator T (·) of the parameter θ is unbiased (or

correct) if Eθ[T (·)] = θ, ∀θ ∈ Θ.

θ

unbiased
biased

Pdf of two estimators T (·)
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Examples

• Let Y1, . . . , Yn be identically distributed rvs, with mean m.

The sample mean

Ȳ =
1

n

n
∑

i=1

Yi

is an unbiased estimator of m. Indeed,

E
[

Ȳ
]

=
1

n

n
∑

i=1

E[Yi] = m

• Let Y1, . . . , Yn be independent identically distributed (i.i.d.) rvs, with

variance σ2.

The sample variance

S
2 =

1

n− 1

n
∑

i=1

(Yi − Ȳ )2

is an unbiased estimator of σ2.
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Consistent estimator

Definition 3 Let {Yi}∞i=1 be a sequence of rvs. The sequence of estimators

Tn=Tn(Y1, . . . , Yn) is said to be consistent if Tn converges to θ in

probability for all θ ∈ Θ, i.e.

lim
n→∞

P {‖Tn − θ‖ > ε} = 0 , ∀ε > 0 , ∀θ ∈ Θ

θ

n = 20

n = 50

n = 100

n = 500

A sequence of consistent estimators Tn(·)
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Example

Let Y1, . . . , Yn be independent rvs with mean m and finite variance. The

sample mean

Ȳ =
1

n

n
∑

i=1

Yi

is a consistent estimator of m, thanks to the next result.

Theorem 1 (Law of large numbers)

Let {Yi}∞i=1 be a sequence of independent rvs with mean m and finite

variance. Then, the sample mean Ȳ converges to m in probability.
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A suffcient condition for consistency

Theorem 2 Let θ̂n = Tn(y) be a sequence of unbiased estimators of θ ∈ R,

based on the realization y ∈ R
n of the n-dimensional rv Y , i.e.:

E
θ[Tn(y)] = θ, ∀n, ∀θ ∈ Θ.

If

lim
n→+∞

E
θ
[

(Tn(y)− θ)2
]

= 0,

then, the sequence of estimators Tn(·) is consistent.

Example. Let Y1, . . . , Yn be independent rvs with mean m and variance

σ2. We know that the sample mean Ȳ is an unbiased estimate of m.

Moreover, it turns out that

Var(Ȳ ) =
σ2

n

Therefore, the sample mean is a consistent estimator of the mean.
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Mean square error

Consider an estimator T (·) of the scalar parameter θ.

Definition 4 We define mean square error (MSE) of T (·),

E
θ
[

(T (Y )− θ)2
]

If the estimator T (·) is unbiased, the mean square error corresponds to the

variance of the estimation error T (Y )− θ.

Definition 5 Given two estimators T1(·) and T2(·) of θ, T1(·) is better

than T2(·) if

E
θ
[

(T1(Y )− θ)2
]

≤ E
θ
[

(T2(Y )− θ)2
]

, ∀θ ∈ Θ

If we restrict our attention to unbiased estimators, we are interested to the

one with the least MSE for any value of θ (notice that it may not exist).
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Minimum variance unbiased estimator

Definition 6 An unbiased estimator T ∗(·) of θ is UMVUE (Uniformly

Minimum Variance Unbiased Estimator) if

E
θ
[

(T ∗(Y )− θ)
2
]

≤ E
θ
[

(T (Y )− θ)2
]

, ∀θ ∈ Θ

for any unbiased estimator T (·) of θ.

θ

UMVUE
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Minimum variance linear estimator

Let us restrict our attention to the class of linear estimators

T (x) =
n
∑

i=1

aixi , ai ∈ R

Definition 7 A linear unbiased estimator T ∗(·) of the scalar parameter θ

is said to be BLUE (Best Linear Unbiased Estimator) if

E
θ
[

(T ∗(Y )− θ)
2
]

≤ E
θ
[

(T (Y )− θ)2
]

, ∀θ ∈ Θ

for any linear unbiased estimator T (·) di θ.

Example Let Yi be independent rvs with mean m and variance σ2
i ,

i = 1, . . . , n.

Ŷ =
1

n
∑

i=1

1

σ2
i

n
∑

i=1

1

σ2
i

Yi

is the BLUE estimator of m.
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Cramer-Rao bound

The Cramer-Rao bound is a lower bound to the variance of any unbiased

estimator of the parameter θ.

Theorem 3 Let T (·) be an unbiased estimator of the scalar parameter θ,

and let the observation space Y be independent on θ. Then (under some

technical assumptions),

E
θ
[

(T (Y )− θ)2
]

≥ [In(θ)]
−1

where In(θ)=Eθ

[

(

∂ ln fθ
Y (Y )

∂θ

)2
]

(Fisher information).

Remark To compute In(θ) one must know the actual value of θ; therefore,

the Cramer-Rao bound is usually unknown in practice.
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Cramer-Rao bound

For a parameter vector θ and any unbiased estimator T (·), one has

E
θ
[

(T (Y )− θ) (T (Y )− θ)′
]

≥ [In(θ)]
−1 (1)

where

In(θ) = E
θ

[

(

∂ ln fθ
Y (Y )

∂θ

)′ (
∂ ln fθ

Y (Y )

∂θ

)

]

is the Fisher information matrix.

The inequality in (??) is in matricial sense (A ≥ B means that A− B is

positive semidefinite).

Definition 8 An unbiased estimator T (·) such that equality holds in (??)

is said to be efficient.
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Cramer-Rao bound

If the rvs Y1, . . . , Yn are i.i.d., it turns out that

In(θ) = nI1(θ)

Hence, for fixed θ the Cramer-Rao bound decreases as
1

n
with the size n of

the data sample.

Example Let Y1, . . . , Yn be i.i.d. rvs with mean m and variance σ2. Then

E
[

(

Ȳ −m
)2
]

=
σ2

n
≥ [In(θ)]

−1 =
[I1(θ)]

−1

n

where Ȳ denotes the sample mean. Moreover, if the rvs Y1, . . . , Yn are

normally distributed, one has also I1(θ)=
1

σ2
.

Since the Cramer-Rao bound is achieved, in the case of normal i.i.d rvs,

the sample mean is an efficient estimator of the mean.
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Maximum likelihood estimators

Consider a rv Y∼fθ
Y (y), and let y be an observation of Y . We define

likelihood function, the function of θ (for fixed y)

L(θ|y) = f
θ
Y (y)

We choose as estimate of θ the value of the parameter which maximises the

likelihood of the observed event (this value depends on y!).

Definition 9 A maximum likelihood estimator of the parameter θ is the

estimator

TML(x) = argmax
θ∈Θ

L(θ|x)

Remark The functions L(θ|x) and lnL(θ|x) achieve their maximum values

for the same θ. In some cases is easier to find the maximum of lnL(θ|x)
(exponential distributions).
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Properties of the maximum likelihood estimators

Theorem 4 Under the assumptions for the existence of the Cramer-Rao

bound, if there exists an efficient estimator T ∗(·), then it is a maximum

likelihood estimator TML(·).

Example Let Yi∼N(m,σ2
i ) be independent, with known σ2

i , i = 1, . . . , n.

The estimator

Ŷ =
1

n
∑

i=1

1

σ2
i

n
∑

i=1

1

σ2
i

Yi

of m is unbiased and such that Var(Ŷ ) =
1

n
∑

i=1

1

σ2
i

, while In(m) =

n
∑

i=1

1

σ2
i

.

Hence, Ŷ is efficient, end therefore it s a maximum likelihood estimator of

m.
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The maximum likelihood estimator has several nice asymptotic

properties.

Theorem 5 If the rvs Y1, . . . , Yn are i.i.d., then (under suitable

technical assumptions)

lim
n→+∞

√

In(θ) (TML(Y )− θ)

is a random variable with standard normal distribution N(0,1).

Theorem ?? states that the maximum likelihood estimator

• asymptotically unbiased

• consistent

• asymptotically efficient

• asymptotically normal
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Example Let Y1, . . . , Yn be normal rvs with mean m and variance σ2. The

sample mean

Ȳ =
1

n

n
∑

i=1

Yi

is a maximum likelihood estimator of m.

Moreover,
√

In(m)(Ȳ −m) ∼ N(0, 1), being In(m)=
n

σ2
.

Remark The maximum likelihood estimator may be biased. Let Y1, . . . , Yn

be independent normal rvs with variance σ2. The maximum likelihood

estimator of σ2 is

Ŝ
2 =

1

n

n
∑

i=1

(Yi − Ȳ )2

which is biased, being E[Ŝ2] =
n− 1

n
σ2.
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Confidence intervals

In many estimation problems, it is important to establish a set to which

the parameter to be estimated belongs with a known probability.

Definition 10 A confidence interval with confidence level 1− α,

0 < α < 1, for the scalar parameter θ is a function that maps any

observation y ∈ Y into an interval B(y) ⊆ Θ such that

P
θ {θ ∈ B(y)} ≥ 1− α , ∀θ ∈ Θ

Hence, a confidence interval of level 1− α for θ is a subset of Θ such that,

if we observe y, then θ ∈ B(y) with probability at least 1− α, whatever is

the true value θ ∈ Θ.
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Example Let Y1, . . . , Yn be normal rvs with unknown mean m and known

variance σ2. Then,

√
n

σ
(Ȳ −m) ∼ N(0, 1), where Ȳ is the sample mean.

Let yα be such that

∫ yα

−yα

1√
2π

e
−y2

dy = 1− α. Being,

1− α = P

{∣

∣

∣

∣

√
n

σ
(Ȳ −m)

∣

∣

∣

∣

≤ yα

}

= P

{

Ȳ − σ√
n
yα ≤ m ≤ Ȳ +

σ√
n
yα

}

one has that
[

Ȳ − σ√
n
yα , Ȳ +

σ√
n
yα

]

is a confidence interval of level 1 − α

for m.

0
0

0.2 

0.4

−xα xα

area=1−α
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Nonlinear ML estimation problems

Let Y ∈ R
n be a vector of rvs such that

Y = U(θ) + ε

where

- θ ∈ R
p is the unknown parameter vector

- U(·) : Rp → R
n is a known function

- ε ∈ R
n is a vector of rvs, for which we assume

ε ∼ N (0,Σε)

Problem: find a maximum likelihood estimator of θ

θ̂ML = TML(Y )
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Least squares estimate

The pdf of the data Y is

fY (y) = fε(y − U(θ)) = L(θ|y)

Therefore,

θ̂ML = arg max
θ

lnL(θ|y)

= arg min
θ

(y − U(θ))′Σ−1
ε (y − U(θ))

If the covariance matrix Σε is known, we obtain the weighted least squares

estimate.

If U(θ) is a generic nonlinear function, the solution must be computed

numerically MATLAB Optimization Toolbox → >> help optim

This problem can be computationally intractable!
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Linear estimation problems

If the function U(·) is linear, i.e., U(θ) = Uθ with U ∈ R
n×p known matrix,

one has

Y = Uθ + ε

and the maximum likelihood estimator is the so-called Gauss-Markov

estimator

θ̂ML = θ̂GM = (U ′Σ−1
ε U)−1

U
′Σ−1

ε y

In the special case ε ∼ N (0, σ2I) (the rvs εi are independent!), one has the

celebrated least squares estimator

θ̂LS = (U ′
U)−1

U
′
y
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A special case: biased measurement error

How to treat the case in which E[εi] = mǫ 6= 0, ∀i = 1, . . . , n?

1) If mǫ is known, just use the “unbiased” measurements Y −mε1:

θ̂ML = θ̂GM = (U ′Σ−1
ε U)−1

U
′Σ−1

ε (y −mǫ1)

where 1 = [1 1 . . . 1]′.

2) If mε is unknown, estimate it!

Let θ̄ = [θ′ mε]
′ ∈ R

p+1 and then

Y = [U 1]θ̄ + ε

Then, apply the Gauss-Markov estimator with Ū = [U 1] to obtain an

estimate of θ̄ (simultaneous estimate of θ and mε).

Clearly, the variance of the estimation error of θ will be higher wrt case 1)
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Gauss-Markov estimator

The estimates θ̂GM and θ̂LS are widely used in practice, also if some of the

assumptions on ε do not hold or cannot be validated. In particular, the

following result holds.

Theorem 6 Let Y = Uθ + ε with ε a vector of random variables with zero

mean and covariance matrix Σ. Then, the Gauss-Markov estimator is the

BLUE estimator of the parameter θ,

θ̂BLUE = θ̂GM

and the corresponding covariance of the estimation error is equal to

E
[(

θ̂GM − θ
)(

θ̂GM − θ
)′]

=
(

U
′Σ−1

U
)−1

.
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Examples of least squares estimate

Example 1.

Yi = θ + εi, i = 1, . . . , n

εi independent rvs with zero mean and variance σ2

⇒ E[Yi] = θ

We want to estimate θ using observations of Yi, i = 1, . . . , n

One has Y = Uθ + ε with U = (1 1 . . . 1)′ and

θ̂LS = (U ′
U)−1

U
′
y =

1

n

n
∑

i=1

yi

The least squares estimator is equal to the sample mean (and it is also the

maximum likelihood estimate if the rvs εi are normal).
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Example 2.

Same setting of Example 1, with E[ε2i ] = σ2
i , i = 1, . . . , n

In this case, E[εε′] = Σε =

















σ2

1
0 . . . 0

0 σ2

2
. . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . σ2

n

















⇒ The least squares estimator is still the sample mean

⇒ The Gauss-Markov estimator is

θ̂GM = (U ′Σ−1
ε U)−1

U
′Σ−1

ε y =
1

n
∑

i=1

1

σ2
i

n
∑

i=1

1

σ2
i

yi

and is equal to the maximum likelihood estimate if the rvs εi are normal.
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Summary of GM and LS estimator properties

Assumption on ε GM estimator LS estimator

none argminθ(y − Uθ)TΣ−1
ε (y − Uθ) argminθ ||y − Uθ||2

with given weight matrix Σε

E [ε] known unbiased unbiased

E [ε] = mε BLUE estimator BLUE estimator

Var{ε} = Σε if Σε = σ2
εIn

ε ∼ N(mε,Σε) ML estimator ML estimator

efficient, UMVUE if Σε = σ2
εIn
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Bayesian estimation

Estimate an unknown rv X, using observations of the rv Y

Key tool: joint pdf fX,Y (x, y)

⇒ least mean square error estimator

⇒ optimal linear estimator
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Bayesian estimation: problem formulation

Problem:

Given observations y of the rv Y ∈ R
n, find an estimator of the rv X based

on the data y.

Solution: an estimator X̂ = T (Y ), where T (·) : Rn → R
p

To assess the quality of the estimator we must define a suitable criterion:

in general, we consider the risk function

Jr = E[d(X,T (Y ))] =

∫ ∫

d(x, T (y)) fX,Y (x, y) dx dy

and we minimize Jr with respect to all possible estimators T (·)
d(X,T (Y )) → “distance” between the unknown X and its estimate T (Y )
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Least mean square error estimator

Let d(X,T (Y )) = ‖X − T (Y )‖2.
One gets the least mean square error (MSE) estimator

X̂MSE = T
∗(Y )

where

T
∗(·) = arg min

T (·)
E[‖X − T (Y )‖2]

Theorem

X̂MSE = E[X|Y ] .

The conditional mean of X given Y is the least MSE estimate of X based

on the observation of Y

Let Q(X,T (Y )) = E[(X − T (Y ))(X − T (Y ))′]. Then:

Q(X, X̂MSE) ≤ Q(X,T (Y )), for any T (Y ).
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Optimal linear estimator

The least MSE estimator needs the knowledge of the conditional

distribution of X given Y

→ Simpler estimators

Linear estimators:

T (Y ) = AY + b

A ∈ R
p×n, b ∈ R

p×1: estimator coefficients (to be determined)

The Linear Mean Square Error (LMSE) estimate is given by

X̂LMSE = A
∗
Y + b

∗

where

A
∗
, b

∗ = arg min
A,b

E[‖X −AY − b‖2]
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LMSE estimator

Theorem

Let X and Y be rvs such that:

E[X] = mX E[Y ] = mY

E









X −mX

Y −mY









X −mX

Y −mY





′

 =





RX RXY

R
′
XY RY





Then

X̂LMSE = mX + RXY R
−1
Y (Y −mY )

i.e,

A
∗ = RXY R

−1
Y , b

∗ = mX −RXY R
−1
Y mY

Moreover,

E[(X − X̂LMSE)(X − X̂LMSE)
′] = RX −RXY R

−1
Y R

′
XY
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Properties of the LMSE estimator

• The LMSE estimator does not require knowledge of the joint pdf of X

e Y , but only of the covariance matrices RXY , RY (second order

statistics)

• The LMSE estimate satisfies

E[(X − X̂LMSE)Y
′] = E[{X −mX −RXY R−1

Y (Y −mY )}Y ′]

= RXY −RXY R−1
Y RY = 0

⇒ The optimal linear estimator is uncorrelated with data Y

• If X and Y are jointly Gaussian

E[X|Y ] = mX +RXY R
−1
Y (Y −mY )

hence
X̂LMSE = X̂MSE

⇒ In the Gaussian setting, the MSE estimate is a linear function of the

observed variables Y , and therefore is equal to the LMSE estimate
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Sample mean and covariances

In many estimation problems, 1st and 2nd order moments are not known

What if only a set of data xi, yi, i = 1, . . . , N , is available? Use the sample

means and sample covariances as estimates of the moments

• Sample means

m̂
N
X =

1

N

N
∑

i=1

xi m̂
N
Y =

1

N

N
∑

i=1

yi

• Sample covariances

R̂N
X =

1

N − 1

N
∑

i=1

(xi − m̂
N
X)(xi − m̂

N
X)′

R̂N
Y =

1

N − 1

N
∑

i=1

(yi − m̂
N
Y )(yi − m̂

N
y )′

R̂N
XY =

1

N − 1

N
∑

i=1

(xi − m̂
N
X)(yi − m̂

N
y )′
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Example of LMSE estimation (1/2)

Yi, i = 1, . . . , n, rvs such that

Yi = uiX + εi

where

- X rv with mean mX and variance σX
2;

- ui known coefficients;

- εi independent rvs wih zero mean and variance σ2
i .

One has

Y = UX + ε

where U = (u1 u2 . . . un)
′ and E[εε′] = Σε = diag{σ2

i }.

We want to compute the LMSE estimate

X̂LMSE = mX + RXY R
−1
Y (Y −mY )
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Example of LMSE estimation (2/2)

- mY = E[Y ] = UmX

- RXY = E[(X −mX)(Y − UmX)′] = σX
2U ′

- RY = E[(Y − UmX)(Y − UmX)′] = UσX
2U ′ +Σε

Being
(

UσX
2
U ′ +Σε

)−1
= Σ−1

ε − Σ−1
ε U

(

U ′Σ−1
ε U +

1

σX
2

)−1

U ′Σ−1
ε , one gets

X̂LMSE =

U ′Σ−1
ε Y +

1

σX
2mX

U ′Σ−1
ε U +

1

σX
2

Special case: U = (1 1 . . . 1)′ (i.e., Yi = X + εi)

X̂LMSE =

n
∑

i=1

1

σ2
i

Yi +
1

σX
2mX

n
∑

i=1

1

σ2
i

+
1

σX
2

Remark: the a priori info on X is treated as additional data.
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Example of Bayesian estimation (1/2)

Let X and Y be two rvs whose joint pdf is

fX,Y (x, y) =







−3

2
x2 + 2xy 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

0 else

We want to find the estimates X̂MSE and X̂LMSE of X, based on one

observation of the rv Y .

Solutions:

• X̂MSE =

2

3
y − 3

8

y − 1

2

• X̂LMSE =
1

22
y +

73

132

See MATLAB file: Es bayes.m
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Example of Bayesian estimation (2/2)
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2
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Joint pdf

f
X

,
Y
(x

,
y
)
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Joint pdf fX,Y (x, y) X̂MSE(y) (red)

X̂LMSE(y) (green)

E[X] (blue)
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