
Chapter 2

Time series analysis and

prediction

This chapter introduces the main concepts and tools for the analysis and

prediction of time series, modeled as stationary stochastic processes.

2.1 Stochastic processes: definitions and prop-

erties

Definition 2.1. A stochastic process (herafter, often abbreviated as s.p.)

is a sequence of random variables x(t), with t ∈ T , where T represents

the time domain. If T is a countable set {t1, t2, . . . , tk, . . . }, we refer to

x(t) as a discrete-time stochastic process. Otherwise, if T = R+, x(t) is a

continuous-time stochastic process. In the following, we will mainly consider

discrete-time stochastic processes.

By recalling the definition of random variable, a stochastic process can

be seen as a function x(t, ω) which associates to each pair (t, ω) ∈ T × Ω a

real number x(t) 1:

x : T × Ω → R,

1For ease of notation, hereafter the dependence of x on the event ω will be omitted.
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where T is the time domain and Ω is the space of events.

When the time instant t̄ ∈ T is fixed, x(t̄) boils down to a random vari-

able. On the other hand, if the event ω is fixed (for instance, by carrying out

a single experiment on the considered phenomen), x(t) is just a deterministic

function of t, known as a realization of the stochastic process, see Figure 2.1.

ω1

ω2

ω3

tt̄

x(t, ω)

Figure 2.1: Different realizations of a stochastic process x(t), corresponding

to different events ωi.

A stochastic process is completely characterized if the probability

P (x(t1) ≤ x1, x(t2) ≤ x2, . . . , x(tk) ≤ xk)

is known ∀t1, . . . , tk, ∀x1, . . . , xk and ∀k ∈ N. Similarly to what has been

done for random variables, it is possible to define the cumulative distribution

function Fx (·) and the probability density function fx (·) of a s.p. x(t), for

k = 1, 2, . . . (also referred to as k-th order statistics of the s.p.):

Fx (x1, . . . , xk; t1, . . . , tk) = P (x(t1) ≤ x1, x(t2) ≤ x2, . . . , x(tk) ≤ xk) ,

fx (x1, . . . , xk; t1, . . . , tk) =
∂k

∂x1, . . . , xk

Fx (x1, . . . , xk; t1, . . . , tk) .

In practice, such functions are rarely known for all k ∈ N. Most often, only

the first and second order statistics are considered. Let






Fx (x; t) = P (x(t) ≤ x) ,

fx (x; t) =
∂

∂x
Fx (x; t) ,
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and










Fx (x1, x2; t1, t2) = P (x(t1) ≤ x1, x(t2) ≤ x2) ,

fx (x1, x2; t1, t2) =
∂2

∂x1∂x2
Fx (x1, x2; t1, t2) ,

the 1st and 2nd order statistics of the s.p. x(t). Once t1 and t2 have been

fixed, x(t1) and x(t2) are random variables and one can recover the first order

statistics in the usual way, for example:

fx (x1; t1) =

∫ +∞

−∞

fx (x1, x2; t1, t2) dx2.

The mean and covariance function of a stochastic process are defined next.

Definition 2.2. Themean (or expected value)mx(t) of the s.p. x(t) is defined

as

mx(t)
△
= E [x(t)]

△
=

∫ +∞

−∞

xfx (x; t) dx. (2.1)

Definition 2.3. The covariance function (or autocovariance) Rx(t, s) of a

s.p. x(t) is defined as

Rx(t, s)
△
= E

[

(x(t)−mx(t))(x(s)−mx(s))
T
]

△
=

∫ +∞

−∞

∫ +∞

−∞

(x1 −mx(t))(x2 −mx(s))
Tfx (x1, x2; t, s) dx1dx2.

(2.2)

In Definition 2.3, the notation (·)T is used in the case that x(t) is a vector

of stochastic processes. If x(t) ∈ Rn, then its mean is an n-dimensional vector

itself, while the covariance function Rx(t, s) is a n× n matrix.

Definition 2.4. The cross-covariance function Rx,y(t, s) of two stochastic

processes x(t), y(t) is defined as

Rx,y(t, s)
△
= E

[

(x(t)−mx(t))(y(s)−my(s))
T
]

△
=

∫ +∞

−∞

∫ +∞

−∞

(x−mx(t))(y −my(s))
Tfx,y (x, y; t, s) dxdy.

(2.3)
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It is worth stressing that the mean and covariance function of a s.p. are,

in general, functions of one (mean) or two (covariance) time indexes. For ex-

ample, the mean mx(t) of a s.p. x(t) may take on different values at different

times t.

An important class of stochastic process is the one in which the statistics

do not change in presence of a time shift.

Definition 2.5. A stochastic process x(t) is strongly stationary if all the

statistics of x(t) and x(t+ δ) are identical for every δ, i.e., if

P (x(t1 + δ) ≤ x1, . . . , x(tk + δ) ≤ xk)

does not depend on δ, ∀t1, . . . , tk, ∀x1, . . . , xk and ∀k.

In other words, the cdf and pdf of a strongly stationary s.p. is invariant

with respect to shifts in the time domain. Strong stationarity is often difficult

to verify, as it involves all the statistics. Weaker notions are the one regarding

only a subset of the statistics, like the following one.

Definition 2.6. A stochastic process x(t) is weakly stationary if

mx(t) = mx(t+ δ)

Rx(t, s) = Rx(t+ δ, s+ δ)

for all δ.

According to the above definition, the mean and the covariance function

are invariant with respect to time shifts. Since Definition 2.6 holds for all δ,

one has that x(t) is weakly stationary if and only if

mx(t) = mx (2.4)

Rx(t, s) = Rx(t− s) (2.5)

In other words, a s.p. is weakly stationary if its mean is constant and its

covariance function depends only on the difference of the two time instants
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t and s. For this reason, the covariance function of a stationary s.p. is often

expressed as a function of the lag τ = t− s, as

Rx(τ) = E
[

(x(t + τ)−mx)(x(t)−mx)
T
]

. (2.6)

Clearly, strong stationarity implies weak stationarity, while the vice versa

is not true. In these notes, we will always consider weak stationarity: a

process x(t) will be simply called stationary, when it is weakly stationary.

Definition 2.7. Two stochastic processes x(t) and y(t) are jointly weakly sta-

tionary if they are both weakly stationary and their cross-covariance function

is invariant with respect to time shifts, i.e.

Rxy (t, s) = Rxy (t+ δ, s + δ) , ∀δ.

Similarly to what has been done for the covariance function of a stationary

s.p., we express the cross-covariance of two jointly stationary processes as a

function of the lag τ = t− s, i.e.

Rxy(τ) = E
[

(x(t + τ)−mx)(y(t)−my)
T
]

. (2.7)

Theorem 2.1. Let x(t) be a stationary s.p.; then, for its covariance function

Rx(τ) the following properties hold:

1. Rx(τ) = RT
x(−τ).

2. Rx (0) has positive elements on the diagonal.

3. The matrix

P (m) =















Rx(0) Rx(1) . . . Rx(m− 1)

Rx(−1) Rx(0) . . . Rx(m− 2)
...

...
. . .

...

Rx(1−m) Rx(2−m) . . . Rx(0)















is symmetric and positive semidefinite, P (m) ≥ 0, ∀m ∈ N+.
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4. If y(t) is a s.p. jointly stationary with x(t); the cross-covariance func-

tion Rxy(τ) satisfies

Rxy(τ) = RT
yx(−τ).

Proof

Without loss of generality, let mx = 0.

1. From (2.6) one has

Rx(τ) = E
[

x(t + τ)x(t)T
] [1]
= E

[

x(s)x(s− τ)T
]

[2]
= E

[

(

x(s− τ)x(s)T
)T
]

= RT
x(−τ),

in which [1] is obtained by setting s = t+ τ and [2] from the property

abT =
(

baT
)T

, with a, b real vectors.

2. Let x(t) = [x1(t), . . . , xn(t)]
T ∈ Rn. Then, the elements on the diagonal

of Rx (0) are the variances rii(0) = E [xi(t)
2] > 0.

3. First, observe that one can write

P (m) = E

















x(t− 1)
...

x(t−m)









(

x(t− 1)T , . . . , x(t−m)T
)









.

Let v = (vT1 , . . . , v
T
m)

T , with vi ∈ Rn. Then,

vTP (m)v = (vT1 , . . . , v
T
m)E

















x(t− 1)
...

x(t−m)









(

x(t− 1)T , . . . , x(t−m)T
)

















v1
...

vm









= E

[(

m
∑

k=1

vTk x(t− k)

)(

m
∑

k=1

x(t− k)Tvk

)]

= E





(

m
∑

k=1

vTk x(t− k)

)2


 ≥ 0

Since the previous expression hold for every v, it follows that P (m) ≥ 0.

4. See the proof of item 1.
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�

If x(t) is a scalar s.p., property 1 in Theorem 2.1 becomes

rx(τ) = rx(−τ), (2.8)

i.e., the covariance function of a stationary scalar s.p. is a symmetric function

with respect to τ . Moreover, consider the linear combination α1x(t + τ) +

α2x(t), with τ ∈ N, and assume mx = 0. then,

0 ≤ E
[

(α1x(t+ τ) + α2x(t))
2]

= E
[(

α2
1x(t + τ)2 + 2α1α2x(t + τ)x(t) + α2

2x(t)
2
)]

= α2
1E
[

x(t+ τ)2
]

+ 2α1α2E [x(t + τ)x(t)] + α2
2E
[

x(t)2
]

= α2
1rx(0) + 2α1α2rx(τ) + α2

2rx(0) = (α2
1 + α2

2)rx(0) + 2α1α2rx(τ).

Therefore, (α2
1 + α2

2)rx(0) + 2α1α2rx(τ) ≥ 0. It is straightforward to verify

that the latter inequality can be rewritten as

[

α1 α2

]

[

rx(0) rx(τ)

rx(τ) rx(0)

][

α1

α2

]

≥ 0. (2.9)

(notice also that (2.9) stems directly from the fact that P (m) ≥ 0). Since

(2.9) hold for every α1, α2 ∈ R, the matrix

[

rx(0) rx(τ)

rx(τ) rx(0)

]

is positive

semidefinite. Hence, its determinant is nonnegative

det

[

rx(0) rx(t)

rx(τ) rx(0)

]

= rx(0)
2 − rx(τ)

2 ≥ 0.

Being rx(0) > 0, one gets

|rx(τ)| ≤ rx(0), ∀τ ∈ N.

Therefore, we can conclude that the covariance function of a scalar s.p. is

bounded in the interval [−rx(0), rx(0)] and takes on its maximum value for

τ = 0 (an example is shown in Figure 2.2).

Notice that Rx (0) rapresents the variance of the stationary s.p. x(t) (or

its covariance matrix, if x(t) is a vector).
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Figure 2.2: An example of covariance function of a scalar stochastic process.

Definition 2.8. A stochastic process is Gaussian if its statistics

Fx (x1, . . . , xk; t1, . . . , tk) fx (x1, . . . , xk; t1, . . . , tk)

are Gaussian, for all k ∈ N+. A Gaussian s.p. is completely characterized if its

mean and covariance function are known. Moreover, for Gaussian processes,

weak stationarity coincides with strong stationarity.

Definition 2.9. A stochastic process is white (also referred to as white pro-

cess) if it is a sequence of independent random variables. If the random

variables are also identically distributed, we refer to it as an i.i.d. stochastic

process.

2.2 Examples of stochastic processes

In this paragraph, we present some examples of stochastic processes.
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2.2.1 Purely deterministic stochastic processes

Let us consider a stochastic process of the form

x(t) =

m
∑

i=1

xigi(t),

in which xi are random variables and gi(·) deterministic functions of time.

Such processes are completely predictable in the future because, once the

realizations of the random variables xi have been observed, the s.p. x(t) is

known ∀t ∈ T .

Let us see some examples of purely deterministic stochastic processes.

• x(t) = x, ∀t ∈ T ,

in which x is a random variable with mean mx and variance σ2
x. The

mean of the s.p. x(t) is clearly

E [x(t)] = E [x] = mx,

while the covariance function is given by

Rx (t, s) = E [(x(t)−mx)(x(s)−mx)] = E
[

(x−mx)
2
]

= σ2
x.

Hence, Rx (t, s) does not depend on t and s, but it is constant

Rx(τ) = σ2
x, ∀τ.

Therefore, the s.p. x(t) is (weakly) stationary.

• x(t) = A cos(ωt+ϕ),

with ϕ random variable uniformly distributed in the interval [0, 2π].

The mean of the s.p. x(t) takes on the value

E [x(t)] =
1

2π

∫ 2π

0

A cos(ωt+ ϕ)dϕ = 0,

while the covariance function is

Rx (t, s) = E [x(t)x(s)] =
1

2π

∫ 2π

0

A2 cos(ωt+ ϕ) cos(ωs+ ϕ)dϕ.
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Since cos(α) cos(β) = 1
2
[cos(α + β) + cos(α− β)], one has

Rx (t, s) =
A2

4π

∫ 2π

0

[cos(ωt+ ωs+ 2ϕ) + cos(ωt− ωs)] dϕ

=
A2

4π
2π cos[ω(t− s)] =

A2

2
cos(ωτ)

△
= Rx(τ).

Therefore, the s.p. x(t) is (weakly) stationary.

• x(t) = A sin(ωt),

with A ∼ fA (a) random variable with mean mA = 0 and variance σ2
A.

The mean of the s.p. x(t) is

E [x(t)] =

∫ +∞

−∞

a sin(ωt)fA (a) da

= sin(ωt)

∫ +∞

−∞

afA (a) da = sin(ωt)mA = 0,

while the covariance function

Rx (t, s) = E [x(t)x(s)] =

∫ +∞

−∞

a2 sin(ωt) sin(ωs)fA (a) da

= sin(ωt) sin(ωs)

∫ +∞

−∞

a2fA (a) da = σ2
A sin(ωt) sin(ωs)

=
σ2
A

2
[cos(ω(t− s))− cos(ω(t+ s))] ,

In which the last equality stems from sin(α) sin(β) = 1
2
[cos(α − β) −

cos(α + β)]. Therefore, the s.p. x(t) is not stationary.

The last example shows that a purely deterministic process may not be sta-

tionary.

2.2.2 White process

A white process x(t) is a sequence of independent random variables. There-

fore, x(t1) are x(t2) are independent whenever t1 6= t2. Such a process is

completely unpredictable in the future.
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By assuming the variables x(ti) are i.i.d. with zero mean and variance

σ2
x, one has

mx(t) = E [x(t)] = 0,

and

Rx (t, s) =







E
[

x(t)2
]

= σ2
x if t = s

0 if t 6= s
= σ2

xδt−s,

in which δτ denotes the Kronecker unit impulse

δτ =







1 if τ = 0

0 if τ 6= 0
. (2.10)

Hence, by setting τ = t− s, one can write the covariance function as

Rx(τ) = σ2
xδτ (2.11)

and therefore x(t) is a stationary process.

An example of white process is given by binary transmission. Let x(t) ∈

{−1, 1}, with t ∈ N and x(t1), x(t2) independent if t1 6= t2. By assuming

that both values −1, 1 can occur with the same probability, the first order

statistic of x(t) is given by:

fx (x; t) =
1

2
δ(x− 1) +

1

2
δ(x+ 1).

where δ(t) is the Dirac delta function. The mean of the s.p. x(t) takes on

the value

E [x(t)] =

∫ +∞

−∞

x

(

1

2
δ(x− 1) +

1

2
δ(x+ 1)

)

dx =
1

2
−

1

2
= 0,

in which we have exploited the property of the Dirac function

∫ +∞

−∞

g(x)δ(x− α)dx = g(α).

The variance of x(t) is equal to

Rx (t, t) = E
[

x(t)2
]

=

∫ +∞

−∞

x2

(

1

2
δ(x− 1) +

1

2
δ(x+ 1)

)

dx =
1

2
+

1

2
= 1.



12 CHAPTER 2. TIME SERIES ANALYSIS AND PREDICTION

being x(t1) and x(t2) independent whenever t1 6= t2, they are also uncorre-

lated, and hence

Rx (t1, t2) = E [x(t1)x(t2)] = 0.

Summing up, the covariance function of x(t) is given by

Rx(τ) =







1 se τ = 0

0 se τ 6= 0

and hence the process x(t) is stationary.

White stochastic processes play a fundamental role in the following treat-

ment. In particular, we will see that a broad class of stationary stochastic

processes can be obtained by filtering a white process with a suitable linear

system. Hereafter, a white process e(t) with constant mean me and variance

σ2
e, will be referred to as

e(t) ∼ WP (me, σ
2
e).

2.2.3 Wiener process

A Wiener process w(t), also referred to as brownian motion or random walk,

has the following characteristics

• w(0) = 0;

• E [w(t)] = 0;

• Rw (t1, t2) =







αt2 if t1 ≥ t2

αt1 if t1 ≤ t2

• for fixed t, w(t) ∼ N(0, αt).

Therefore, we can conclude that w(t) is a non stationary Gaussian process.

Notice that the variance of w(t) is equal to Rw (t, t) = αt, which means

that the “spread” of the realizations grows with time. Let t1 > t2 > t3; the
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following property holds

E [(w(t1)− w(t2)) (w(t2)− w(t3))] = Rw (t1, t2)− Rw (t1, t3)

− Rw (t2, t2) +Rw (t2, t3)

= αt2 − αt3 − αt2 + αt3 = 0.

For this reason, a Wiener process is also referred to as a process with un-

correlated increments. Such a process can be obtained by summing a white

process, i.e.

w(t) =
t
∑

k=1

e(k)

with e(t) ∼ WP (0, 1).

2.2.4 Exponentially correlated processes

Let us consider the stationary s.p. x(t) whose covariance function takes on

the form

Rx(τ) = σ2
xa

|τ |, τ ∈ Z, (2.12)

with |a| < 1. The variance of the s.p. x(t) is Rx (0) = σ2
x. Notice that:

• if a → 1, x(t) tends to a purely deterministic process;

• if a → 0, x(t) tends to a process of uncorrelated variables (which is also

a white process if x(t) is Gaussian).

The covariance function depicted in Figure 2.2 corresponds to (2.12), with

σ2
x = 1 and a = −0.7.

Let us fix a time instant t and consider the random variables x(t) and

x(t + 1). Being x(t) stationary, the mean and variance of the two random

variables are the same, i.e.

E [x(t)] = E [x(t + 1)] = mx

E
[

(x(t)−mx)
2
]

= E
[

(x(t+ 1)−mx)
2
]

= σ2
x
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Let us now compute the cross-covariance of x(t + 1) and x(t):

E [(x(t+ 1)−mx)(x(t)−mx)]
△
= Rx (1) = σ2

xa,

In which the last equality stems from (2.12) with τ = 1. Then, the correlation

coefficient between x(t + 1) and x(t) is equal to

ρ =
Rx (1)

σ2
x

=
σ2
xa

σ2
x

= a.

Hence, the parameter a in (2.12) corresponds to the correlation coefficient

between the values of the stochastic process x(t) at two consecutive time

instants. From a qualitative point of view, a consequence of this property is

that

• if a > 0, it is more likely that the sign of x(t)−mx does not change in

two consecutive time instants;

• if a < 0, it is more likely that the sign of x(t) − mx changes in two

consecutive time instants .

Assume x(t) > mx. As a approaches 1, the probability that x(t + 1) > mx

grows. Similarly, as a approaches -1, the probability that x(t+ 1) < mx will

increase. In the special case a = 1, we have that x(t) and x(t + 1) are fully

correlated, meaning that by observing x(t) we can infer the exact value taken

by x(t + 1).

Figure 2.3 reports two realizations of two different exponentially corre-

lated s.p., both with mean equal to 10, but with opposite correlation coeffi-

cients. It is apparent that when a = −0.9, the difference x(t)−mx changes

its sign much more often than what happens when a = 0.9.

The class of exponentially correlated stochastic process is much broader

than the example shown above. In general, all stationary processes whose

covariance function decreases exponentially with the lag τ belong to this

class. Moreover, such processes can be obtained asymptotically as outputs of

linear time-invariant (LTI) dynamic systems, whose input is a white process,

as it is shown in the next example.
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(a) (b)

Figure 2.3: Realizations of exponentially correlated stochastic processes with:

(a) a = 0.9; (b) a = −0.9.

Example 2.1. Let the s.p. y(t) be the solution of the difference equation:

y(t+ 1) = ay(t) + e(t), |a| < 1,

where e(t) is a white process with zero mean and variance σ2
e. We can model

y(t) as the output of an LTI system fed by the input e(t) (see Figure 2.4),

with transfer function G(z) =
1

z − a
.

e(t) y(t)1

z − a

Figure 2.4. A linear stochastic system

Let us compute the mean my(t) and the covariance function Ry (t + τ, t),

in order to verify if the s.p. y(t) is stationary. From systems theory, the

output of an LTI system is given by the convolution between the impulse

response and the input. In the considered example, one has

y(t) =

∞
∑

i=0

aie(t− i− 1).



16 CHAPTER 2. TIME SERIES ANALYSIS AND PREDICTION

Notice that, since |a| < 1, the series

∞
∑

i=0

ai converges. Then, by recalling that

me=0, one has

my(t) = E

[

∞
∑

i=0

aie(t− i− 1)

]

=

∞
∑

i=0

aiE [e(t− i− 1)] = 0.

Concerning the covariance function, one has

Ry (t + τ, t) = E

[(

∞
∑

i=0

aie(t+ τ − i− 1)

)(

∞
∑

j=0

aje(t− j − 1)

)]

.

Once again, from the linearity of the expectation, we get

Ry (t+ τ, t) =

∞
∑

i=0

∞
∑

j=0

aiajE [e(t+ τ − i− 1)e(t− j − 1)]

=
∞
∑

i=0

∞
∑

j=0

ai+jRe (τ − i+ j) ,

(2.13)

Being e(t) ∼ WP (0, σ2
e), its covariance function is

Re (ν) =







σ2
e se ν = 0

0 se ν 6= 0

Therefore, in the second sum in (2.13) the only nonnegative terms are those

with indexes i, j such that τ − i+ j = 0, i.e., j = i− τ . Moreover, since the

index j can take only nonnegative values, if τ ≥ 0, one may have j = i − τ

only if i ≥ τ . Hence, one has

Ry (t + τ, t) =























∞
∑

i=τ

a2i−τσ2
e if τ ≥ 0

∞
∑

i=0

a2i−τσ2
e if τ < 0

=























aτσ2
e

∞
∑

i=τ

a2i−2τ if τ ≥ 0

a−τσ2
e

∞
∑

i=0

a2i if τ < 0

[1]
=























aτσ2
e

∞
∑

k=0

(

a2
)k

if τ ≥ 0

a−τσ2
e

∞
∑

i=0

(

a2
)i

if τ < 0

[2]
=















σ2
e

1− a2
aτ if τ ≥ 0

σ2
e

1− a2
a−τ if τ < 0

=
σ2
e

1− a2
a|τ |
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Equality [1] is obtained by setting k = i − τ , while [2] stems from the sum
∞
∑

i=0

pi =
1

1− p
, if |p| < 1.

Summing up:

- my(t) = 0;

- Ry (t + τ, t) = σ2
e

1−a2
a|τ |;

and therefore y(t) is a stationary process. △

Observation 2.1. It is worth stressing that in the previous analysis we have

implicitly assumed that the output y(t) depends on all past values of the

input e(t) up to time t = −∞. This amounts to consider the system at

steady state, neglecting the effect of the transient, or equivalently to assume

that the initial condition has occurred a very long time before the current

time instant t. This is admissible, due to the fact that the considered LTI

system is asymptotically stable: therefore, after a sufficiently long time, the

effect of the initial condition is indeed negligible. If one is interested in the

analysis of the transient behavior (by setting the initial condition at a finite

time, say t = 0), the output y(t) is only asymptotically stationary, which

means that:

- lim
t→∞

my(t) exists and is finite;

- lim
t→∞

Ry (t + τ, t) exists and is finite for every τ .

2.3 Frequency analysis

In this paragraph, some useful tools for the analysis of stochastic processes

in the frequency domain are introduced.

Definition 2.10. Let x(t) be a stationary stochastic with covariance function

Rx(τ). The spectrum of x(t) is the function of the complex variable z ∈ C:

φx(z) =

∞
∑

τ=−∞

Rx(τ)z
−τ .
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The spectrum φx(z) is the bilateral Z-transform of the covariance function

of x(t).

Definition 2.11. The spectral density,of the stationary s.p. x(t) is the func-

tion of the real variable ω ∈ R

φx(e
jω) =

∞
∑

τ=−∞

Rx(τ)e
−jωτ .

The spectral density is the spectrum computed on the unit circumference.

Hence, the spectral density is a periodic function with period 2π. For this

reason, we will analyze it in the interval ω ∈ [−π, π].

Definition 2.12. Let x(t) and y(t) two jointly stationary stochastic pro-

cesses and let Rxy(τ) be their cross-covariance function. Then, the cross-

spectrum of x(t) and y(t) is the function of the complex variable z ∈ C:

φxy(z) =

∞
∑

τ=−∞

Rxy(τ)z
−τ .

Given the spectrum of a s.p. x(t), it is possible to recover its covariance

function Rx(τ). Let us compute the integral

1

2πj

∮

φx(z)z
k−1dz. (2.14)

where the symbol
∮

denotes the integral of a function in the complex domain,

computed along the unit circumference. Therefore, we can set z = ejω, with

ω ∈ [−π, π]. Since dz = jejωdω, (2.14) becomes

1

2πj

∮

φx(z)z
k−1dz =

1

2πj

∫ π

−π

φx(e
jω)ejω(k−1)jejωdω

=
1

2π

∫ π

−π

φx(e
jω)ejωkdω

(2.15)
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[1]
=

1

2π

∫ π

−π

∞
∑

τ=−∞

Rx(τ)e
−jωτejωkdω

=
1

2π

∞
∑

τ=−∞

Rx(τ)

∫ π

−π

ejω(k−τ)dω

[2]
=

1

2π

∞
∑

τ=−∞

Rx(τ)2πδk−τ

= Rx (k) .

Notice that [1] stems from Definition 2.11, while [2] comes from the fact that,

for n ∈ N, one has

∫ π

−π

ejωndω =







2π se n = 0

0 se n 6= 0
.

Therefore, we can conclude that from the spectrum one can compute the

covariance function as

Rx(τ) =
1

2πj

∮

φx(z)z
τ−1dz, τ ∈ Z.

Equivalently, the covariance function can be derived also from the spectral

density (see the second equality in (2.15)), as

Rx(τ) =
1

2π

∫ π

−π

φx(e
jω)ejωτdω, τ ∈ Z.

If τ = 0, the previous relationship becomes

Rx (0) =
1

2π

∫ π

−π

φx(e
jω)dω. (2.16)

Equation (2.16) provides a motivation for the name “spectral density”

for φx(e
jω). Indeed, by recalling that Rx (0) is the variance of x(t) (which

amounts to the “power” of the signal x(t)), we can conclude that φx(e
jω)

indicates the distribution of such power at the different frequencies ω.

Theorem 2.2. The spectrum and spectral density enjoy the following prop-

erties:
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1. φx(z) = φT
x (z

−1);

2. φx(e
jω) = φT

x (e
−jω);

3. φx(e
jω) ≥ 0;

4. φxy(z) = φT
yx(z

−1).

Proof

1. From the definition of spectrum, one has

φx(z) =

∞
∑

k=−∞

Rx(k)z
−k [1]

=

∞
∑

k=−∞

RT
x(−k)z−k =

[2]
=

(

∞
∑

τ=−∞

Rx (τ)
(

z−1
)−τ

)T

= φT
x (z

−1),

in which [1] stems form property 1 in Theorem 2.1 (see page 5), while

[2] is obtained by setting τ = −k.

2. From the previous property, by setting z = ejω.

3. We prove this for a scalar process x(t), whose covariance function is

exponentially bounded, i.e. there exist real constants C > 0 and α ∈

(0, 1) such that |rx(τ)| ≤ Cα|τ |. From property 3 in Theorem 2.1 (see

page 5), the matrix

P (N) =















rx(0) rx(1) . . . rx(N − 1)

rx(−1) rx(0) . . . rx(N − 2)
...

...
. . .

...

rx(−N + 1) rx(−N + 2) . . . rx(0)















is positive semidefinite. This means that for every complex vector v ∈

CN , one has v∗P (N)v ≥ 0, in which v∗ denotes the conjugate transpose

of v, v∗ = [v̄1, v̄2, . . . , v̄N ]. Therefore, by choosing v = [1, z−1, . . . , z−N+1]T ,
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with z = ejω, one gets

0 ≤
1

N

(

1, z−1, . . . , z−N+1
)

P (N)















1

z−1

...

z−N+1















[1]
=

1

N

(

1, z, . . . , zN−1
)















rx(0) + rx(1)z
−1 + · · ·+ rx(N − 1)z−N+1

rx(−1) + rx(0)z
−1 + · · ·+ rx(N − 2)z−N+1

...

rx(−N + 1) + rx(−N + 2)z−1 + · · ·+ rx(0)z
−N+1















=
1

N

[

Nrx(0) +

N
∑

k=1

(N − k)(rx(k)z
−k + rx(−k)zk)

]

=
1

N

[

Nrx(0) +
N
∑

k=1

N(rx(k)z
−k + rx(−k)zk)−

N
∑

k=1

k(rx(k)z
−k + rx(−k)zk)

]

[2]
=

N
∑

k=−N

rx(k)z
−k −

1

N

N
∑

k=−N

|k| rx(k)z
−k,

(2.17)

in which [1] comes from the property of complex numbers e−jωk =

ejωk, while [2] stems from the symmetry of the covariance function, see

equation (2.8). Let us consider the modulus of the last sum in (2.17).

From the triangle inequality

∣

∣

∣

∣

∣

1

N

N
∑

k=−N

|k| r(k)z−k

∣

∣

∣

∣

∣

≤
1

N

N
∑

k=−N

∣

∣|k| r(k)z−k
∣

∣ =
1

N

N
∑

k=−N

|k| |r(k)|
∣

∣z−k
∣

∣

By setting z = ejω, and since |ejω| = 1, we get

∣

∣

∣

∣

∣

1

N

N
∑

k=−N

|k| r(k)e−jωk

∣

∣

∣

∣

∣

≤
1

N

N
∑

k=−N

|k| |r(k)|

≤
1

N

N
∑

k=−N

|k|Cα|k| =
2C

N

N
∑

k=1

kαk

(2.18)
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where we have exploited the assumption |rx(τ)| ≤ Cα|τ |. We show

that the quantity on the right in (2.18) tends to zero when N goes to

infinity. To do this, observe that

(1− α)2
N
∑

k=1

kαk =

N
∑

k=1

kαk − 2α

N
∑

k=1

kαk + α2

N
∑

k=1

kαk

= α + 2α2 − 2α2 +
N
∑

k=3

[k − 2(k − 1) + k − 2]αk

− 2NαN+1 + (N − 1)αN+1 +NαN+2

= α− (N + 1)αN+1 +NαN+2.

and dividing both members by (1− α)2, we get

N
∑

k=1

kαk =
α− (N + 1)αN+1 +NαN+2

(1− α)2
.

Recalling that, by assumption, 0 < α < 1, as N goes to infinity one

gets
N
∑

k=1

kαk →
α

(1− α)2

and hence
2C

N

N
∑

k=1

kαk → 0.

Therefore, also the term on the left in (2.18) tends to zero. By evalu-

ating (2.17) for z = ejω and letting N tend to infinity, we can conclude

that

φx(e
jω) =

∞
∑

k=−∞

rx (k) e
−jωk ≥ 0.

4. From the definition of cross-spectrum, one has

φxy(z) =

∞
∑

k=−∞

Rxy (k) z
−k [1]

=

∞
∑

k=−∞

RT
yx(−k)z−k =

[2]
=

(

∞
∑

τ=−∞

Ryx (τ)
(

z−1
)−τ

)T

= φT
yx(z

−1),
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in which [1] stems form property 4 in Theorem 2.1 (see page 6), while

[2] is obtained by setting τ = −k. �

If x(t) is a schalar stochastic process, its spectrum satisfies

φx(z) = φx(z
−1), (2.19)

while its spectral density is a symmetric nonnegative function of ω

φx(e
jω) = φx(e

−jω), (2.20)

φx(e
jω) ≥ 0, ∀ω. (2.21)

By recalling that φx(e
jω) is also periodic of period 2π, we can analyze it only

in the interval ω ∈ [0, π].

Example 2.2. Consider a white process x(t), with covariance function

Rx(τ) =







σ2
x se τ = 0

0 se τ 6= 0

From the definitions of spectrum and spectral density, we get

φx(z) = σ2
x, ∀z ∈ C,

and

φx(e
jω) = σ2

x, ∀ω ∈ [−π, π].

Hence, the spectral density of a white process is constant. This means that

the “power” of the signal is equally distributed at all frequencies. This mo-

tivates the attribute white, which recalls the property of the white light,

containing all the frequencies of the visible spectrum.. △

Example 2.3. Consider the exponentially correlated stochastic process x(t),

whose covariance function is

Rx(τ) = σ2
xa

|τ |, τ ∈ Z, (2.22)
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with |a| < 1. Let us compute the spectrum and spectral density. From the

definition,

φx(z) =
∞
∑

τ=−∞

Rx(τ)z
−τ =

∞
∑

τ=−∞

σ2
xa

|τ |z−τ

= σ2
x

(

−1
∑

τ=−∞

a−τz−τ +
∞
∑

τ=0

aτz−τ

)

= σ2
x

(

∞
∑

k=1

akzk +
∞
∑

τ=0

aτz−τ

)

= σ2
x

(

∞
∑

k=0

(az)k +
∞
∑

τ=0

(

az−1
)τ

− 1

)

.

Since the series

∞
∑

k=0

pk converges to
1

1− p
, if |p| < 1, in order for both series

to converge we need

|az| < 1,
∣

∣az−1
∣

∣ < 1.

The previous inequalities define the region of the complex plane in which the

spectrum is defined

|a| < |z| <
1

|a|
.

Figure 2.5 shows such a region.

In its convergence region, the spectrum takes on the value

φx(z) = σ2
x

(

1

1− az
+

1

1− az−1
− 1

)

=
σ2
x(1− az−1 + 1− az − 1− a2 + az + az−1)

(1− az−1) (1− az)

=
σ2
x(1− a2)

(1− az−1) (1− az)
.

(2.23)

Since the convergence region always contains the unit circumference, it is

always possible to define the spectral density

φx(e
jω) =

σ2
x(1− a2)

(1− ae−jω) (1− aejω)
=

σ2
x(1− a2)

1 + a2 − a(ejω + e−jω)

=
σ2
x(1− a2)

1 + a2 − 2a cosω
.

(2.24)
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Figure 2.5: Convergence region of the spectrum φx(z).

(a) (b)

Figure 2.6: Spectral density of an exponentially correlated process for (a)

a = 0.4; (b) a = −0.4.
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Figure 2.6 shows the plots of the spectral density (2.24) for a = 0.4 and

a = −0.4. Observe that when the correlation coefficient is positive, the

signal power is concentrated at low frequencies, while the opposite occurs for

negative values of a. This means that for positive values of a, the stochastic

process will present on average less oscillations, with respect to the case of

negative a (see also Section 2.2.4). △

2.4 Linear stochastic systems

In this section, we aim to analyze what happens when a stochastic process

is used as the input of a dynamic system. In particular, we will concentrate

on the input-output representation of asymptotically stable LTI systems, fed

by stationary stochastic processes. We will refer to this case as a linear

stochastic system.

u(t) y(t)
G(z)

Figure 2.7: A linear stochastic system with input u(t), output y(t) and trans-

fer matrix G(z).

With reference to Figure 2.7, let

G(z) =
∞
∑

k=0

gkz
−k (2.25)

be the transfer matrix of an LTI system.2 Recall that G(z) is the Z-transform

of the impulse response {gk}
∞
k=0 of the system. Therefore, the output y(t)

can be written as

y(t) =

∞
∑

k=0

gku(t− k), (2.26)

where u(t) is the input signal.

2In general, if u ∈ Rm and y ∈ Rp, then gk ∈ Rp×m. For single-input single-output

systems, m = p = 1, one has gk ∈ R and G(z) is called transfer function of the system.
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If the input u(t) is a stochastic process, then also the output y(t) will

be a stochastic process. Equation (2.26) relates the specific realization of

the output to the corresponding realization of the input. We aim at finding

relationships between the statistics of the stochastic processes y(t) and u(t).

The following result provides an answer for the mean, covariance function

and spectrum of the two processes.

Theorem 2.3. Let G(z) be the transfer matrix of an asymptotically stable

LTI system. Let the input u(t) be a stationary stochastic process with mean

mu and spectrum φu(z). Then, the output y(t) is an asymptotically stationary

stochastic process, whose mean and spectrum are given by

1. my = G(1)mu;

2. φy(z) = G(z)φu(z)G
T (z−1).

Moreover, y(t) and u(t) are jointly stationary with cross-covariance and

cross-spectrum satisfying the following relationships

3. Ryu(τ) =
∞
∑

k=0

gkRu (τ − k) , Ry(τ) =
∞
∑

k=0

Ryu (τ + k) gTk ;

4. φyu(z) = G(z)φu(z), φy(z) = φyu(z)G
T (z−1).

Proof

1. By using (2.26), we get

my = E [y(t)] =
∞
∑

k=0

gkE [u(t− k)]
[1]
=

(

∞
∑

k=0

gk

)

mu

[2]
= G(1)mu

where [1] comes from the stationarity of u(t), while [2] follows from the

definition of transfer function (2.25). Notice that the infinite sum of gk

converges to the finite value G(1) thanks to the asymptotic stability of

the system.

2. For ease of exposition we assume, without loss of generality, that mu =

my = 0 (otherwise, what follows still holds by replacing y(t) and u(t)
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with y(t)−my and u(t)−mu, respectively). First, let us verify that the

s.p. y(t) is asymptotically stationary. In item 1, we established that

its mean is constant. Let us compute its covariance function by using

(2.26):

Ry (t+ τ, t) = E





(

∞
∑

k=0

gku(t+ τ − k))

)(

∞
∑

l=0

glu(t− l))

)T




=

∞
∑

k=0

∞
∑

l=0

gkRu (τ − k + l) gTl .

Hence, Ry (t + τ, t) = Ry(τ), and therefore y(t) is asymptotically sta-

tionary, in the sense of Observation 2.1. From the expression of Ry(τ),

one can derive the spectrum of y(t)

φy(z) =
∞
∑

τ=−∞

Ry(τ)z
−τ =

∞
∑

τ=−∞

(

∞
∑

k=0

∞
∑

l=0

gkRu (τ − k + l) gTl

)

z−τ .

Observing that we can rewrite z−τ = z−(τ−k+l)z−k+l, the previous equa-

tion becomes

φy(z) =

∞
∑

τ=−∞

(

∞
∑

k=0

∞
∑

l=0

gkRu (τ − k + l) gTl

)

z−(τ−k+l)z−k+l

= [ponendo m = τ − k + l]

=
∞
∑

m=−∞

∞
∑

k=0

∞
∑

l=0

gkRu (m) gTl z
−mz−k+l

=
∞
∑

k=0

gkz
−k

∞
∑

m=−∞

Ru (m) z−m

∞
∑

l=0

gTl (z
−1)−l

= G(z)φu(z)G
T (z−1),

in which the last equality stems from (2.25) and Definition 2.10.
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3. Let us verify that y(t) and u(t) are jointly stationary:

Ryu (t+ τ, t) = E

[(

∞
∑

k=0

gku(t+ τ − k)

)

uT (t)

]

=

∞
∑

k=0

gkE
[

u(t+ τ − k)uT (t)
]

=

∞
∑

k=0

gkRu (τ − k) = Ryu (τ) .

4. From the previous expression of Ryu(τ), one gets immediately

φyu(z) =

∞
∑

τ=−∞

(

∞
∑

k=0

gkRu (τ − k)

)

z−τ

=

∞
∑

k=0

gkz
−k

(

∞
∑

τ=−∞

Ru (τ − k) z−(τ−k)

)

=

∞
∑

k=0

gkz
−kφu(z) = G(z)φu(z).

The other relationships in items 3 and 4 can be derived in the same way. �

Some noteworthy consequences of Theorem 2.3 are:

φy(e
jω) = G(ejω)φu(e

jω)GT (e−jω) (2.27)

φuy(z) = φT
u (z

−1)GT (z−1) (2.28)

and in the scalar case:

φy(z) = G(z)G(z−1)φu(z) (2.29)

φy(e
jω) =

∣

∣G(ejω)
∣

∣

2
φu(e

jω) (2.30)

φuy(z) = G(z−1)φu(z) (2.31)

Let us now consider the special case in which the input u(t) is a white

process e(t), with zero mean and variance Re. Then,

me = 0 (2.32)

Re(τ) =







Re if τ = 0

0 if τ 6= 0
(2.33)
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From equation (2.27) one gets

φy(e
jω) = G(ejω)ReG

T (e−jω).

By applying (2.16), we obtain the following version of Parseval’s theorem

Ry (0) =
1

2π

∫ π

−π

φy(e
jω)dω =

1

2π

∫ π

−π

G(ejω)ReG
T (e−jω)dω, (2.34)

that in the scalar case becomes

Ry (0) = σ2
e

1

2π

∫ π

−π

∣

∣G(ejω)
∣

∣

2
dω. (2.35)

Equation (2.35) shows that the variance of the stochastic process y(t) can be

obtained by integrating the squared modulus of the transfer function along

the unit circumference.

2.5 Linear models of stochastic processes

In this paragraph, we will analyze scalar stochastic processes obtained by

filtering a white process through an asymptotically stable system. To this

aim, let e(t) ∼ WP (0, σ2
e) be the input of an LTI system with output y(t),

see Figure 2.8. We define different classes of linear stochastic processes,

depending on the structure of the transfer function G(z).

e(t) y(t)
G(z)

Figure 2.8: A s.p. y(t) obtained by filtering a white process e(t).

2.5.1 MA process

Consider the s.p. y(t), defined by the equation

y(t) = c0e(t) + c1e(t− 1) + · · ·+ cme(t−m). (2.36)
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where e(t) ∼ WP (0, σ2
e) and ci, i = 0, 1, . . . , m, are real coefficients. Such

a process is said Moving Average of order m, (briefly denoted as MA(m)),

because y(t) is obtained as the weighted average of the last m+1 samples of

the white process e(t).

Since e(t) has zero mean, so it will be for y(t):

my = E [y(t)] = c0E [e(t)] + c1E [e(t− 1)] + · · ·+ cmE [e(t−m)] = 0.

Let us compute the variance of y(t):

σ2
y = E

[

y(t)2
]

= E
[

(c0e(t) + c1e(t− 1) + · · ·+ cme(t−m))2
]

= (c20 + c21 + · · ·+ c2m)σ
2
e

in which the last equality comes from

E [e(t1)e(t2)] =







σ2
e if t1 = t2

0 if t1 6= t2
. (2.37)

Then, let us compute the covariance function for a generic lag τ > 0:

Ry(τ) = E [y(t+ τ)y(t)]

= E[(c0e(t+ τ) + c1e(t + τ − 1) + · · ·+ cme(t+ τ −m))×

× (c0e(t) + c1e(t− 1) + · · ·+ cme(t−m))].

Being e(t) white, the only products returning a non zero contribution are

those involving the signal e at the same time instant: e(t̄)e(t̄). Hence, with

reference to Figure 2.9, one has

τ Ry(τ)

1 (c1c0 + c2c1 + · · ·+ cmcm−1)σ
2
e

2 (c2c0 + c3c1 + · · ·+ cmcm−2)σ
2
e

...
...

m− 1 (cm−1c0 + cmc1)σ
2
e

m cmc0σ
2
e
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y(t)

y(t+ 1)

y(t+m− 1)

y(t+m)

cm

cm

cm

cm

c
m−1

c
m−1

c
m−1

c
m−1

c1

c1

c1

c1

c0

c0

c0

c0

t − m t − m + 1 t − 1 t

t − m + 1 t − m + 2 t t + 1

t − 1 t t + m − 2 t + m − 1

t t + 1 t + m − 1 t + m

Figure 2.9: Computation of the covariance function of an MA(m) process.

Finally, if τ > m, the covariance function is identically zero.

By interpreting z−1 as the backward shift operator3, such that

z−1x(t) = x(t− 1),

it is straightforward to derive the transfer function of the system generating

y(t) from the input e(t). Indeed, (2.36) can be rewritten as

y(t) = C(z)e(t), with C(z) = c0 + c1z
−1 + · · ·+ cmz

−m.

Then, by multiplying and dividing C(z) by zm, we can write the transfer

function from e(t) to y(t) in the usual rational form

G(z) = C(z) =
c0z

m + c1z
m−1 + · · ·+ cm
zm

.

Notice that all the poles of G(z) are in z = 0. Therefore, the system is

asymptotically stable (it is also finite time stable, in the sense that its im-

pulse response {c0, c1, . . . , cm, 0, 0, . . . } goes to zero in m+ 1 time instants).

Therefore, thanks to Theorem 2.3, y(t) is asymptotically stationary.

Summing up, an MA(m) s.p. y(t) has the following properties:

• it is asymptotically stationary;

3With an abuse of notation, we use z to denote both the forward shift operator, z x(t) =

x(t + 1), and the complex variable in the domain of the Z-transform, like, e.g., in the

Definitions 2.10 and 2.12. The meaning however, should be clear from the context.
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• it has zero mean, my = 0 (if e(t) has zero mean);

• at steady state, its covariance function is equal to

Ry(τ) =























m
∑

k=|τ |

ckck−|τ |



σ2
e se |τ | ≤ m

0 se |τ | > m

i.e., y(t1) and y(t2) are uncorrelated, if |t1 − t2| > m.

Example 2.4. Consider the MA(1) process

y(t) = e(t) +
1

2
e(t− 1)

with e(t) ∼ WP (0, 1). Clearly, one has my = 0. Let us compute the variance

of y(t)

Ry (0) = E
[

y(t)2
]

= E

[

(

e(t) +
1

2
e(t− 1)

)2
]

[1]
= E

[

e(t)2
]

+
1

4
E
[

e(t− 1)2
]

= (1 +
1

4
)σ2

e

=
5

4
,

where [1] stems from the property (2.37) of a white process. The covariance

function of y(t) is equal to

Ry (1) = E [y(t+ 1)y(t)]

= E

[(

e(t+ 1) +
1

2
e(t)

)(

e(t) +
1

2
e(t− 1)

)]

=
1

2
σ2
e =

1

2
,

Ry (2) = E [y(t+ 2)y(t)]

= E

[(

e(t + 2) +
1

2
e(t + 1)

)(

e(t) +
1

2
e(t− 1)

)]

= 0
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and the same occurs for Ry(τ), τ > 2. Summing up:

Ry(τ) =



















5
4

se |τ | = 0

1
2

se |τ | = 1

0 se |τ | > 1

.

For a MA process, it is straightforward to compute the spectrum and spectral

density, from Definitions 2.10-2.11:

φy(z) =
5

4
+

1

2
z−1 +

1

2
z,

φy(e
jω) =

5

4
+

1

2
e−jω +

1

2
ejω

=
5

4
+

ejω + e−jω

2

=
5

4
+ cosω.

Notice that we can arrive at the same results by applying Theorem 2.3. Being

the transfer function from e(t) to y(t)

G(z) =
z + 1

2

z

and the spectrum and spectral density of e(t)

φe(z) = φe(e
jω) = 1,

the spectrum and spectral density of y(t) can be derived as

φy(z) = G(z)G(z−1) = 1 +
1

4
+

1

2
z−1 +

1

2
z (2.38)

=
5

4
+

1

2
z−1 +

1

2
z, (2.39)
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φy(e
jω) =

∣

∣G(ejω)
∣

∣

2
=

∣

∣

∣

∣

ejω + 1
2

ejω

∣

∣

∣

∣

2

(2.40)

=

∣

∣ejω + 1
2

∣

∣

2

|ejω|2
[1]
=

∣

∣

∣

∣

1

2
+ cosω + j sinω

∣

∣

∣

∣

2

(2.41)

=

(

1

2
+ cosω

)2

+ sin2 ω (2.42)

=
1

4
+ cos2 ω + cosω + sin2 ω (2.43)

=
5

4
+ cosω, (2.44)

in which in [1] the relationships |ejω| = 1 and ejω = cosω+ j sinω have been

exploited. △

2.5.2 AR process

Consider the s.p. y(t), defined by the equation

y(t) + a1y(t− 1) + · · ·+ any(t− n) = e(t) (2.45)

where e(t) ∼ WP (0, σ2
e) and ai, i = 0, 1, . . . , n, are real coefficients. Such a

s.p. is said Auto-Regressive of order n (or briefly, AR(n)).

Similarly to what has been done for the MA process, we can derive the

transfer function of the system generating y(t) from the input e(t). Equation

(2.45) can be rewritten as

A(z)y(t) = e(t), with A(z) = 1 + a1z
−1 + · · ·+ anz

−n.

By multiplying and dividing A(z) by zn, the transfer function from e(t) to

y(t) is

G(z) =
1

A(z)
=

zn

zn + a1zn−1 + · · ·+ an
.

If the roots of the polynomial A(z) have modulus strictly smaller than 1, the

system is asymptotically stable. Therefore, thanks to Theorem 2.3, y(t) is

an asymptotically stationary stochastic process.4

4In the following discussion, we will consider the process y(t) at steady state, i.e., after

the transient has died out, see Observation 2.1.
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Let now {gk}
∞
k=0 be the impulse response of the LTI system with transfer

function G(z). From (2.26) we know that

y(t) =
∞
∑

k=0

gke(t− k). (2.46)

This shows that an AR process can be seen as a MA process of infinite order.

It follows that

E [y(t)] =

(

∞
∑

k=0

gk

)

me = G(1)me (2.47)

E
[

y(t)2
]

=

(

∞
∑

k=0

g2k

)

σ2
e, (2.48)

E [y(t+ τ)y(t)] =

(

∞
∑

k=0

gk+τgk

)

σ2
e, (2.49)

in which we exploited the properties of the white process e(t), and in partic-

ular (2.37). It should be remarked that all the infinite sums in (2.47)-(2.49)

converge if and only if G(z) is an asymptotically stable transfer function, i.e.,

the polynomial A(z) has all the roots strictly inside the unit circle.

Observation 2.2. Equations (2.48)-(2.49) provide a practical way to compute

the covariance function of an AR process. In fact, by picking a sufficiently

large integer M such that gk ≃ 0, ∀k > M (notice that such an M exists

due to the asymptotic stability of the system), one can approximate the

covariance function by computing

Ry(τ) ≃

(

M
∑

k=0

gk+τgk

)

σ2
e.

The larger is M, the more precise will be the obtained approximate value of

the covariance function.

Example 2.5. Consider the AR(1) s.p.

y(t)−
1

2
y(t− 1) = e(t)
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with e(t) ∼ WP (0, 1). We already know from Example 2.1 that the covari-

ance function of a generic AR(1) process

y(t) = ay(t− 1) + e(t)

is equal to

Ry(τ) =
σ2
e

1− a2
a|τ |.

Since in this example a = 0.5, one has

Ry(τ) =
4

3
0.5|τ |.

Moreover, in Example 2.3 we computed the spectrum and spectral density of

a generic AR(1) process. By setting a = 0.5 and σ2
x = 4

3
in (2.22), one gets

φx(z) =
1

(

1− 1
2
z−1
) (

1− 1
2
z
)

and

φx(e
jω) =

1
5
4
− cosω

.

Clearly, the same expressions can be obtained by direct application of The-

orem 2.3, with G(z) =
z

z − 1
2

. △

2.5.3 ARMA process

Consider the scalar s.p. y(t), defined by the equation

y(t)+a1y(t−1)+· · ·+any(t−n) = c0e(t)+c1e(t−1)+· · ·+cme(t−m) (2.50)

where e(t) ∼ WP (0, σ2
e); ai, i = 0, 1, . . . , n, and cj, j = 0, 1, . . . , m, are

real coefficients. Such a s.p. is said Auto-Regressive Moving Average of or-

der (n,m) (or briefly, ARMA(n,m)). Clearly, the MA and AR processes

examined before are special cases of this general class.

The transfer function of the system can be derived by rewriting equation

(2.50) as

A(z)y(t) = C(z)e(t),
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with

A(z) = 1 + a1z
−1 + · · ·+ anz

−n e C(z) = c0 + c1z
−1 + · · ·+ cmz

−m.

Multiplying both A(z) and C(z) by zn, we obtain the transfer function from

e(t) to y(t)

G(z) =
C(z)

A(z)
=

c0z
n + c1z

n−1 + · · ·+ cmz
n−m

zn + a1zn−1 + · · ·+ an
.

If all the roots of A(z) have modulus strictly smaller than 1, the system is

asymptotically stable. Hence, thanks to Theorem 2.3, y(t) is asymptotically

stationary.

The mean and covariance function of y(t) can be obtained by employing

the same procedure proposed for the AR process. By computing the inverse

Z-transform of G(z) one gets the impulse response gk, satisfying

y(t) =

∞
∑

k=0

gke(t− k).

Then, my and Ry(τ) can be derived as in (2.47)-(2.49) (and practically com-

puted according to Observation 2.2).

Example 2.6. Consider the ARMA(1,1) s.p.

y(t)− 0.9y(t− 1) = e(t) + 0.5e(t− 1), (2.51)

with e(t) ∼ WP (0, 1). The transfer function from e(t) to y(t) is equal to

G(z) =
C(z)

A(z)
=

z + 0.5

z − 0.9
.

Being p = 0.9 the unique root of A(z), the s.p. y(t) is asymptotically sta-

tionary. From Theorem 2.3:

my = G(1)me = 15 · 0 = 0.

In order to derive the covariance function Ry(τ), let us first find the impulse

response of the system. Being

G(z) =
z + 0.5

z − 0.9
= 1 +

1.4

z − 0.9
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one has

gk =







1 if k = 0

1.4 · (0.9)k−1 if k ≥ 1
.

Then, by applying (2.48) one has

Ry (0) =

(

∞
∑

k=0

g2k

)

σ2
e = 1 + (1.4)2

∞
∑

k=1

(0.9)2(k−1) = 1 +
(1.4)2

0.19
≃ 11.32.

Finally, from (2.49) with τ > 0 we get

Ry (τ) =

(

∞
∑

k=0

gk+τgk

)

σ2
e = 1.4 · (0.9)τ−1 + (1.4)2

∞
∑

k=1

(0.9)k+τ−1(0.9)k−1

=
1.4

0.9
(0.9)τ + (1.4)2(0.9)τ

∞
∑

k=1

(0.9)2(k−1) =

{

1.4

0.9
+

(1.4)2

0.19

}

(0.9)τ .

In order to comput the spectrum and the spectral density, one can exploit

Theorem 2.3 to get

φy(z) = G(z)G(z−1)φe(z) =
(1 + 0.5z−1)(1 + 0.5z)

(1− 0.9z−1)(1− 0.9z)

and

φy(e
jω) =

∣

∣G(ejω)
∣

∣

2
φe(e

jω) =

∣

∣

∣

∣

(1 + 0.5ejω)

(1− 0.9ejω)

∣

∣

∣

∣

2

=
1.25 + cosω

1.81− 1.8 cosω
.

△

2.6 Ergodic processes

Let us assume that we observe a single realization x̄(t), for t = 0, 1, . . . , N ,

of a stochastic process x(t). Is it possible to estimate the statistics of x(t)

(e.g., the mean and covariance function) from the observed realization?

We say that a s.p. is ergodic if its statistics can be recovered from a

single realization of the process itself, or equivalently if the “time averages”

(computed on a single realization) are equal to the “ensamble averages” (the

corresponding expected values computed on all possible realizations). By
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limiting our attention to the first and second order statistics, let us define

the sample mean of x̄(t) as

m̄N
x =

1

N

N
∑

t=1

x̄(t) (2.52)

and the sample covariance as

R̄N
x (τ) =

1

N − τ

N−τ
∑

t=1

(x̄(t+ τ)− m̄x)(x̄(t)− m̄x)
T (2.53)

Now we are ready to state the following simplified notion of ergodicity.

Definition 2.13. A stationary s.p. x(t) is ergodic if

lim
N→∞

m̄N
x = E [x(t)] = mx (2.54)

lim
N→∞

R̄N
x (τ) = E

[

(x(t+ τ)−mx)(x(t)−mx)
T
]

= Rx(τ) (2.55)

The convergence of the limits (2.54)-(2.55) must be intended in probabil-

ity. In other words, x(t) is ergodic if mN
x and RN

x (τ) are consistent estimates

of mx and Rx(τ), respectively.

An example of non-ergodic process is the Wiener process introduced in

Section 2.2.3. In fact, its expected value is always zero, while its sample

mean is a random variable whose variance goes to infinity with the number

of samples N .

In the following, we will implicitly assume that we deal with ergodic

processes and we will use sample estimates to approximate the statistics of

a stationary stochastic process.

2.7 Spectral factorization

In Section 2.4, we have seen how the spectrum of a stochastic process is

modified when it is filtered by an asymptotically stable linear system. Now

we address the inverse problem: given a scalar stationary s.p. y(t), with a
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rational spectrum φy(z), find a transfer function H(z) and a variance σ2
e,

such that

φy(z) = H(z)H(z−1)σ2
e.

This problem is known as spectral factorization and, as we will see, it is

instrumental to derive the optimal prediction of a stochastic process.

The spectral factorization problem in general has not a unique solution,

as it is shown by the following examples.

Example 2.7. Let H1(z) be a solution of the spectral factorization problem,

with variance σ2
1
, i.e.

φy(z) = H1(z)H1(z
−1)σ2

1
.

Then, also

H2(z) = βH1(z), β 6= 0

is a solution, with variance σ2
2
=

σ2
1

β2
. In fact,

H2(z)H2(z
−1)σ2

2
= βH1(z)βH1(z

−1)
σ2
1

β2
= H1(z)H1(z

−1)σ2
1
= φy(z).

△

Example 2.8. Let H1(z) be a solution of the spectral factorization problem,

with variance σ2
1
and assume that H1(z) has a zero in z = α, i.e.

φy(z) = H1(z)H1(z
−1)σ2

1
= H̃(z)(z − α)H̃(z−1)(z−1 − α)σ2

1
.

Then, also

H2(z) = H̃(z)

(

z −
1

α

)

is a solution, with variance σ2
2
= α2σ2

1
. In fact,

H2(z)H2(z
−1)σ2

2
= H̃(z)

(

z −
1

α

)

H̃(z−1)

(

z−1 −
1

α

)

α2σ2
1

= H̃(z)
z

α
(α− z−1)H̃(z−1)

z−1

α
(α− z)α2σ2

1

= H̃(z)(z − α)H̃(z−1)(z−1 − α)σ2
1
= φy(z)
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Therefore, if a transfer function with a zero in α is a solution of the spectral

factorization problem, with variance σ2, then also the transfer function that

we obtain by replacing the zero in α with its reciprocal
1

α
is a solution with

variance α2σ2. Clearly, the same reasoning holds for the poles of the transfer

function. △

In order to guarantee uniqueness of the solution of the spectral factor-

ization problem, it is necessary to enforce some constraints on the transfer

function H(z).

Theorem 2.4. Given a rational spectrum

φy(z) =

m
∑

k=−m

ηkz
−k

n
∑

h=−n

γhz
−h

with ηk = η−k and γh = γ−h, that does not have zeros and poles with modulus

exactly equal to 1, the spectral factorization

φy(z) = H(z)H(z−1)σ2
e,

with

H(z) =
C(z)

A(z)

exists and is unique if the following conditions hold:

1. the polynomials A(z) and C(z) have the structure

A(z) = 1 + a1z
−1 + · · ·+ anz

−n

B(z) = 1 + b1z
−1 + · · ·+ bmz

−m

and they do not have common roots;

2. the roots of A(z) and C(z) are strictly inside the unit circle.
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The transfer function H(z) satisfying the conditions of Theorem 2.4 is

called canonical spectral factor of φy(z). Observe that the second condition

guarantees that H(z) is asymptotically stable. Therefore, the s.p. y(t), with

spectrum φy(z), can be seen as the output of a linear system with transfer

function H(z), with all poles and zeros inside the unit circle, fed by a white

process e(t) with variance σ2
e.

Example 2.9. Let

φy(z) =
1

1.25− 0.5z − 0.5z−1

be the spectrum of the s.p. y(t). We aim at computing the canonical spectral

factor

H(z) =
C(z)

A(z)

and its variance σ2
e. Clearly, C(z) = 1. In order to compute A(z), observe

that the denominator of φy(z) can be rewritten as

1.25− 0.5z − 0.5z−1 = (1− 0.5z−1)(1− 0.5z),

and hence

A(z) = 1− 0.5z−1.

Therefore, the canonical spectral factor is given by

H(z) =
1

1− 0.5z−1
,

with variance σ2
e = 1. △

Example 2.10. Consider the s.p. y(t) generated as in Figure 2.10, where the

input u(t) is a s.p. such that u(t) = w(t) + 2w(t− 1) and G(z) =
1

1 + 0.5z−1
.

Assuming that w(t) ∼ WP (0, 1), v(t) ∼ WP (0, 2), with w(t) and v(t) inde-

pendent, let us compute the canonical spectral factor of φy(z).

Denoting by φx(z) the spectrum of the s.p.

x(t) = u(t) + v(t),
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+
+

u(t)

v(t)

y(t)
G(z)

Figure 2.10:

the spectrum of y(t) can be obtained as

φy(z) = G(z)G(z−1)φx(z).

Since w(t) and v(t) are independent, we have

φx(z) = φu(z) + φv(z).

Clearly, being v(t) a white process, its spectrum is equal to

φv(z) = σ2
v = 2,

while the spectrum of u(t) (which is a MA(1) process) is given by

φu(z) = 2z + 5 + 2z−1.

Then,

φy(z) = G(z)G(z−1)(φu(z) + φv(z))

=
2z + 7 + 2z−1

(1 + 0.5z−1)(1 + 0.5z)
.

We aim at finding the canonical spectral factor

H(z) =
C(z)

A(z)

of φy(z) and its related variance σ2
e. The denominator is already factorized,

hence

A(z) = 1 + 0.5z−1.

In order to obtain the numerator and the variance σ2
e, assume that C(z) takes

on the form

C(z) = 1 + cz−1,
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where c is a coefficient to be determined. By equaling the polynomials

C(z)C(z−1)σ2
e = (1 + cz−1)(1 + cz)σ2

e = 2z + 7 + 2z−1

we get the equations






σ2
ec = 2

σ2
e(1 + c2) = 7

from which






σ2
e =

2

c

2c2 − 7c+ 2 = 0

The second equation admits two solutions

c1 = 0.3139, c2 = 3.1861.

Notice that one is the reciprocal of the other (as it has to be, being −c a zero

of the spectrum). To comply with the conditions of Theorem 2.4, we select

the solution corresponding to the zero of C(z) inside the unit circle, i.e.

c = 0.3139.

Therefore,

σ2
e =

2

c
= 6.3715

and

H(z) =
1 + 0.3139z−1

1 + 0.5z−1
.

△

2.8 Time series prediction

In this section, we address the following fundamental problem. Let y(t) be

a stochastic process and assume we observe its values up to a certain time t.

The objective is to estimate the value of y(t + l), with l ∈ N+. This is the

l-step ahead prediction problem for the time series y(t). Since we want to
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estimate the value of the random variable (or vector) y(t+ l), on the basis of

the observations of the random variables Y t
−∞ = {y(t), y(t− 1), y(t− 2), . . . },

this is clearly a Bayesian estimation problem. We will denote the estimate

as ŷ(t + l|Y t
−∞), or briefly ŷ(t + l|t) (meaning the estimate of y(t + l) based

on the data up to time t).

As a criterion to derive an optimal estimator, we choose the Mean Square

Error (MSE). In order to minimize the MSE, one has to compute the condi-

tional expected value of y(t+ l), given the measurements Y t
−∞, i.e., E[y(t+

l)|Y t
−∞].

Hereafter, we will assume that y(t) is a scalar stationary stochastic pro-

cess, with spectrum φy(z). Let

H(z) =
C(z)

A(z)

be the canonical spectral factor of φy(z), with variance σ2
e. This means that,

if we consider a white process e(t) with variance σ2
e, we can write

y(t) = H(z)e(t). (2.56)

It is always possible to rewrite H(z) as

C(z)

A(z)
= Q(z) +

R(z)

A(z)
z−l (2.57)

in which Q(z) is the quotient and R(z)z−l is the reminder of the polynomial

division C(z)
A(z)

. To derive the polynomials Q(z) and R(z), one has to proceed

with the polynomial division (in the variable z−1) until in the remainder it is

possible to collect the common factor z−l in all the terms of the polynomial

(this occurs after at most l steps of the division). Then, the polynomial Q(z)

will take on the form

Q(z) = q0 + q1z
−1 + . . . ql−1z

−(l−1).

Moreover, it can be verified that R(z) = r0 + r1z
−1 + · · · + rhz

−h, with h

smaller than the degree of the polynomial A(z). Now, from (2.56)-(2.57) one
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gets

y(t+ l) = H(z)e(t+ l) =
C(z)

A(z)
e(t + l)

=

(

Q(z) +
R(z)

A(z)
z−l

)

e(t + l)

= Q(z)e(t + l) +
R(z)

A(z)
e(t).

(2.58)

Moreover, due to the properties of the canonical spectral factor, H(z) is

asymptotically stable and also its inverse H−1(z) is asymptotically stable

(recall that also the zeros of the canonical spectral factor are inside the

unit circle). Therefore, it is possible to invert the relationship (2.56), thus

obtaining

e(t) = H−1(z)y(t) =
A(z)

C(z)
y(t).

By substituting the previous equation in (2.58), one gets

y(t+ l) = Q(z)e(t + l) +
R(z)

C(z)
y(t). (2.59)

Notice that the first term on the right corresponds to

Q(z)e(t + l) = q0e(t + l) + q1e(t+ l − 1) + · · ·+ ql−1e(t+ 1)

and it depends on values taken by the white process e(·) at future time

instants, with respect to the current time t. Being the process white, its

values e(t + i), i = 1, . . . , l are independent from all past observations

Y t
−∞ = {y(t), y(t− 1), y(t− 2), . . . }. Therefore, their conditional expecta-

tion is equal to the mean value, i.e.

ê(t+ i|t) = E
[

e(t+ i)|Y t
−∞

]

= E [e(t+ i)] = 0.

Conversely, the second term on the right in (2.59) is known, being a linear

combination of the available data Y t
−∞. Hence, we can conclude that the

minimum MSE estimator of y(t + l), based on the measurements available

up to time t, is given by

ŷ(t + l|t) =
R(z)

C(z)
y(t). (2.60)
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This is also known as the l-step ahead Wiener predictor 5. Notice that it is a

linear function of the data.

In order to compute the prediction MSE, by subtracting (2.60) from (2.59)

we get

ỹ(t+ l) = y(t+ l)− ŷ(t + l|t) = Q(z)e(t + l)

= q0e(t + l) + q1e(t+ l − 1) + · · ·+ ql−1e(t + 1)

=
l−1
∑

i=0

qie(t+ l − i).

Therefore,

MSE∗ = E
[

ỹ(t+ l)2
]

= E





(

l−1
∑

i=0

qie(t+ l − i)

)2


 = σ2
e

l−1
∑

i=0

q2i , (2.61)

being the cross products all equal to zero, due to whiteness of e(t). Summing

up, the Wiener predictor of a time series y(t) can be computed according to

the following procedure:

1. Compute the spectrum φy(z) of y(t).

2. Compute the canonical spectral factor H(z), with variance σ2
e.

3. Compute Q(z) and R(z) according to (2.57).

4. The minimum MSE predictor is given by (2.60), with prediction MSE

equal to (2.61).

Example 2.11. Consider the ARMA(1,1) process, generated by the equation

y(t)−
1

2
y(t− 1) = w(t)− 4w(t− 1),

5Norbert Wiener solved the problem of estimating a continuous-time signal s(t) from

observations of another signal y(t) in the 1940s. In the same years, Andrey Kolmogorov

solved the problem independently in the discrete-time setting.
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where w(t) ∼ (WP (0, 2). We want to compute the 2-step ahead Wiener

predictor ŷ(t + 2|t). The transfer function W (z) of the system with input

w(t) and output y(t) is

W (z) =
1− 4z−1

1− 1
2
z−1

,

and hence the spectrum of y(t) is obtained as

φy(z) = W (z)W (z−1)σ2
w =

(1− 4z−1)(1− 4z)

(1− 1
2
z−1)(1− 1

2
z)

· 2

In order to compute the canonical spectral factor

H(z) =
C(z)

A(z)

we observe that from the factorization of the denominator, one gets

A(z) = 1−
1

2
z−1.

Conversely, the polynomial in z−1 in the numerator of φy(z) has an unstable

zero at z = 4. In order to compute C(z) we exploit the observation in

Example 2.8, so that we can exchange the unstable zero with its reciprocal,

provided that the variance of the input signal is set to σ2
e = 16 · σ2

w. This

means that the spectrum can be rewritten as

φy(z) =
(1− 1

4
z−1)(1− 1

4
z)

(1− 0.5z−1)(1− 0.5z)
· 32

from which

C(z) = 1−
1

4
z−1

and σ2
e = 32. Then, the 2-step ahead predictor is given by

ŷ(t+ 2|t) =
R(z)

C(z)
y(t),

where
C(z)

A(z)
= Q(z) +

R(z)

A(z)
z−2.

Let us perform the polynomial division
C(z)

A(z)
until there is a common factor

z−2 in the remainder:
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1− 1
4
z−1 1− 1

2
z1

1− 1
2
z−1 1 + 1

4
z−1

1
4
z−1

1
4
z−1 − 1

8
z−2

1
8
z−2

Hence,

R(z) =
1

8
Q(z) = 1 +

1

4
z−1

and the 2-step ahead predictor takes on the form

ŷ(t+ 2|t) =

1

8

1−
1

4
z−1

y(t).

In the time domain, this corresponds to the difference equation

ŷ(t + 2|t) =
1

4
ŷ(t + 1|t− 1) +

1

8
y(t).

The prediction MSE is equal to

MSE∗ = (q20 + q21)σ
2
e =

(

1 +
1

16

)

32 = 34.

Example 2.12. Consider the system depicted in Figure 2.11, where u(t) is

a s.p. satisfying the equation

u(t) = w(t) +
1

5
w(t− 1),

with w(t) ∼ WP (0, 4), and

W1(z) =
1

1 + 1
4
z−1

, W2(z) =
1 + 3

10
z−1

1 + 1
4
z−1

.

We want to compute the 2-step ahead Wiener predictor of y2(t), ŷ2(t+ 2|t).

Let us first compute the spectrum of y2. Let

W (z) = W1(z)W2(z) =
(1 + 3

10
z−1)

(1 + 1
4
z−1)2
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replacemen

u(t)
W1(z)

y1(t)
W2(t)

y2(t)

Figure 2.11.

be the transfer function from u(t) to y2(t). Then,

φy2(z) = W (z)W (z−1)φu(z),

where

φu(z) = (1 +
1

5
z−1)(1 +

1

5
z)4.

Hence,

φy2(z) =
(1 + 1

5
z−1)(1 + 3

10
z−1)

(1 + 1
4
z−1)2

(1 + 1
5
z)(1 + 3

10
z)

(1 + 1
4
z)2

· 4

△
=

C(z)

A(z)

C(z−1)

A(z−1)
σ2
e.

Observing the spectrum, it can be noticed that the polynomials in z−1 already

satisfy the conditions of Theorem 2.4; therefore, the canonical spectral factor

turns out to be

H(z) =
C(z)

A(z)
=

(1 + 1
5
z−1)(1 + 3

10
z−1)

(1 + 1
4
z−1)2

=
1 + 1

2
z−1 + 3

50
z−2

1 + 1
2
z−1 + 1

16
z−2

with variance σ2
e = 4. In order to compute the predictor, let us perform the

division
C(z)

A(z)
:

1 + 1
2
z−1 + 3

50
z−2 1 + 1

2
z−1 + 1

16
z−2

1 + 1
2
z−1 + 1

16
z−2 1

− 1
400

z−2

from which

R(z) = −
1

400
Q(z) = 1.

Notice that, despite we are looking for the 2-step ahead predictor, one division

step has been sufficient in this case to isolate the common factor z−2 in the
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remainder. In general, with a prediction horizon of length l, one has to do

at most l division steps. Hence, the predictor transfer function is given by

G(z) =
R(z)

C(z)
=

− 1
400

1 + 1
2
z−1 + 3

50
z−2

,

which corresponds to the time-domain equation

ŷ2(t+ 2|t) = −
1

2
ŷ2(t+ 1|t− 1)−

3

50
ŷ2(t|t− 2)−

1

400
y(t).

Finally, the prediction error is equal to

MSE∗ = q20σ
2
e = 4.

2.9 Exercises

2.1. Consider the s.p. z(t) obtained as the sum of two s.p. x(t), y(t):

z(t) = x(t) + y(t),

with
E [x(t)] = mx;

E [y(t)] = my;

E
[

(x(t)−mx)(x(t)−mx)
T
]

= Rx(τ);

E
[

(y(t)−my)(y(t)−my)
T
]

= Ry(τ);

E
[

(x(t)−mx)(y(t)−my)
T
]

= Rxy(τ).

Verify that:

• Rz(τ) = Rx(τ) +Ry(τ) +Rxy(τ) +Ryx(τ);

• φz(z) = φx(z) + φy(z) + φxy(z) + φyx(z).

What happens if x(t) e y(t) are uncorrelated?

2.2. Establish which of the following functions Ri(τ), i = 1, . . . , 3 can be the

covariance function of a stationary stochastic process, motivating the answer.
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Say which type of process it is and compute its variance.

R1(0) = −1 R2(0) = 1 R3(0) = 1

R1(±1) = 0.5 R2(±1) = 0.5 R3(1) = 0.5

R1(τ) = 0 |τ | > 1 R2(τ) = 0, |τ | > 1 R3(−1) = 0.7

R3(τ) = 0, |τ | > 1

2.3. Let e(t) ∼ WP (0, 1). Show that the s.p.

w(t) =

t
∑

k=1

e(k)

is a Wiener process.

2.4. Consider the MA(2) process

y(t) = e(t) + 2e(t− 1) + e(t− 2), e ∼ WP (0, 1).

Compute the covariance function Ry(t1, t2) and show that it depends only

on the lag τ = t1 − t2. Derive the transfer function from e(t) to y(t), the

spectral density Φy(e
jω) and plot it for ω ∈ [−π, π].

2.5. Consider the system in Figure 2.12, where e1 ∼ WP (0, 1) and

G(z) =
z

z − 1
4

.

+
+e1(t)

e2(t)

y(t)G(z)

Figure 2.12.

Compute the mean and spectral density of y(t) in the following cases:

a) e2(t) = 0, ∀t;
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b) e2(t) ∼ WP (0, 1) independent from e1(t);

c) e2(t) = e1(t), ∀t.

2.6. Consider the stochastic process

y(t) = 0.3y(t− 1) + e(t) + 0.6e(t− 1)

where e(t) ∼ WP (0, 2).

a) Compute the transfer function G(z) from e(t) to y(t).

b) Compute E[y(t)] and the covariance function Ry(τ) of the process y(t)

at steady state.

c) Compute the spectrum Φy(z) and the spectral density Φy(e
jω) of the

process y(t).

2.7. Consider a stationary s.p. y(t) with covariance function Ry(τ). The

normalized covariance function ry(τ) = Ry(τ)/Ry(0) is depicted in Fig. 2.13.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

τ

ry(τ)

Figure 2.13.

1. Establish which one, among the following systems, might have gener-

ated the process y(t):
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a) y(t) = e(t) + 0.5e(t− 1) + 1.8e(t− 2)

b) y(t) = 0.7y(t− 1) + e(t) + e(t− 1)

c) y(t) = −0.7y(t− 1) + e(t) + e(t− 1)

in which e ∼ WP (0, 1).

2. Plot the spectral density Φy(e
jω).

2.8. Consider the stochastic process y(t) generated as in Figure 2.14, where

the input u(t) is a stochastic process such that u(t) = e(t) + 2e(t− 1) and

G(z) =
1

1 + 0.5z−1
.

+
+

u(t)

v(t)

y(t)
G(z)

Figure 2.14.

Assume that e(t) ∼ WP (0, 1), v(t) ∼ WP (0, 1), and they are independent.

Find the spectral density φy(e
jω) of y(t) and plot it.

2.9. Consider the interconnection in Figure 2.15, in which e(t) ∼ WP (0, 16)

and K is a real constant.

+

-

e(t)

1

z

1

z

K
y(t)

Figure 2.15.
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a) Find the values of K ∈ R for which y(t) is asymptotically stationary.

b) Assuming K = −1
3, compute the covariance function Ry(τ) of the

process y(t).

c) Assuming K = 1
5, find the equation of the 2-step ahead Wiener pre-

dictor ŷ(t + 2|t) for the process y(t) and the corresponding prediction

MSE = E [{y(t+ 2)− ŷ(t+ 2|t)}2].

d) Find the values of K, for which the MSE of the 4-step ahead Wiener

predictor, E [{y(t+ 4)− ŷ(t+ 4|t)}2], is smaller than 60.

2.10. Consider the s.p. described by the equation

y(t) = e(t)−
3

2
e(t− 2)− e(t− 4)

in which e(t) ∼ WP (0, 1). Find the l-step ahead Wiener predictor, for the

values l = 1, 2, 3, 4, and compute the corresponding prediction MSE.

2.11. Consider the system shown in Figure 2.16, in which u(t) is a s.p. sat-

isfying the equation

u(t) = 0.6u(t− 1) + e(t),

with e(t) ∼ WP (0, 1), and

G(z) = 1 + 4z−1.

+

+

u(t)

v(t)

G(z)

y(t)

Figure 2.16.
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a) Assuming v(t) = 0, ∀t, find the 2-step ahead Wiener predictor ŷ(t +

2|t) for the s.p. y(t), and the corresponding prediction error, MSE =

E [{y(t+ 2)− ŷ(t+ 2|t)}2].

b) Repeat item a), assuming v(t) ∼ WP (0, 10), independent from e(t).

c) Now, assume that y(t) is an AR(1) process, whose equation is

y(t) = 0.6y(t− 1) + w(t),

with w(t) ∼ WP (0, 19). Assuming that v(t) and e(t) are independent,

compute the spectrum Φv(z) of v(t) and write a model of the s.p. v(t).

2.12. Consider the system shown in Figure 2.17, in which e(t) ∼ WP (0, 3)

y(t)
P (z)G(z)

e(t)

Figure 2.17.

and P (z) = 1− 2z−1.

a) Assuming G(z) = 1, find the equation of the 1-step ahead Wiener

predictor ŷ(t + 1|t) of y(t), and the corresponding prediction error,

MSE = E [{y(t+ 1)− ŷ(t+ 1|t)}2].

b) Assuming G(z) = K, with K > 0, find for which values of K the MSE

of the 1-step ahead Wiener predictor is smaller than 10.

c) Assuming G(z) = 1
5− z−1 , repeat the exercise in item a).

2.13. Consider the system depicted in Figure 2.18, in which e1(t) ∼ WP (0, 2),

e2(t) ∼ WP (0, 1), and e1(t), e2(t) are independent. Moreover,

G1(z) = 1−
1

3
z−1 , G2(z) = 1 + 2z−1 .
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+

+

y(t)

G1(z)

G2(z)

e1(t)

e2(t)

Figure 2.18.

a) Find the spectrum Φy(z) of the process y(t).

b) Derive the equation of the 1-step ahead Wiener predictor ŷ(t+1|t) for

y(t) and the corresponding prediction error,MSE = E [{y(t+ 1)− ŷ(t+ 1|t)}2].

c) Consider the “trivial” predictor ỹ(t + 1|t) = y(t). Compute the mean

square error MSEtrivial = E [{y(t+ 1)− ỹ(t+ 1|t)}2] and compare it

with the MSE computed in item b).

d) Let r(t) be the stochastic process generated as the output of a linear

system with transfer function W (z), whose input is the process y(t).

Determine W (z) in such a way that r(t) is a white process, with vari-

ance equal to 1
4.

2.14. Consider again the system in Figure 2.18. Now assume e1(t) ∼ WP (0, 6),

e2(t) ∼ WP (0, 2), and e1(t), e2(t) are independent. Moreover,

G1(z) =
1

1− 1
2z

−1
, G2(z) =

1

1− p z−1
.

a) Find the values of p ∈ R for which the process y(t) is asymptotically

stationary.

b) Assuming p = 1
3, find the equation of the 2-step ahead Wiener predic-

tor ŷ(t + 2|t) of y(t), and the corresponding prediction error MSE =

E [{y(t+ 2)− ŷ(t+ 2|t)}2].
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c) Assuming p = 1
2, find the maximum value of the variance σ2

2
of e2(t),

such that the MSE of the 2-step ahead Wiener predictor is not larger

than 20.

2.15. Consider the system depicted in Figure 2.19, in which u(t) and v(t)

are independent white processes, with zero mean and variance equal to 1,

and

G(z) =
1 + 1

2z
−1

1− 1
4z

−1
, H(z) =

1 + 2z−1

1− 1
3z

−1
.

+

+

+

+

u(t)
G(z) H(z)

x(t) y(t)

v(t) w(t)

Figure 2.19.

a) Find the 1-step ahead Wiener predictor x̂(t + 1|t) of the process x(t),

and the prediction error MSE = E [{x(t+ 1)− x̂(t + 1|t)}2].

b) Assuming w(t) ≡ 0, find the 2-step ahead Wiener predictor ŷ(t + 2|t)

for the process y(t), and the corresponding prediction error MSE =

E [{y(t+ 2)− ŷ(t+ 2|t)}2].

c) Find the spectrum Φy(z) of the process y(t) in the following cases:

1) w(t) is a white process, independent from u(t) and v(t), with

variance σ2
w = 9;

2) w(t) ≡ v(t), ∀t.
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