
Chapter 3

Parametric Identification of

Dynamical Systems

This chapter deals with the identification of dynamical systems described by

mathematical models. In particular, it is focused on the system identification

of parametric models for linear time-invariant (LTI) systems. For a thorough

treatment, see the book 1.

3.1 Introduction

The aim of system identification is to find mathematical models of dynamical

systems on the basis of experimental data.

The main elements of system identification techniques are:

• a data set, usually a sequence of input/output data of length N . De-

noting by u(t) and y(t) the input and the output of a system, one

has

ZN = {u(1), y(1), . . . , u(N), y(N)}; (3.1)

• a class of candidate models with a given structure, containing the model

that must be identified (e.g., transfer functions of fixed order);

• a rule to choose the “best” model inside the previously chosen family;

• a set of model validation techniques.

1Ljung L., System Identification: Theory for the User (2nd ed.), Prentice Hall: Upper

Saddle River, NJ, 1999.
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Such elements are briefly described below.

Data set

Output data can be obtained by measuring system signals, while inputs are

usually chosen by the user. In this course, only input/output data in the

time domain will be considered, like ZN in (3.1). In several applications, the

input of the system can be freely chosen. Notice that, choosing different input

signals may reflect in different quality of the identified model. Other aspects

regard the length of the experiment (i.e. the data set length N), the sampling

time, etc. All these aspects consist in the so-called experiment design, which

has the purpose of obtaining a data set as informative as possible. This

constitutes the first step of the identification process. Unfortunately, it is not

always possible to freely choose the input, for instance when the operating

conditions of the system are fixed, or when it is inserted in a control loop.

Since the data are measured at a given sampling time, the identification

procedure will be performed in discrete time.

Model class of a given structure

The choice of the model class represents the most critical step of the iden-

tification procedure, since it heavily affects the final result. A model can be

viewed as a map from input to output, i.e.

ŷ(t; θ) = g
(
θ,Z t−1

)

where ŷ(t; θ) represents the predicted output at time t, Z t−1 contains the

data gathered till time t − 1, and θ is a set of parameters which defines a

specific model inside the class.

So, the model class is defined by:

M = {g (θ, ·) : θ ∈ Θ ⊆ S}

where Θ is a set representing the a-priori knowledge on the model, and S is

the space of elements θ.
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In general, models can be divided in two types:

• Parametric models, where θ is a parameter vector of finite dimension

(e.g., the coefficient of the polynomials of a transfer function G(z));

• Non-parametric models, where θ describes some basic characteristics

of the model, like the impulse or the step response (in time domain),

or the frequency response (in the frequency domain) of an LTI model.

Regarding the parametric identification, models whose parameters de-

rive from physical laws (or other kind of information) are called gray-box

models, while models whose parameters just represent the input/output

behavior without any other physical meaning are called black-box models.

Other model classifications depend on their complexity (linear/nonlinear,

time-invariant/time-varying, lumped/distributed parameters, etc.).

In general, a fundamental requirement for a model class is its ability to

represent the features of interest for the considered application.

In this course, we consider linear time-invariant (LTI) models, described by

rational transfer functions.

Choice of the “best” model

Once gathered data and chosen the model classM, the identification problem

consists in finding the element θ̂∗ which minimizes a generic cost function J(θ)

inside the given model class, i.e.

θ̂∗ = argmin
θ∈Θ

J(θ)

So, an optimization problem must be solved, whose complexity depends on

the complexity of the model class M and of the cost function J(θ).

Model validation

Once the model g(θ̂∗, ·) has been identified, it must be validated to assess

its quality and its capacity to satisfy the requirements. Several validation
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procedures can be used. The weight given to each procedure depends on the

use one has to do with the identified model. For instance, a model used to

design a control system will have different requirements with respect to one

used to predict the output of a system.

A model may fail the validation step for many reasons:

• the optimization algorithm may not converge (e.g., due to numerical

problems);

• wrong choice of the cost function J(θ);

• model class not appropriate;

• data set not enough informative.

As previously stated, often the critical step relies on the choice of the model

class (e.g., for LTI models, the choice of the model order). Practically, the

identification procedure is usually iterated until the validation criteria are

satisfied, by changing at any iteration one or more elements of the problem,

see Fig. 3.1.

3.2 Linear time-invariant models

We refer to parametric identification when the model class is represented

by a structure which describes the system input/output behavior and the

identification error with a finite number of numerical values (parameters). A

widely spread model class is that related to LTI models of the form

y(t) = G(z)u(t) +H(z)e(t) (3.2)

where u(t) is the deterministic input, e(t) is a white stochastic process, G(z)

and H(z) are suitable transfer functions2.

2With a slight abuse of notation, we denote by z both the complex variable of transfer

functions and the time shift operator such that, for a generic discrete-time sequence u(k),

z u(k) = u(k + 1), and z−1 u(k) = u(k − 1).
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Figure 3.1: Sketch of the identification procedure.



6 CHAPTER 3. PARAMETRIC IDENTIFICATION
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Figure 3.2: General class for identifying LTI models.

The term G(z)u(t) represents the deterministic component of the model

and describes the relation between the input u(t) and the output y(t). The

term H(z)e(t) models the stochastic component which affects the output

y(t); it is usually due to measurement noise or unmodeled dynamics of the

deterministic component.

The model (3.2) is fully defined if the following terms are known:

• the impulse response sequences {g(k)}∞k=0, {h(k)}∞k=0 of stable transfer

functions G(z) and H(z), respectively:

G(z) =

∞∑

k=0

g(k)z−k, H(z) =

∞∑

k=0

h(k)z−k;

• the probability density function fe (e) of the stochastic process e(t).

A possible alternative consists in finding a finite number of parameters

θ to describe the model. In this way, the LTI model class includes all the

models of the form

y(t) = G(z, θ)u(t) +H(z, θ)e(t) (3.3)

where e(t) is a white stochastic process with probability density fe (e, θ),

where θ ∈ Θ ⊆ IRd represents the parameter vector. Generally, the stochastic

process e(t) is represented by only two parameters: the mean (usually zero)

and the variance σ2
e
. If the noise is Gaussian, it corresponds to the knowledge

of the density fe (e).



3.2. LINEAR TIME-INVARIANT MODELS 7

The easiest way to parameterize a model is to choose θ as the vector

containing the coefficients of the numerator and denominator polynomials of

the rational transfer functions G(z) and H(z). In the following, the widely

used LTI model structures are reported.

3.2.1 ARX Models

Suppose that the stochastic process y(t) is generated by the following linear

regression:

y(t)+a1y(t−1)+· · ·+ana
y(t−na) = b1u(t−1)+· · ·+bnb

u(t−nb)+e(t) (3.4)

Let us define the polynomials

A(z) = 1 + a1z
−1 + · · ·+ ana

z−na , B(z) = b1z
−1 + · · ·+ bnb

z−nb (3.5)

So, one may write

A(z)y(t) = B(z)u(t) + e(t).

Then, the transfer functions of the LTI model (3.3) are defined as

G(z, θ) =
B(z)

A(z)
, H(z, θ) =

1

A(z)
.

A natural choice of the parameter vector is

θ = [a1 . . . ana
b1 . . . bnb

]T (3.6)

where the dimension of the parameter vector is d = na + nb.

A model with these characteristics is named ARX (Auto Regressive with

eXogenous input). Notice that, from a physical viewpoint, a strong assump-

tion is enforced: the noise e(t) is filtered by a transfer function having the

same denominator (i.e. the same poles) of the deterministic transfer function

G(z).

In the special case when na = 0, such model is called FIR (Finite Impulse

Response), since the transfer function G(z) becomes

G(z) = b1z
−1 + · · ·+ bnb

z−nb

and then g(k) = 0, for all k > nb.
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Figure 3.3: Block scheme of an ARX model.
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Figure 3.4: Block scheme of an ARMAX model.

3.2.2 ARMAX Models

A richer model structure than ARX is the so-called ARMAX (Auto Regres-

sive Moving Average with eXogenous input). In this case, y(t) is generated

through the following regression:

y(t) + a1y(t− 1) + · · ·+ ana
y(t− na) = b1u(t− 1) + · · ·+ bnb

u(t− nb)

+ e(t) + c1e(t− 1) + · · ·+ cnc
e(t− nc)

Let us define the polynomial

C(z) = 1 + c1z
−1 + · · ·+ cnc

z−nc

and assume that A(z) and B(z) are the same polynomials defined in (3.5).

One has,

A(z)y(t) = B(z)u(t) + C(z)e(t).

So, the transfer functions in (3.3) are defined as

G(z, θ) =
B(z)

A(z)
, H(z, θ) =

C(z)

A(z)
,
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The parameter vector of an ARMAX model is defined as

θ = [a1 . . . ana
b1 . . . bnb

c1 . . . cnc
]T

where d = na+nb+nc. Notice that polynomials A(z) and C(z) are supposed

to be monic3. Moreover, like for ARX models, the denominator of G(z) and

H(z) is the same.

3.2.3 OE Models

If the assumption that G(z) and H(z) have the same denominator (like in

ARX and ARMAX models) is not realistic, we must use different model

classes. A possible way is to assume that the output y(t) is generated by:

y(t) = w(t) + e(t)

where

w(t) + f1w(t− 1) + · · ·+ fnf
w(t− na) = b1u(t− 1) + · · ·+ bnb

u(t− nb).

By defining the polynomial F (z) as

F (z) = 1 + f1z
−1 + · · ·+ fnf

z−nf

one has

F (z)w(t) = B(z)u(t)

and the LTI transfer functions become

G(z, θ) =
B(z)

F (z)
, H(z, θ) = 1.

This model is called OE (Output Error), since it assumes that the additive

noise e(t) directly affects the output. The parameter vector turns out to be:

θ = [b1 . . . bnb
f1 . . . fnf

]T

where d = nb + nf .

3A polynomial is called monic if its leading coefficient (i.e., the nonzero coefficient of

highest degree) is 1.
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Figure 3.5: Block scheme of an OE model.
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Figure 3.6: Block scheme of a Box-Jenkins model.

3.2.4 BJ Models

A further degree of freedom can be added assuming that the two transfer

functions G(z) and H(z) are completely independent, that is

G(z, θ) =
B(z)

F (z)
, H(z, θ) =

C(z)

D(z)
,

where

D(z) = 1 + d1z
−1 + · · ·+ dnd

z−nd

and B(z), C(z), F (z) are the previously defined polynomials. Such models

are named BJ (Box-Jenkins). In this case, the parameter vector is

θ = [b1 . . . bnb
c1 . . . cnc

d1 . . . dnd
f1 . . . fnf

]T

and its dimension is d = nb + nc + nd + nf .

All the model structures previously described can be viewed as special

cases of a general family of models of the form

A(z)y(t) =
B(z)

F (z)
u(t) +

C(z)

D(z)
e(t).
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A further parameter to fix is the delay r between the input u(t) and the

output y(t). If this information is not a-priori known, it is essential to embed

it in the model structure, which becomes

A(z)y(t) =
B(z)

F (z)
z−ru(t) +

C(z)

D(z)
e(t).

From a practical viewpoint, the delay can be embedded in polynomial B(z),

setting to zero its first r coefficients. In fact,

B(z)z−r = b1z
−r−1 + · · ·+ bnb

z−r−nb.

3.3 Criteria to choose the model

Once the model class has been fixed, one has to choose a criteria to select

the best model inside it on the basis of the input/output data ZN . The

basic idea is to compare the output of the unknown system {y(t)} with that

obtained by the model {ym(t)}, for the same input sequence {u(t)}. Now, let
us analyze the output of the model {ym(t)}. It is composed of a deterministic

part yd and a stochastic one ys:

ym(t) =G(z, θ)u(t)
︸ ︷︷ ︸

+H(z, θ)e(t)
︸ ︷︷ ︸

.

yd(t) ys(t)

Since e(t) is unknown, it is required to do a forecast of the value of y(t) (and

in particular of ys(t)) based on the chosen model and on the available data.

A natural choice is to set ym(t) as the prediction of the output at time t on

the basis of the data Z t−1 gathered till the previous time step, that is

ym(t) = ŷ(t|t− 1).

For instance, if we like to choose ym(t) on the basis of the minimum mean

square error in the Bayesian setting, one has

ym(t) = E
[
y(t)|Z t−1

]
,
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whose computation requires the knowledge of the probability density of the

process y(t).

In general, given a model M(θ), the prediction error at time t is defined as:

ε(t, θ) = y(t)− ŷ(t|t− 1).

The parametric identification methods based on the prediction error usually

aim at minimizing a cost function

J(ε(t, θ)) = VN(θ,ZN)

where the expression on the right emphasizes the dependence of the cost

function on both the unknown parameters θ and the data set ZN . Thus, the

optimal value of the parameters is given by:

θ̂∗N = argmin
θ∈Θ

VN
(
θ,ZN

)
. (3.7)

In the following, it will be shown how to compute the linear prediction at

minimum mean square error (LMMSE) ŷ(t|t− 1), for the LTI model classes

described in Section 3.2:

y(t) = G(z)u(t) +H(z)e(t) = G(z)u(t) + v(t) (3.8)

where v(t) = H(z)e(t). Since, by construction, G(z) has a delay at least 1,

one has:

ŷ(t|t− 1) = G(z)u(t) + v̂(t|t− 1). (3.9)

Let us suppose that H(z) is an inversely stable filter, i.e. H−1(z) is still

stable. This means that both zeros and poles of H(z) strictly lie inside the

unit circle.

By (3.8), one has

v(t) = y(t)−G(z)u(t). (3.10)

Moreover, since v(t) = H(z)e(t), one may write

v(t) =

∞∑

k=0

hke(t− k) = e(t) +

∞∑

k=1

hke(t− k) , e(t) +m(t− 1)
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where m(t − 1) depends only on data till time t − 1. Since e(t) is not pre-

dictable (and zero mean), the best prediction of v is v̂(t|t − 1) = m(t − 1).

So,

v̂(t|t− 1) = H(z)e(t)− e(t) = (H(z)− 1) e(t).

Since H(z) is invertible, e(t) = H−1(z)v(t) and then

v̂(t|t− 1) =
(
1−H−1(z)

)
v(t).

By substituting in (3.9), and by exploiting (3.10), one has

ŷ(t|t− 1) = G(z)u(t) +
(
1−H−1(z)

)
v(t)

= G(z)u(t) +
(
1−H−1(z)

)
(y(t)−G(z)u(t))

=
(
1−H−1(z)

)
y(t) +H−1(z)G(z)u(t) .

(3.11)

So, the prediction error becomes:

ε(t, θ) = y(t)− ŷ(t|t− 1) = H−1(z)y(t)−H−1(z)G(z)u(t)

= H−1(z) (y(t)−G(z)u(t)) .
(3.12)

In the following, the prediction error will be analyzed for the previously

introduced model classes.

ARX

Let us consider an ARX model. Its transfer functions are:

G(z, θ) =
B(z)

A(z)
, H(z, θ) =

1

A(z)
,

and then,

H−1(z) = A(z), H−1(z)G(z) = B(z).

So, the prediction error has the following form:

ε(t, θ) = A(z)y(t)− B(z)u(t).
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An important property of ARX models is that the prediction error is a linear

function of the parameters. In fact, it is possible to define the regressor as

ϕ(t) = [−y(t− 1) . . . − y(t− na) u(t− 1) . . . u(t− nb)]
T .

By considering the parameter vector θ defined in (3.6), equation (3.4) can be

written as

y(t) = ϕT (t)θ + e(t).

Therefore, the prediction ŷ(t|t− 1) is

ŷ(t|t− 1) = ϕT (t)θ

and the prediction error becomes:

ε(t, θ) = y(t)− ϕT (t)θ.

ARMAX

The transfer functions of an ARMAX model are:

G(z, θ) =
B(z)

A(z)
, H(z, θ) =

C(z)

A(z)
,

and then,

H−1(z) =
A(z)

C(z)
, H−1(z)G(z) =

B(z)

C(z)
.

According to (3.11), the output prediction becomes:

ŷ(t|t− 1) =

(

1− A(z)

C(z)

)

y(t) +
B(z)

C(z)
u(t)

that is,

C(z)ŷ(t|t− 1) = B(z)u(t) + (C(z)− A(z))y(t). (3.13)

Let us sum the term (1 − C(z))ŷ(t|t− 1) two both members of (3.13). One

obtains:

ŷ(t|t− 1) = B(z)u(t) + (1−A(z))y(t) + (1− C(z)) (ŷ(t|t− 1)− y(t))
︸ ︷︷ ︸

−ε(t,θ)

= B(z)u(t) + (1−A(z))y(t) + (C(z)− 1)ε(t, θ). (3.14)
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By the definition of polynomials A, B and C, (3.14) corresponds to the

recursion:

ŷ(t|t− 1) = −a1y(t− 1)− · · · − ana
y(t− na) + b1u(t− 1) + · · ·+ bnb

u(t− nb)

+ c1ε(t− 1, θ) + · · ·+ cnc
ε(t− nc, θ)

= ϕT (t, θ)θ (3.15)

where ϕ(t, θ) is the pseudo-regressor defined as:

ϕ(t, θ) = [−y(t−1) · · ·−y(t−na) u(t−1) . . . u(t−nb) ε(t−1, θ) . . . ε(t−nc, θ)]
T .

So, the prediction error becomes:

ε(t, θ) = y(t)− ϕT (t, θ)θ.

Notice that, the pseudo-regressor depends on the past prediction errors ε(t−
1, θ), . . . , ε(t − nc, θ), and then on the unknown parameter vector θ that

must be estimated. For this reason, the procedure to compute the prediction

error is performed by a pseudo-linear regression. In other word, ε(t, θ) is a

nonlinear function of θ.

OE

OE models have the following transfer functions:

G(z, θ) =
B(z)

F (z)
, H(z, θ) = 1,

and then,

H−1(z) = 1, H−1(z)G(z) =
B(z)

F (z)
.

So, the output prediction is:

ŷ(t|t− 1) = (1− 1)y(t) +
B(z)

F (z)
u(t) =

B(z)

F (z)
u(t),

Let us define

w(t, θ)
△
=
B(z)

F (z)
u(t),
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one has

w(t, θ) = −f1w(t−1, θ)−· · ·−fnf
w(t−nf , θ)+ b1u(t−1)+ · · ·+ bnb

u(t−nb)

and then the prediction satisfies the pseudo-linear regression:

ŷ(t|t− 1) = −f1w(t− 1, θ)− · · · − fnf
w(t− nf , θ)

+b1u(t− 1) + · · ·+ bnb
u(t− nb)

= ϕT (t, θ)θ.

(3.16)

In this case, the pseudo-regressor is:

ϕ(t, θ) = [u(t− 1) . . . u(t− nb) − w(t− 1, θ)− · · · − w(t− nf , θ)]
T .

Therefore, the prediction error turns out to be:

ε(t, θ) = y(t)− ϕT (t, θ)θ.

which is nonlinear in θ.

Notice that w(t− k, θ) = ŷ(t − k|t− k − 1) and hence the pseudo-regressor

can be computed by the previous predictions of the output.

Remark 3.1. Notice that, in general, the prediction ŷ(t|t − 1) and the pre-

diction error ε(t, θ) which form the pseudo-regressors of ARMAX and OE

models, are exact only if the available data at time t − 1 are infinite, i.e.

{u(k), y(k)}t−1
k=−∞

. Of course, one may assume that such data is zero before

a given time (e.g., for t < 0), but in this case the prediction is only subop-

timal. An exception regards the ARX model, where prediction depends only

on na past samples of the output and on nb past samples of the input.

3.3.1 Choice of the cost function

As previously stated, the parameter vector is obtained by minimizing a cost

function VN
(
θ,ZN

)
. A common choice is:

VN
(
θ,ZN

)
=

1

N

N∑

t=1

ℓ(L(z)ε(t, θ))

where
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• ℓ(·) is a scalar function, usually positive. A standard choice is:

ℓ(ε) =
1

2
ε2

which corresponds to the least-square computation of θ.

• L(z) is a filter on the prediction error, which allows to weight some

frequencies, to reduce the high-frequency noise, etc. For LTI models,

the introduction of L(z) is equivalent to filter the input/output data:

L(z)ε(t, θ) = H−1(z)(L(z)y(t)
︸ ︷︷ ︸

−G(z)L(z)u(t)
︸ ︷︷ ︸

)

yf(t) uf(t)

= H−1(z)L(z)(y(t)−G(z)u(t))

So, the introduction of L(z) is equivalent to change the transfer function

of the stochastic channel from H(z) to
H(z)

L(z)
.

3.4 Selection of the optimal model

In this section, the problem of computing the “optimal” parameter vector θ̂∗N

is addressed. So, once the model class has been chosen and a cost function

has been defined, the optimization problem (3.7) must be solved.

Let us start with the easier case which allows a closed-form solution.

3.4.1 Linear regression and least square

As previously reported, the prediction error of an ARX model is

ε(t, θ) = y(t)− ϕT (t)θ.

By choosing the cost function as ℓ(ε) = 1
2
ε2 and L(z) = 1,

VN
(
θ,ZN

)
=

1

2N

N∑

t=1

(y(t)− ϕT (t)θ)2
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one has the least-square criterion

θ̂∗N = argmin
θ
VN
(
θ,ZN

)
. (3.17)

Notice that the cost function is:

VN
(
θ,ZN

)
=

1

2N

(
N∑

t=1

y(t)2 − 2

N∑

t=1

θTϕ(t)y(t) +

N∑

t=1

θTϕ(t)ϕT (t)θ

)

.

(3.18)

To compute the optimal parameter vector, we enforce the gradient of VN
(
θ,ZN

)

to be null:

d

dθ
VN
(
θ,ZN

)
=

1

2N

N∑

t=1

(
−2ϕ(t)y(t) + 2ϕ(t)ϕT (t)θ

)

∣
∣
∣
∣
∣
θ=θ̂∗

N

= 0,

from which it is possible to obtain the so-called normal equations :
(

1

N

N∑

t=1

ϕ(t)ϕT (t)

)

θ =
1

N

N∑

t=1

ϕ(t)y(t). (3.19)

If the matrix

R(N)
△
=

1

N

N∑

t=1

ϕ(t)ϕT (t)

is invertible, the normal equations (3.19) has a unique solution, known as

least-square parametric estimation:

θ̂LSN =

(

1

N

N∑

t=1

ϕ(t)ϕT (t)

)−1

1

N

N∑

t=1

ϕ(t)y(t). (3.20)

The matrix R(N) ∈ IRd×d plays a fundamental role in the parameter estima-

tion of an ARX model. In the following, some properties are reported and

discussed:

• R(N) is the Hessian of VN
(
θ,ZN

)
, that is d2

dθ2
VN
(
θ,ZN

)
. Since the

cost function is the sum of squares, then surely R(N) ≥ 0. In partic-

ular, if R(N) > 0 then R(N) is invertible, and the solution of (3.17)

is unique. Otherwise, the optimization problem has infinite solutions

(non-identifiability condition).
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• R(N) is the sum of N matrices ϕ(t)ϕT (t) of rank 1. Therefore, it holds

rankR(N) ≤ N . If d = na + nb is the number of parameters to be

estimated, in order that R(N) be invertible, it needs N ≥ d, i.e. the

number of input/output data must be greater or equal to the number

of parameters. Notice that this condition is only necessary, but not

sufficient.

• Let P (N) = NR(N). Matrix P (N) can be computed by the following

recursion:

P (t) = P (t− 1) + ϕ(t)ϕT (t).

Of course, increasing the number of terms ϕ(t)ϕT (t), it is more likely

that R(N) becomes invertible. Of course, this heavily depends on the

choice of the input (e.g., try to compute P (t) for a FIR of order 2 with

a constant input...what happens?).

• Elements of R(N) are of the form 1
N

∑N

t=1 y(t− i)y(t−j), 1
N

∑N

t=1 y(t−
i)u(t−j) and 1

N

∑N

t=1 u(t−i)u(t−j), i.e. they are the sample estimates

of the covariance functions Ry(τ), Ryu(τ) and Ru(τ), respectively.

Let us now analyze the consistency of the least-square estimation. Assume

that data are generated by a linear regression with parameter vector θ0:

y(t) = ϕT (t)θ0 + e0(t).

For the moment, no assumption on the signal e0 is enforced. By (3.20),

θ̂LSN =

(

1

N

N∑

t=1

ϕ(t)ϕT (t)

)−1

1

N

N∑

t=1

ϕ(t)(ϕT (t)θ0 + e0(t))

= R(N)−1

(

R(N)θ0 +
1

N

N∑

t=1

ϕ(t)e0(t)

)

= θ0 + R(N)−1 1

N

N∑

t=1

ϕ(t)e0(t)

What is the behavior of the estimation error when the number of data N

goes to infinity? Assume that ϕ(t) and e0(t) are stationary and the ergodicity
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property holds. Then,

lim
N→∞

(θ̂LSN − θ0) = lim
N→∞

R(N)−1 1

N

N∑

t=1

ϕ(t)e0(t)
△
= (R∗)−1

f ∗

where
R∗ , lim

N→∞
R(N) = E

[
ϕ(t)ϕT (t)

]
,

f ∗ , lim
N→∞

1

N

N∑

t=1

ϕ(t)e0(t) = E [ϕ(t)e0(t)]

and the equalities on the right follow from the ergodicity of ϕ(t) and e0(t).

So, if N → ∞ one has θ̂LSN → θ0 (i.e., the least-square estimate is consistent)

if:

i) R∗ is non singular (it depends on the input);

ii) f ∗ = 0 (it depends on the characteristics of e0). This holds, e.g., if the

input u is a deterministic process, or anyway independent from e0, and

in addition, one of the following conditions hold:

– e0(t) is a zero-mean white process;

– na = 0 (FIR model).

If na > 0 and e0 is not white, then, in general, f ∗ 6= 0, and the LS estimate

is not consistent.

3.4.2 Numerical solutions to the optimization problem

In the general case, the minimum of the cost function

VN
(
θ,ZN

)
=

1

N

N∑

t=1

ℓ(ε(t, θ))

cannot be computed analytically. Moreover, in general, such function is non-

convex in parameters, leading to local minima. In this case, the solution

of the optimization problem can be computed through numerical methods

which make use of iterative procedures like the following:

θ̂(i+1) = θ̂(i) + µ(i)f (i).
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The term f (i) denotes the search direction and it is chosen on the basis of

the information on function VN
(
θ,ZN

)
available at the i-th iteration step.

The term µ(i) is computed to provide a decrease of the function, i.e. such

that VN(θ̂
(i+1),ZN) < VN(θ̂

(i),ZN).

It is possible to define three classes of iterative methods, depending on

the choice of the direction f (i):

1. using only values of VN (θ̂
(i),ZN);

2. using values of VN (θ̂
(i),ZN) and of the gradient V ′

N(θ̂
(i),ZN);

3. using values of VN(θ̂
(i),ZN), of V ′

N(θ̂
(i),ZN) and of the Hessian V ′′

N(θ̂
(i),ZN).

A typical example of the third kind is the Newton algorithm, where

f (i) = −
[

V ′′

N

(

θ̂(i),ZN
)]−1

V ′

N

(

θ̂(i),ZN
)

.

This algorithm guarantees convergence in one step (with µ = 1) if the cost

function is quadratic and convex in θ.

If the weighting function ℓ(·) is chosen such that

ℓ(ε(t, θ)) =
1

2
ε2(t, θ)

we obtain the so-called nonlinear least-squares problem:

min
θ

1

2N

N∑

t=1

ε2(t, θ).

In this case, the gradient of VN
(
θ,ZN

)
is

V ′

N

(
θ,ZN

)
= − 1

N

N∑

t=1

ψ(t, θ)ε(t, θ) (3.21)

where ψ(t, θ) = − d
dθ
ε(t, θ).

A common family of iterative algorithms to compute the minimum of a

function has this structure:

θ̂(i+1) = θ̂(i) − µ
(i)
N

[

R
(i)
N

]−1

V ′

N

(

θ̂(i),ZN
)

,

where
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• R
(i)
N is a matrix which changes the search direction;

• µ
(i)
N is the “size” of the step, such that VN(θ̂

(i+1),ZN) < VN(θ̂
(i),ZN).

If R
(i)
N is the identity matrix, the classical gradient method is obtained, which

turns out to be quite inefficient in proximity of the point of minimum. Better

performance are obtained by the Newton method, which corresponds to the

following choice:

R
(i)
N = V ′′

N

(

θ̂(i),ZN
)

.

Notice that, from (3.21) one has:

V ′′

N

(
θ,ZN

)
=

1

N

N∑

t=1

ψ(t, θ)ψT (t, θ)− 1

N

N∑

t=1

(
d

dθ
ψ(t, θ)

)

ε(t, θ),

where d
dθ
ψ(t, θ) is the Hessian of ε(t, θ) (matrix d× d).

Notice that, the computation of d
dθ
ψ(t, θ) can be onerous. In many cases,

it can be avoided since it is sufficient to have a good approximation of

V ′′
N(θ,ZN) in a neighborhood of the minimum (far from the minimum, the

cost function can be rarely approximated by a quadratic function, and then

the gradient and the Newton methods have similar performance). But if the

minimum is in correspondence of a θ0 for which the prediction error ε(t, θ0)

is a white noise, one has

E

[(
d

dθ
ψ(t, θ0)

)

ε(t, θ0)

]

= 0

and then,

V ′′

N

(
θ,ZN

)
≃ 1

N

N∑

t=1

ψ(t, θ)ψT (t, θ).

This approximation of V ′′
N(θ,ZN) leads to the so-called Gauss-Newton method,

which corresponds to:

R
(i)
N =

1

N

N∑

t=1

ψ(t, θ̂(i))ψT (t, θ̂(i))
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If the matrix R
(i)
N is close to singularity, regularization techniques can be

adopted, like e.g., that of Levenberg-Marquardt, where a damping coefficient

λ > 0 is introduced:

R
(i)
N =

1

N

N∑

t=1

ψ(t, θ̂(i))ψT (t, θ̂(i)) + λI

where λ is a scalar used to control the convergence (in this case µ
(i)
N = 1).

Notice that, when λ → 0 the Gauss-Newton method is obtained, while if

λ→ ∞ one has the gradient method.

Let us now focus on how to compute the gradients for some of the model

classes previously introduced. Since ε(t, θ) = y(t) − ŷ(t|t − 1, θ), the above

mentioned methods require the computation of

ψ(t, θ) = − d

dθ
ε(t, θ) =

d

dθ
ŷ(t|t− 1, θ).

For ARMAX models, recall that by (3.13)

C(z)ŷ(t|t− 1) = B(z)u(t) + (C(z)− A(z))y(t)

and hence,

C(z)
∂

∂ak
ŷ(t|t− 1) = −y(t− k), k = 1, . . . , na

C(z)
∂

∂bk
ŷ(t|t− 1) = u(t− k), k = 1, . . . , nb

C(z)
∂

∂ck
ŷ(t|t− 1) + z−kŷ(t|t− 1) = y(t− k), k = 1, . . . , nc

The previously three equation families can be compactly represented as

C(z)
d

dθ
ŷ(t|t− 1) = ϕ(t, θ),

that is
C(z)ψ(t, θ) = ϕ(t, θ).

So, ψ(t, θ) is obtained by filtering the pseudo-regressor ϕ(t, θ) by the filter
1

C(z)
. In practice, since C(z) is unknown, at each instant the current estimate

of this polynomial will be used (i.e., the coefficients of C(z) will be those

contained in the corresponding part of the estimated vector θ̂(i)).



24 CHAPTER 3. PARAMETRIC IDENTIFICATION

In a similar way, in case of OE models, the predictor will satisfy:

F (z)ŷ(t|t− 1) = B(z)u(t),

and then,

F (z)
∂

∂bk
ŷ(t|t− 1) = u(t− k), k = 1, . . . , nb

F (z)
∂

∂fk
ŷ(t|t− 1) + z−kŷ(t|t− 1) = 0, k = 1, . . . , nf

Remembering that for an OE model ŷ(t− k|t− k − 1) = w(t− k|t− k − 1),

and the pseudo-regressor is

ϕ(t, θ) = [u(t− 1) . . . u(t− nb) − w(t− 1, θ)− · · · − w(t− nf , θ)]
T ,

one has
F (z)ψ(t, θ) = ϕ(t, θ).

Of course, the filtering procedure of the pseudo-regressor needs an initial

condition. In general, the choice ϕ(0, θ) = 0 is not the best one. A possible

alternative is to set
ϕ(0, θ) = η

and to include η in the vector parameter θ to be estimated.

3.5 Model quality assessment

As reported in the identification procedure of Section 3.1, once a model has

been identified, it is necessary to validate it, that is to evaluate if it is coherent

with the available information on the system (a-priori knowledge, data, etc.),

and if it can be effectively used for the purpose it has been built.

Quality of a mathematical model will also depend on the specific appli-

cation at hand and how such model will be used. For instance, a model

used to design a feedback control system needs different requirements with

respect to one used to predict the output in given working conditions. Nev-

ertheless, there exist some techniques to evaluate the model quality which

can be applied in general. In the following, some of these techniques will be

described.
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In the general scheme reported in Fig. 3.1, it can be noticed that one of

the elements to be reconsidered during the validation phase is the choice of

the model class. Of course, if some a-priori information are available about

the system to be identified, such information must be used to choose the

proper model class. In particular, it can be chosen:

• the type of model (linear or nonlinear, input/output or state-space,

gray-box or black-box, etc.);

• the structure of the model (e.g., for LTI systems: ARX, ARMAX, OE,

BJ, etc.);

• the number of parameters to be estimated.

There are several aspects to consider when the model class is chosen. In

general, the model quality can be quantitatively measured through a suitable

index J . Usually, such index is composed of two parts:

J = JB + JV

where JB represents a bias term (depending on the chosen model class, but

not on the data), and JV is a variance term (it depends on the data and the

dimension of the parameter vector). In other words, JB takes into account

the “distance” between the chosen model class and the system which has

generated the data, while JV is related to the variance of the estimation

error θ − θ̂N , which usually grows with the number of parameters d to be

estimated (for the same length N of the available data). This means that a

model rich and flexible (i.e., with a complex structure and many parameters)

will lead to a low bias error but to a large variance error. On the contrary, a

simple model favors JV with respect to JB.

One more interesting aspect regards the computational burden to compute

a model. A complex model or a complex cost function VN (θ,ZN) might

need high computational resources to estimate the parameter vector. As

previously stated, a fundamental aspect regards the use of the estimated
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model: complex models could be difficult to simulate, the control system

design might becomes too complex, etc.

So, the final choice of the model class will be a trade-off between the

previously described aspects. The evaluation of such aspects may take into

account several features, including:

• a-priori information on the system;

• preliminary analysis of data (before computing the estimate);

• comparisons of various model structures;

• a-posteriori model validation.

3.5.1 Prior knowledge

Prior knowledge on the system is strictly related to the specific problem.

One may choose to favor physical aspects (less parameters, models adapted

to the system at hand) or a black-box model (simpler from an algorithmic

viewpoint). Nonlinearities (usually a-priori known at least approximately)

can be considered or not, and data can be transformed (e.g., filtered) before

proceeding to the estimation phase. In any case, a golden rule is to start

considering simple structures (principle of parsimony).

3.5.2 Data analysis

There are several methods to estimate the order of a linear system (and then

of the chosen model class):

• using a non-parametric frequency estimation, for instance through spec-

tral analysis, to find resonance peaks, bandwidth, etc;

• adding to the model a new variable y(t−n−1) or a measured noise w(t),

and analyze the correlation with y(t) (if the correlation is negligible, it

is not convenient to increase the order of the model);
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• studying the condition number of the matrix 1
N

∑N

t=1 ψ(t, θ)ψ
T (t, θ)

when computing the estimate with the Gauss-Newton methods (see

Section 3.4.2): if such matrix is close to be singular, this means that

there are some directions in the regressor space for which ψ(t, θ) is

almost zero, and then there is a redundancy in the parameter vector.

In this case, it is convenient to reduce the model order.

3.5.3 Comparison between different model structure

In general, the quality of an identified model is evaluated on the basis of its

capacity to “reproduce the data” generated by the unknown system. But

what does “reproduce the data” mean? A possible answer can be given by

analyzing its k-step ahead predictive capacity. Two main cases are:

k = 1 =⇒ ŷ(t|t− 1) = (1−H−1(z, θ̂N ))y(t) +H−1(z, θ̂N )G(z, θ̂N )u(t)

k = ∞ =⇒ ŷsim(t) = G(z, θ̂N )u(t)

When k = ∞ we talk about simulation, because the system output ŷsim(t)

is computed by simulating the identified model G(z, θ̂N ) with the input u(t).

Clearly, the predictive capacity in simulation is a stronger requirement than

prediction, since it does not use the knowledge of the past system output.

A first measure of the quality of a model is given by the value of the cost

function for the optimal parameter vector:

VN

(

θ̂N ,ZN
)

=
1

N

N∑

t=1

(y(t)− ŷ(t|t− 1))2

Of course, the less this value the more the model can reproduce the data.

However, by increasing the complexity of the model (and hence the number

of parameters d = dim(θ)) the cost always decreases. Let us consider two

model classes of increasing complexity

M1 ⊂ M2,

that is, the case for which Θ1 ⊆ IRn1 , Θ2 ⊆ IRn2, with n2 > n1, and Θ1 can be

obtained by a reduction of Θ2 to IRn1 (i.e., by setting to zero the exceeding
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knee

VN (θ̂N ,ZN )

d

Figure 3.7: Minimal value of the cost function for different number of pa-

rameters.

parameters). One has,

VN(θ̂
(1)
N ,ZN) ≥ VN(θ̂

(2)
N ,ZN)

where θ̂
(1)
N and θ̂

(2)
N are the optimal parameters for M1 and M2, respectively.

In Fig. 3.7, a qualitative plot of the cost function for different number of

parameters d is reported. Until a given value of d, the cost function decreases

significantly, thanks to a better ability of the model to reproduce data. On

the contrary, for greater values of d, the cost function decreases slowly, since

the new parameters allow a better reproduction of the noise affecting data

(overfit). Of course, such contribution is useless, since the noise for different

realizations is unpredictable. The knee of the curve can be used as a heuristic

method to find the best order for the chosen model class.

A quantitative approach consists in choosing the optimal number of pa-

rameters on the basis of suitable numerical criteria. The basic idea is to

associate a penalty to each parameter, such that the final cost increases for

increasing model order, in the presence of overfit. In particular, inside a given

model class M, the optimal order d∗ will be that minimizing the following
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function

J̄ (M) = VN(θ̂N ,ZN)(1 + U(θ)).

Depending on the function U(θ), different criteria can be defined. The most

used are:

• AIC, Akaike Information Criterion, where

U(θ) =
2d

N
;

• FPE, Final Prediction Error criterion, where

U(θ) =
2d

N − d
;

• MDL, Minimum Description Length criterion, where

U(θ) =
logN

N
d.

For “low” values of d, the cost J̄ is decreasing (since VN(θ̂N ,ZN) de-

creases for increasing d). On the contrary, by increasing the parameter num-

ber d, the cost grows because VN(θ̂N ,ZN) is almost constant and the term

U(θ) dominates, see Fig. 3.8.

Till now, all the reasonings were related to a comparison between different

structures of the same cost function VN(θ̂N ,ZN) used to obtain the optimal

model inside a given class. Of course, it is possible to use different cost

functions for model estimation and comparison. A classical example is to

use the simulation error to compare different models,

Jsim =
1

N

N∑

t=1

(y(t)− ŷsim(t))
2 =

1

N

N∑

t=1

(

y(t)−G(z, θ̂N )u(t)
)2

. (3.22)

Often, when comparing different model classes, it is convenient to use the

percentage FIT index, defined as

FIT =

{

1− Jsim
1
N

∑N

t=1 (y(t)− ȳ)2

}

× 100
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J̄

d

Figure 3.8: Plot of the cost function J̄ .

where ȳ = 1
N

∑N

t=1 y(t) is the sample mean of the output. 100% FIT de-

notes that the estimated model can perfectly reproduce data in simulation.

This corresponds to the ideal case where data are generated exactly by the

identified transfer function G(z, θ̂N ) in absence of noise.

Notice that, a high FIT in simulation (i.e. a small error Jsim) is a stronger

requirement with respect to the minimization of VN(θ̂N ,ZN), and so it is a

harder test to assess the quality of the identified model. An exception is

related to the OE model class, where ŷsim(t) = ŷ(t|t− 1).

Comparison with different data

A common measure of the quality of the identified model is its ability to

reproduce different data sets with respect to that used to estimate the pa-

rameters. In fact, a model is not identified to reproduce the data set ZN

used in the estimation procedure, but to represent the system behavior in

different working conditions (e.g., for input signals different to that used in

ZN).

To compare models with different structures, a good practice is to use a

different data set with respect to that used for estimation. So, the available

data set must be divided in two subsets:
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• ZN
1 = {u1(1), y1(1), . . . , u1(N), y1(N)}: estimation data;

• ZM
2 = {u2(1), y2(1), . . . , u2(M), y2(M)}: validation data.

Estimation data are used to estimate the parameter θ, by using the preferred

identification technique (e.g., one of those described in this chapter). To

highlight the dependence on the estimation data, let us denote the computed

parameter vector as θ̂N(ZN
1 ). Finally, one can assess the quality of the iden-

tified model through a quantitative criterion based on the validation data

ZN
2 . The straightforward method is to use the 1-step ahead prediction error

VN(θ̂N(ZN
1 ),ZM

2 ) =
1

M

M∑

t=1

(y2(t)− ŷ2(t|t− 1))2

where the subscript 2 in the right expression means that the data used to

compute the cost function are referred to the validation set ZM
2 . In particular,

notice that the prediction ŷ2(t|t− 1) is computed employing the second data

set, by the model θ̂N(ZN
1 ), that is

ŷ2(t|t−1) =
[

1−H−1(z, θ̂N (ZN
1 ))
]

y2(t)+H
−1(z, θ̂N (ZN

1 ))G(z, θ̂N (ZN
1 ))u2(t).

Clearly, different cost functions can be chosen, like Jsim defined in (3.22). If

only one data set is available, it is a good practice to divide it in two subsets

to be used for estimation and validation, respectively. In case of few available

data, it is preferred to use the larger subset for identifying the model, in order

to obtain a sufficiently accurate model estimation.

3.5.4 Model validation: residual analysis

An important role in model validation is given by the prediction errors or

residuals :

ε(t, θ̂N) = y(t)− ŷ(t|t− 1).

Residuals represents the part of data that a model is not able to reproduce.

For this reason, analyzing their statistical properties may give some informa-
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tion about model quality. In particular, let us consider:

R̂N
εu(τ) =

1

N − τ

N−τ∑

t=1

ε(t+ τ)u(t), −M ≤ τ ≤M (3.23)

R̂N
ε (τ) =

1

N − τ

N−τ∑

t=1

ε(t+ τ)ε(t), 1 ≤ τ ≤M (3.24)

where M is an integer greater than 1 and typically M ≪ N . Of course,

R̂N
εu(τ) and R̂N

ε (τ) are estimates of the cross covariance function between ε

and u, and of the covariance function of residuals ε, respectively. Evidently,

both functions must be “small” for the following reasons.

• Residuals must not depend on the peculiar data set employed. In par-

ticular, they must not be correlated with the input, otherwise the model

quality may change for different input. For this reason, it is required

that RN
εu(τ) be small. One more reasoning is the following: if there is a

dependence between ε and u, then there is a contribute on the output

y which derives from the input u and which is not been taken by the

identified model. So, the identified model can be improved.

• If the residuals are correlated, then a part of ε(t) can be foreseen on

the basis of Z t−1, i.e. on the data available till the previous time step.

Also in this case, the model can be improved.

From a theoretical viewpoint, if we assume that data are generated by a

model belonging to the chosen LTI model class, then the following equation

really holds

y(t) = Go(z)u(t) +Ho(z)e(t).

for some Go(z), Ho(z). If the identification algorithm is able to estimate

the exact parameters of the model (in principle, this is possible under some

hypothesis if the number of data N tends to infinity), by using (3.12) the

prediction error becomes

ε(t) = H−1
o (z) (y(t)−Go(z)u(t))

H−1
o (z) (Go(z)u(t) +Ho(z)e(t) −Go(z)u(t)) = e(t).
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In other words, in case of perfect identification, the prediction error is a white

stochastic process, and then Rε(τ) = 0 for τ 6= 0. For this reason, the value

of the cost function VN

(

θ̂N ,ZN
)

(also knows as loss function) is an estimate

of the variance σ2
e of the process e(t).

Similarly, it can be stated that in the ideal case, ε(t) must be not corre-

lated with input u(t) (if u(t) is a stochastic process, it is sufficient that it is

not correlated with e(t)), and hence Rεu(τ) = 0, ∀τ .
Since (3.23)-(3.24) are only estimates of the real covariance functions,

it is not reasonable to require they are exactly zero. For this reason, it is

sufficient they are small. But how can we quantify these reasonings? There

exist some statistical tests able to assess (with a given confidence level) if a

sequence can be interpreted as a realization of a white noise. Let us consider

the case R̂N
ε (a similar reasoning can be repeated for R̂N

εu). Let us suppose

that the residuals {ε(t)}Nt=1 are really white, with variance σ2
e
. Then, it can

be proved that asymptotically (i.e., for N → ∞) the vector

EM =
√
N










R̂N
ε (1)

R̂N
ε (2)
...

R̂N
ε (M)










has a Gaussian distribution, with zero mean and covariance matrix σ4
eI. So,

a possible whiteness test on {ε(t)}Nt=1 can be performed, by checking that for

any τ 6= 0, the estimated covariance R̂N
ε (τ) belongs to a suitable confidence

interval [−γε, γε]. The size of this interval can be computed from the desired

confidence level. For instance, for 99%-test (i.e., accepting a probability to

fail equal to 1%) the threshold is

γε =
α√
N
RN

ε (0)

where α is such that P (|x| < α) = 0.99, with x normal random variable. To

compute α in Matlab, one can use the function erfinv:

α =
√
2 erfinv(0.99) = 2.58.
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3.6 Input selection

In some cases, the user is free to choose the input to apply to the system to

gather data for identification. Such a choice may strongly affect the quality

of the identification procedure. For this reason, it is convenient to consider

the following aspects.

• The asymptotic characteristics of the estimated parameter vector do

not depend on the waveform of the input, but only on its frequency

content (spectrum). In particular, the more the input power (i.e. the

signal-to-noise ratio), the less the estimate variance.

• Due to physical constraints (e.g., saturations), the input must be bounded.

It is important to take this aspect into account, and to employ the sat-

urated input for model estimation.

• Input signal must have a considerable frequency content in the band of

interest. The idea is to choose an input with a flat spectrum in such a

band.

Clearly, there are some contrasting requirements. The aim is to obtain the

greatest input power (in the frequency band of interest) respecting the en-

forced bounds. In the following, some typical input signals used for system

identification are reported.

White noise. It has a flat spectrum and, in principle, if suitably filtered it

allows to obtain any other spectrum. The constraint on its maximum

amplitude ū can be respected by discarding the samples with an ampli-

tude greater than that limit. For Gaussian white noise, if its standard

deviation σ is chosen such that 3σ = ū, such a procedure will lead to

small spectra distortions.

Random Binary Sequence (RBS). It is a random signals which may as-

sume only two values. For instance, it can be generated by taking the

(scaled) sign of a Gaussian white noise.
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Pseudo-Random Binary Sequence (PRBS). It is a periodic signal, with

similar characteristics of a white noise. Actually, it is generated through

a deterministic algorithm, but it is difficult to predict. If M is the pe-

riod, the spectrum is composed of M impulse of the same amplitude.

With respect to the white noise, the properties of non correlation hold

not only asymptotically, but for any set of a length which is an integer

multiple of the period.

Sum of sinusoids. This signal has the form:

u(t) =

d∑

k=1

Ak sin(ωkt+ φk).

Also in this case, the spectrum is composed of a set of impulse at

frequency ωk. By changing the parameters d, ωk, φk, it is possible to

concentrate the signal power at fixed frequencies.

Chirp. A chirp signal is a sinusoid whose frequency changes with continuity

inside an interval [ω1, ω2], in a given time period 0 ≤ t ≤M :

u(t) = A cos

(

ω1t + (w2 − ω1)
t2

2M

)

.

Notice that, some of the previous inputs are periodic, other not. A pe-

riodic signal has the drawback to excite only M distinct frequencies. On

the other side, at least two benefits can be found by using from the use of

periodic inputs. First, it is possible to averaging the output among periods,

and working with the mean data. In this case, the signal-to-noise ratio is

increased by a factor equal to the number of periods used. Moreover, it is

possible to estimate the noise affecting the output, since the difference be-

tween the output at various time steps is due uniquely to noise (once the

transient is over).

If input/output data are not zero mean, a good practice is to remove mean

from data before estimation. In general, this operation helps improving the

performance of the estimated model.


