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4.7 Nonlinear State Estimation

In this section, we address the problem of state estimation for nonlinear

stochastic systems. Let us consider the system







x(t + 1) = f (x(t), u(t), w(t))

y(t) = h (x(t)) + v(t)
(4.70)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is a known deterministic input,

y(t) ∈ Rp is the output, w(t) ∈ Rd is the process disturbance and v(t) ∈ Rp

is the measurement noise. The functions f : Rn × Rm × Rd → Rn and

h : Rn → Rp are assumed to be known, continuous and differentiable. For

the process disturbance w(t), measurement noise v(t) and initial state x(0)

we enforce the same Assumption 4.1 as in the linear setting.

The problem we want to solve is the same as Problem 4.1: find an estimate

of x(t) based on input-output measurements up to time t. As we know, this

is a Beyesian estimation problem, being both the unknown vector x(t) and

the data Y t random variables. With respect to the linear case, the main

difficulty lies in the fact that the functions f(·) and h(·) can be any C1

nonlinear mapping. Therefore, even if we restrict our attention to the LMSE

estimate, the relevant covariance matrices at time t cannot be expressed only

in terms of covariance matrices at previous times, because they will depend

also on higher order moments (through the nonlinear model functions).

Since the exact solution of the LMSE problem is intractable, a wide vari-

ety of approximations have been proposed in the literature. It is important

to keep in mind that all these techniques do not provide the actual LMSE

state estimate, and hence they must be tested in simulations and real-world

experiments in order to assess their performance in the specific application

at hand. The most popular approach is the one based on the linearization of

the model equations, which is known as Extended Kalman Filter (EKF).
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4.7.1 The Extended Kalman Filter

The EKF is a recursive procedure based on the same prediction-correction

approach adopted in the linear KF. The notation adopted is the same as in

Section 4.3, although both x̂(t|t) and P (t|t) will end up to be only approx-

imations of the true LMSE state estimate and covariance of the estimation

error, respectively. We start by deriving the equations of the prediction step.

4.7.2 The EKF prediction step

Let x̂(t|t) and P (t|t) be given. The objective is to compute the 1-step ahead

prediction x̂(t+1|t) and the corresponding error covariance P (t+1|t). To do

this, we write the Taylor expansion of f(x, u, w) around the nominal values

x = x̂(t|t), u = u(t) (recall that u(t) is known at every time t) and w = 0

(being E [w(t)] = 0). Then, one has

f(x, u, w) =f(x̂(t|t), u(t), 0) +
∂f

∂x
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where the last term contains all the terms of degree equal or higher than 2

in the involved variables. The main idea is that, if these terms are small,

they can be neglected with respect to the linear terms. Hence, by doing so,

we obtain the following approximated version of the first equation in (4.70)

x(t + 1) %f(x̂(t|t), u(t), 0) +
∂f

∂x

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

(x(t)− x̂(t|t)) +
∂f

∂w

∣
∣
∣
∣
∣x=x̂(t|t)

u=u(t)
w=0

w(t)

(4.71)

In order to obtain x̂(t + 1|t), we have to replace x(t) and w(t) in (4.71)

with their best estimates based on the data available up to time t, which

are clearly x̂(t|t) and 0, respectively (recall that being w(t) white, its best
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prediction is equal to the a priori expected value). Hence, one gets

x̂(t+ 1|t) = f(x̂(t|t), u(t), 0) (4.72)

which turns out to be the first equation of the EKF prediction step. In order

to update the covariance matrix, let us introduce the following notation for

the Jacobian matrices of f(·) with respect to x and w

F (t) =
∂f

∂x

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

∈ R
n×n

G(t) =
∂f

∂w

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

∈ R
n×d

Then, by exploiting again (4.71) and (4.72), one gets

P (t+ 1|t) = E
[

(x(t + 1)− x̂(t+ 1|t)) (x(t + 1)− x̂(t+ 1|t))T
]

% E [{f(x̂(t|t), u(t), 0) + F (t)(x(t)− x̂(t|t)) +G(t)w(t)

−f(x̂(t|t), u(t), 0)} {· · · }T
]

=

= E
[

{F (t)(x(t)− x̂(t|t)) +G(t)w(t)} {· · · }T
]

=

= F (t)P (t|t)F (t)T +G(t)QG(t)T .

4.7.3 The EKF correction step

Let x̂(t+ 1|t), P (t+ 1|t) and y(t+ 1) be given. Recall that

y(t+ 1) = h(x(t+ 1)) + v(t+ 1) (4.73)

Let us write the Taylor expansion of h(x) around the nominal value x =

x̂(t+ 1|t) (the best available guess of x(t+ 1) at time t). One has

h(x) = h(x̂(t+ 1|t)) +
∂h

∂x
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∣
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(4.74)
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where the last term contains all the terms of order equal or higher than 2 in

the error x − x̂(t + 1|t). As in the prediction step, we define the Jacobian

matrix

H(t+ 1) =
∂h

∂x

∣
∣
∣
∣
∣
x=x̂(t+1|t)

∈ R
p×n.

By using the expansion (4.74) into (4.73) and neglecting higher order terms,

we get

y(t+ 1) % h(x̂(t+ 1|t)) +H(t+ 1)(x(t+ 1)− x̂(t + 1|t)) + v(t+ 1) (4.75)

Now, denote the prediction error as

d(t+ 1) = x(t + 1)− x̂(t+ 1|t) (4.76)

and set m(t + 1) = y(t+ 1)− h(x̂(t+ 1|t)). Then, (4.75) becomes

m(t + 1) = H(t+ 1)d(t+ 1) + v(t+ 1). (4.77)

By noticing that d̂(t+ 1|t) = x̂(t+ 1|t)− x̂(t+ 1|t) = 0 and

E
[

(d(t+ 1)− d̂(t+ 1|t))(d(t+ 1)− d̂(t+ 1|t))T
]

= E
[

(x(t+ 1)− x̂(t + 1|t))(x(t+ 1)− x̂(t+ 1|t))T
]

= P (t+ 1|t)

one can apply the correction step of the standard Kalman filter to the linear

output equation (4.77) (observe that m(t+1) is known). Therefore, one gets

d̂(t + 1|t+ 1) = d̂(t+ 1|t) +K(t + 1)
(

m(t + 1)−H(t+ 1)d̂(t+ 1|t)
)

= K(t + 1)(y(t+ 1)− h(x̂(t+ 1|t))).

From (4.76), one has d̂(t+ 1|t+ 1) = x̂(t+ 1|t+ 1)− x̂(t+ 1|t), which leads

to the first EKF correction equation

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) +K(t + 1)(y(t+ 1)− h(x̂(t+ 1|t))) (4.78)

where K(t + 1) is defined according to the standard KF applied to (4.77),

i.e.

K(t+1) = P (t+1|t)H(t+1)T
[

H(t+ 1)P (t+ 1|t)H(t+ 1)T +R
]−1

(4.79)
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and similarly one has that the update of the covariance matrix P (t+1|t+1)

is given by

P (t+ 1|t+ 1) = P (t+ 1|t)
[

I −H(t+ 1)TK(t + 1)T
]

. (4.80)

Hence, by assuming to initialize the EKF recursion in the same way as in

the KF, the equations of the EKF algorithm can be summarized as follows.

Initialization: x̂(0|− 1) = m0, P (0|− 1) = P0

For t = 0, 1, 2, · · ·

K(t) = P (t|t− 1)H(t)T [H(t)P (t|t− 1)H(t)T +R]−1 (4.81)

x̂(t|t) = x̂(t|t− 1) +K(t)(y(t)− h(x̂(t|t− 1))) (4.82)

H(t) =
∂h

∂x

∣
∣
∣
∣
∣
x=x̂(t|t−1)

(4.83)

P (t|t) = P (t|t− 1)[I −H(t)TK(t)T ] (4.84)

x̂(t + 1|t) = f(x̂(t|t), u(t), 0) (4.85)

F (t) =
∂f

∂x

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

, G(t) =
∂f

∂w

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

(4.86)

P (t+ 1|t) = F (t)P (t|t)F (t)T +G(t)QG(t)T (4.87)

end

4.7.4 Properties of the EKF

It is worth pointing out the main differences between the EKF and the KF

derived for linear systems.

First, it is necessary to stress that the estimates x̂(t|t) and x̂(t + 1|t)
provided by the EKF are not the LMSE estimates of x(t) and x(t + 1),

respectively, based on Y t. This is due to the approximations introduced in

the linearization of the functions f(x, u, w) and h(x). Similarly, P (t|t) and
P (t+ 1|t) are not the covariance matrices of the estimation errors, but only

their approximations. How good such approximations are may depend on
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several factors, including the initial conditions x̂(0|−1), P (0|−1). Therefore,
special care must be taken in the choice of such initial values, by exploiting

the available a priori knowledge on the variables to be estimated.

Another main difference with the linear case is that the matrices F (t),

G(t) and H(t) depend on the current estimates x̂(t|t) and x̂(t + 1|t) (that

are the values at which the Jacobian matrice are computed), which in turn

depend on the data Y t. As a consequence, the matricesK(t), P (t|t), P (t+1|t)
cannot be precomputed as in the linear case. Moreover, they depend on the

specific data realization processed, which means that also the uncertainty

associated to the estimates actually depend on the data set. In other words,

we cannot assess the quality of the estimates before computing them.

In general, there are no guarantees that the estimates provided by the

EKF are satisfactory. Loosely speaking, neglecting the higher order terms is

reasonable only if the estimation errors are “small”, which clearly leads to a

circular reasoning. The possible undesired behaviors that can be observed can

be divided in two types: divergence occurs when the error grows arbitrarily,

i.e.

lim
t→∞

||x(t)− x̂(t|t)|| = +∞.

On the other hand, even if the error remains bounded, one may face incon-

sistency of the estimates. This happens if

E
[

(x(t)− x̂(t|t))(x(t)− x̂(t|t))T
]

' P (t|t)

that is, if the actual uncertainty is much larger than the one evaluated by

the EKF. In such a case, one may make overoptimistic statements about

the quality of the estimates delivered by the filter. Said another way, the

true state values may be significantly faraway from the confidence intervals

derived from the filter estimates.

State estimation for nonlinear dynamic systems is still an active research

area. Whenever the solution provided by the EKF is not satisfactory, one may

resort to a variety of alternatives that have been proposed in the literature.

Some of them are briefly presented in Sections 4.9 and 4.10.



42 CHAPTER 4. STATE ESTIMATION

4.8 The Continuous-Discrete Kalman Filter

In many real-world applications, the system dynamics are described by a

set of continuous-time differential equations, while the output measurements

are available only at discrete time instants. For example, this is the case of

sampled-data systems, in which the physical behavior is usually described

by a state-space continuous-time model, while the sensor measurements are

functions of the state vector, sampled at a given clock rate or made available

at asynchronous time instants. For a linear time-invariant system, this setting

is captured by the equations






ẋ(t) = Ax(t) +Bu(t) +Gw(t)

y(tk) = Cx(tk) + v(tk) k = 0, 1, 2, . . .

where t0 < t1 < t2 < . . . are the discrete time instants at which mea-

surements are collected. It is worth observing that in this case w(t) is a

continuous-time stochastic process which is assumed to be stationary and

white. This means that its covariance function is given by E
[

w(t+ τ)wT (t)
]

=

Qδ(τ), where Q is the spectral density matrix. We also set E [w(t)] = 0 and

make the usual assumptions on the output noise, i.e., v(tk) ∼WP (0, R) and

it is independent from w(t).

The LMSE state estimates for system (4.8) is given by the following

recursive equations:

Initialization: x̂(t0|t−1) = m0, P (t0|t−1) = P0

For k = 0, 1, 2, · · ·

K(tk) = P (tk|tk−1)C
T [CP (tk|tk−1)C

T +R]−1 (4.88)

x̂(tk|tk) = x̂(tk|tk−1) +K(tk)(y(tk)− Cx̂(tk|tk−1)) (4.89)

P (tk|tk) = P (tk|tk−1)[I − CTK(tk)
T ] (4.90)

d

dt
x̂(t|tk) = Ax̂(t|tk) +Bu(t) , for t ∈ [tk, tk+1) (4.91)

d

dt
P (t|tk) = AP (t|tk) + P (t|tk)AT +GQGT , for t ∈ [tk, tk+1) (4.92)

end
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Algorithm (4.88)-(4.92) is known as the Continuous-Discrete Kalman Fil-

ter (CDKF). While equations (4.88)-(4.90) are the same as in the standard

discrete-time Kalman filter, the equations of the prediction step (4.91)-(4.92)

are a set of differential equations which allow one to compute the prediction

of the state and the associated covariance matrix of the prediction error along

the time interval t ∈ [tk, tk+1), until the next measurements y(tk+1) becomes

available.

It is worth observing that (4.91) are n first-order linear differential equa-

tions in the state components, while (4.92) correspond to n(n+1)
2 first-order

linear differential equations in the independent entries of P (t|tk) (recall that
P is symmetric). Hence the solutions of these two systems of differential

equations can be computed analytically. It must be also stressed that the

resulting state estimate trajectories are piecewise continuous, as x̂(t|tk) is

continuous in the interval t ∈ (tk, tk+1), while jumps occur at the discrete

time instants tk due to the correction step (the same occurs also for the

entries of P ).

Clearly, a possible alternative to the CDKF described above is to first

discretize the continuous-time dynamics of system (4.8) and then apply the

discrete-time Kalman filter to the discretized system. This usually works well

for linear systems, which can be discretized exactly, i.e., without introducing

errors in the dynamics due to the discretization. On the other hand, the state

estimation problem becomes much more challenging when dealing with non-

linear systems. In particular, if the time interval between two time samples

tk and tk+1 is long (compared to the time constants of the system dynamics),

a poor discretization of the system dynamics may lead to significant errors,

which in turn can generate inconsistency of the estimates or even divergence

of the filter.

A possible solution of the state estimation problems in the case of sampled-

data nonlinear systems is provided by the Continuous-Discrete Extended

Kalman Filter (CDEKF) described next.
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Consider the system






ẋ(t) = f (x(t), u(t), w(t))

y(tk) = h (x(tk)) + v(tk)
(4.93)

in which w(t) and v(tk) satisfy the same assumptions as in the linear case

treated above. Then, the equations of the CDEKF algorithm are given by

Initialization: x̂(t0|t−1) = m0, P (t0|t−1) = P0

For k = 0, 1, 2, · · ·

K(tk) = P (tk|tk−1)H
T (tk)[H(tk)P (tk|tk−1)H

T (tk) +R]−1 (4.94)

x̂(tk|tk) = x̂(tk|tk−1) +K(tk)(y(tk)− h(x̂(tk|tk−1)) (4.95)

P (tk|tk) = P (tk|tk−1)[I −HT (tk)K(tk)
T ] (4.96)

d

dt
x̂(t|tk) = f(x̂(t|tk), u(t), 0) , for t ∈ [tk, tk+1) (4.97)

d

dt
P (t|tk) = F (tk)P (t|tk) + P (t|tk)F T (tk) +G(tk)QGT (tk) , (4.98)

for t ∈ [tk, tk+1)

end

where

F (tk) =
∂f

∂x

∣
∣
∣
∣
∣x=x̂(tk |tk)

u=u(tk)
w=0

∈ R
n×n (4.99)

G(tk) =
∂f

∂w

∣
∣
∣
∣
∣x=x̂(tk |tk)

u=u(tk)
w=0

∈ R
n×d (4.100)

H(tk) =
∂h

∂x

∣
∣
∣
∣
∣
x=x̂(tk |tk−1)

∈ R
p×n (4.101)

As in the linear case, the correction step composed by equations (4.94)-(4.96)

are analogous to those of the discrete-time EKF. The prediction step (4.97)-

(4.98) consists of n nonlinear differential equations in the state predictions

x̂(t|tk) and n(n+1)
2 linear differential equations in the entries of P (t|tk). Such
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equations must be integrated over the interval t ∈ [tk, tk+1). In particular,

the crucial task is the integration of the nonlinear equations (4.97). In fact,

the main reason why the CDEKF is often successfully employed in applica-

tions involving sampled-data systems is that it allows one to precisely evolve

the state estimates between two consecutive measurements, through precise

numerical integration of the prediction step equations.

Clearly, the same observations made for the EKF in the discrete-time

setting, apply also to the CDEKF. In particular, there is no guarantee that

the expected value of the state estimation error converge to zero, nor that

P (t|tk) be equal to the covariance matrix of the estimation error. In this

respect, the role of the initial conditions x̂(t0|t−1) and P (t0|t−1) may be

crucial to promote a satisfactory behavior of the filter.

Remark 4.2. In principle, the Jacobian matrices (4.99) and (4.100) could be

computed by linearizing the system around the current prediction x̂(t|tk) and
the current input u(t), instead of their corresponding values at the beginning

of the integration interval [tk, tk+1). Notice however that this would make

the matrices F and G time-varying and, more importantly, dependent on the

variables x̂(t|tk) themselves! As a consequence, the equations (4.97)-(4.98)

would be coupled, that is they would become a unique system of nonlinear

differential equations in n + n(n+1)
2 variables. The resulting increase of the

computational burden may not be worth the advantage provided by a more

precise approximation of the covariance matrix of the estimation errors.

4.9 The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an algorithm for state estimation

of nonlinear systems, based on the unscented transform. The key idea is

to use a set of points in the state space, in order do match some relevant

statistics of the a posteriori pdf of the state fx(x(t)|Y t). Such points are

called sigma points and are denoted hereafter by X(i) ∈ Rn, for i = 1, . . . , p.

To each sigma point we associate a scalar weight W (i) ∈ R, i = 1, . . . , p, such
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that
∑p

i=1W
(i) = 1. The sigma points are chosen in such a way that their

(weighted) sample statistics are equal to the selected statistics of the target

a posteriori pdf.

Example 4.1. Let x ∈ Rn be a Gaussian random variable, x ∼ N(m,P ).

Let us choose p = 2n sigma points as

X(i) = m+ (
√
nP )i i = 1, · · · , n

X(i) = m− (
√
nP )i i = n+ 1, · · · , 2n

W (i) =
1

2n
i = 1, · · · , 2n

where (M)i denotes the i-th column of matrix M , while for M and U square

matrices,
√
M = U means that M = UUT . It is easy to show that the

weighted mean and covariance matrix of the sigma points match those of the

original Gaussian pdf, i.e.

2n
∑

i=1

W (i)X(i) = m,

2n
∑

i=1

W (i)(X(i) −m)(X(i) −m)T = P.

We aim to use the sigma points to propagate the relevant statistics of a

random variable that undergoes a nonlinear transformation. Consider the

non linear function h : Rn → Rn such that

z = h(x)

Let X(i),W (i) be a set of sigma points for x. If we apply the nonlinear

function h(·) to the sigma points, we obtain the new set of sigma points

Z(i) = h(X(i)) i = 1, · · · , p.

Then, we approximate the statistic of z with the new sigma points. For

example, the mean

E [z] %
p
∑

i=1

W (i)Z(i) = mz
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and the covariance matrix

Cov(z) %
p
∑

i=1

W (i)(Z(i) −mz)(Z
(i) −mz)

T

The main idea behind the UKF algorithm is to use the sigma points to

propagate the statistics of the posterior pdf fx(x(t)|Y t), using a prediction-

correction structure similar to that of the EKF.

4.9.1 The UKF Algorithm

Consider system (4.70) and let Assumption 4.1 hold. Let x̂(t|t) and P (t|t)
have the same meaning as in the EKF and assume they are given at time t.

The prediction and correction step of the UKF are summarized next.

Prediction

• Generate the sigma points {X(i),W (i)} so that they have mean x̂(t|t)
and covariance P (t|t).

• Generate the sigma points {Ξ(i),W (i)} so that they match some relevant

statistics of the pdf of w(t) (e.g., the mean 0 and the covariance Q).

• Compute the predicted sigma points

X̂(i) = f(X(i), u(t),Ξ(i)) i = 1, . . . , p

• Compute the (approximated) mean and covariance of the a posteriori

pdf fx(x(t + 1)|Y t) as

x̂(t+ 1|t) =
p
∑

i=1

W (i)X̂(i)

P (t+ 1|t) =
p
∑

i=1

W (i)(X̂(i) − x̂(t + 1|t))(X̂(i) − x̂(t + 1|t))T

Correction
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• Generate the sigma points {V (i),W (i)} so that they match some rele-

vant statistics of the pdf of v(t) (e.g., the mean 0 and the covariance

R).

• Compute the output sigma points

Ŷ (i) = h(X̂(i)) + V (i) i = 1, · · · , p

• Set

ŷ(t+ 1) =
p
∑

i=1

W (i)Ŷ (i)

S(t+ 1) =
p
∑

i=1

W (i)(Ŷ (i) − ŷ(t+ 1))(Ŷ (i) − ŷ(t + 1))T

Pxy(t+ 1) =
p
∑

i=1

W (i)(x̂(i) − x̂(t+ 1|t))(Ŷ (i) − ŷ(t+ 1))T

• Compute the (approximated) mean and covariance of the a posteriori

pdf fx(x(t + 1)|Y t+1) as

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) + Pxy(t + 1)S(t+ 1)−1 (y(t+ 1)− ŷ(t+ 1))

P (t+ 1|t+ 1) = P (t+ 1|t)− Pxy(t+ 1)S(t+ 1)−1Pxy(t+ 1)T .

It is apparent that the last two equations derive from the LMSE estimation

expressions, in which the relevant covariances are obtained from the corre-

sponding sample statistics of the sigma points.

It is worth stressing that many different versions of the UKF have been

proposed in the literature. The one presented above contains only the basic

features, but the tool is flexible enough to allow several interesting exten-

sions. For example, one may take into account cross-correlations between

state variables, process disturbances and measurement noise, by generating

a set of sigma points representative of the joint statistics of an extended

vector including x(t), w(t) and v(t). Moreover, one may exploit a priori

knowledge on the functional form of the involved distributions and generate
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and extended set of sigma points matching higher order statistics, beyond

the mean and the covariance. For further details, see the references (Julier

and Uhlmann, 2004; Wan et al., 2001).

4.10 The Particle Filter

Ideally, the aim of the state estimation problem is to find an estimate of the

a posteriori pdf of the state, fx(x(t)|Y t). Then, one can compute the MSE

estimate of x(t) as

E
[

x(t)|Y t
]

=

∫

xf(x|Y t)dx.

In the linear Gaussian case (i.e., if the system is linear and the stochastic

processes w(t) and v(t) have a Gaussian pdf), it turns out that

f(x(t)|Y t) = N(x̂(t|t), P (t|t))

where x̂(t|t) and P (t|t) can be computed through the KF iterations. If the

Gaussian assumption is not satisfied, the KF still provides the LMSE estimate

of the state. However, in the nonlinear case, the a posteriori pdf of x(t)

can be significantly different from a Gaussian pdf. In such cases, the pdf

N(x̂(t|t), P (t|t)), with x̂(t|t) and P (t|t) provided by the EKF, can be a very

coarse approximation of the true pdf fx(x(t)|Y t).

In principle, one can update the a posteriori pdf of the state through

a prediction-correction iterative method, as explained next. Consider again

system (4.70) and assume that w(t) and v(t) are independent and distributed

according to fw(w(t)) and fv(v(t)), respectively.

Prediction

Assume that fx(x(t)|Y t) is known. From the theory of joint and condi-

tional pdfs, one has

fx(x(t + 1)) =

∫

fx(x(t+ 1), x(t))dx(t)

=

∫

fx(x(t+ 1)|x(t))fx(x(t))dx(t)
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The above equation still holds if we condition all the involved pdfs also to

the data Y t, thus giving

fx(x(t + 1)|Y t) =

∫

fx(x(t + 1)|x(t), Y t)fx(x(t)|Y t)dx(t)

=

∫

fx(x(t + 1)|x(t))fx(x(t)|Y t)dx(t) (4.102)

where the last equality is due to the fact that x(t) is a Markov process.

Therefore, in order to compute the predicted pdf fx(x(t+1)|Y t), we need to

know fx(x(t + 1)|x(t)), which in turn can be derived from the first equation

in model (4.70) and the knowledge of fw(w(t)).

Correction

From Bayes’s formula, one has

fx(x(t + 1)|Y t+1) = fx(x(t + 1)|y(t+ 1), Y t)

=
fxy(x(t + 1), y(t+ 1)|Y t)

fy(y(t+ 1)|Y t)

=
fy(y(t+ 1)|x(t+ 1))fx(x(t + 1)|Y t)

fy(y(t+ 1)|Y t)
(4.103)

where in the last equality we have exploited the fact that fy(y(t + 1)|x(t +
1), Y t) = fy(y(t + 1)|x(t + 1)), thanks once again to the fact that x(t) is a

Markov process. Now, being

fy(y(t+ 1)|Y t) =

∫

fy(y(t+ 1)|x(t+ 1), Y t)fx(x(t+ 1)|Y t)dx(t + 1)

=

∫

fy(y(t+ 1)|x(t+ 1))fx(x(t + 1)|Y t)dx(t+ 1)

by substituting in (4.103) one gets

fx(x(t + 1)|Y t+1) =

=
fy(y(t+ 1)|x(t+ 1))

∫

fy(y(t+ 1)|x(t+ 1))fx(x(t + 1)|Y t)dx(t+ 1)
fx(x(t + 1)|Y t). (4.104)

Therefore, in order to compute the corrected pdf fx(x(t+ 1)|Y t+1), we need

to know fy(y(t+1)|x(t+1)), which can be derived from the second equation

in model (4.70) and the knowledge of fv(v(t)). In particular, one has

fy(y(t+ 1)|x(t+ 1)) = fv(y(t+ 1)− h(x(t + 1)). (4.105)
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The equations (4.102) and (4.104) can be used in principle to compute the

exact a posteriori pdf of the state vector. However, such computations can be

intractable even by numerical approximation techniques, especially when the

dimension of the state vector is large. One way to practically approximate

the a posterior pdf is through the so-called Monte Carlo sequential methods.

The key idea is to use a relatively large set of points in the state space

(“particles”) whose sample distribution is as close as possible to the true a

posteriori pdf fx(x(t)|Y t). The resulting estimator, known as particle filter,

is described next.

4.10.1 The Particle Filter Algorithm

Consider system (4.70) and let fw(w(t)) and fv(v(t)) be known. Assume

that a set of particles xi
t, for i = 1, · · · , N , is available and that they are

(approximately) distributed according to fx(x(t)|Y t).

Prediction

• GenerateN particles wi
t, i = 1, · · · , N , distributed according to fw(w(t)).

• Compute the predicted particles

x̂i
t+1 = f(xi

t, u(t), w
i
t) i = 1, · · · , N

The particles x̂i
t+1 provide an approximation of fx(x(t+ 1)|Y t).

Correction

• Generate the weights

qi =
fy(y(t+ 1)|x̂i

t+1)
N
∑

j=1

fy(y(t+ 1)|x̂j
t+1)

i = 1, · · · , N

One clearly has qi ≥ 0, ∀i, and
∑N

i=1 qi = 1. We use qi as the probability

mass function of x̂i
t+1 in the a posteriori pdf fx(x(t + 1)|Y t+1). Notice

that, according to (4.105), fy(y(t+ 1)|x̂i
t+1) = fv(y(t+ 1)− h(x̂i

t+1)).
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• Re-sampling. Sample N -times from the set of particles x̂i
t+1 in such a

way that the probability of extracting x̂i
t+1 is equal to qi. This amounts

to generate a new set of particles xj
t+1, j = 1, . . . , N , such that

P{xj
t+1 = x̂i

t+1} = qi , j = 1, · · · , N.

The new set of particles xj
t+1, j = 1, · · · , N , is approximately dis-

tributed according to fx(x(t + 1)|Y t+1).

As for the UKF, the above one is a basic version of the particle filter. A

number of variations have been proposed in the literature which allow the

user to exploit the potential of this approach to carefully approximate proba-

bility density functions even in state spaces of very high dimensions. We also

hint to the fact that there are theoretical results showing that, under suit-

able technical assumptions, by increasing the number of particles N one can

approximate the true pdf fx(x(t)|Y t) with arbitrary precision. For a detailed

treatment of the subject, see the references (Gordon et al., 1993; Doucet et

al., 2001).
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