
Chapter 4

State estimation

This chapter addresses the problem of state estimation for stochastic systems.

First, linear systems will be considered. In the second part of the chapter,

several approaches for state estimation of nonlinear stochastic systems will

be discussed.

4.1 State space representation of stochastic

systems

The state variables (or simply the state) of a dynamic system are the variables

that one needs to know at a generic time t, to determine the evolution of the

system at all future times τ > t, provided that the input signal u(τ), τ > t,

is known. For deterministic discrete-time systems, this allows one to write

the input-state-output (i/s/o) representation







x(t + 1) = f(x(t), u(t), t)

y(t) = h(x(t), u(t), t)
(4.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input and y(t) ∈ Rp is

the output. For linear time-invariant (LTI) systems, model (4.1) boils down

1
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to 





x(t + 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where A,B,C,D are constant matrices of suitable dimensions.

When the involved signals are stochastic processes, the system becomes a

stochastic system and the state can be interpreted in terms of an important

class of stochastic processes.

Definition 4.1 (Markov process). The s.p. x(t) is a Markov process if, given

a sequence of time instants t1 < t2 < · · · < tk < tk+1, then the conditional

pdf of x(t) is such that

fx (x(tk+1)|x(tk), x(tk−1), · · · , x(t1)) = fx (x(tk+1)|x(tk))

The above definition states that for a Markov process the conditional pdf

with respect to past observations is equal to the conditional pdf with respect

to the most recent one. In other words, it is not necessary to keep track of all

past observations, because the state vector x(tk) contains all the necessary

information to compute the a posteriori pdf of the next state x(tk+1).

Hereafter, we consider the following general class of systems:






x(t + 1) = f(x(t), u(t), w(t))

y(t) = h(x(t), u(t)) + v(t)
(4.2)

where w(t) ∈ Rd and v(t) ∈ Rp are stochastic processes, on which we make

the following assumption.

Assumption 4.1. For system (4.2), we assume that:

i) E

[(

w(t)

v(t)

)]

=

[

0

0

]

;

ii) E





(

w(t)

v(t)

)(

w(t)

v(t)

)T


 =

[

Q 0

0 R

]

where Q and R are the covariance

matrices of w(t) and v(t), respectively;
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iii) w(t) and v(t) are independent white processes;

iv) x(0) is a random vector, independent from w(t) and v(t), with mean

m0 and covariance matrix P0;

v) u(t) is a deterministic (known) signal.

The s.p. w(t) is often referred to as disturbance process and models the

stochastic component of the dynamic model f(·) (unmodeled dynamics, dis-

turbances, etc.). The s.p. v(t) is the so-called measurement noise, which

represents the error of the sensor measuring the output function h(·). It is

easy to see that under Assumption 4.1, the state x(t) of model (4.2) is a

Markov process.

For an LTI system, model (4.2) can be written as







x(t + 1) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t) +Du(t) + v(t)
(4.3)

where A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×d, C ∈ Rp×n, D ∈ Rp×m, and

(

w(t)

v(t)

)

∼WP

((

0

0

)

,

(

Q 0

0 R

))

(4.4)

with Q ∈ Rd×d, R ∈ Rp×p. Hereafter, it is assumed for simplicity D = 0,

as it occurs in many real systems1. We will refer to the 6-tuple M =

{A,B,G,C,Q,R} as the model of the stochastic system (4.3)-(4.4).

Let us now state a result concerning the mean and covariance functions

of the processes x(t) and y(t), defined by system (4.3)-(4.4). Recall the

notationsmx(t) = E [x(t)] andRx(t, s) = E
[

(x(t)−mx(t))(x(s)−mx(s))T
]

for the mean and covariance function of x(t).

1The extension to the case D $= 0 is trivial, as one can replace y(t) with y(t)−Du(t),

being u(t) known.
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Theorem 4.1. Consider system (4.3) and assume for simplicity D = 0.

Then, under Assumption 4.1,one has

mx(t) = Atm0 +
t−1
∑

i=0

At−1−iBu(i) (4.5)

my(t) = Cmx(t) (4.6)

Rx(t+ τ, t) = AτRx(t, t) ! AτP (t) (4.7)

Ry(t+ τ, t) =

{

CAτP (t)CT if τ > 0

CP (t)CT +R if τ = 0
(4.8)

where

P (t+ 1) = AP (t)AT +GQGT . (4.9)

Proof

By taking the expected value of the first equation in (4.3), one gets

E [x(t + 1)] = AE [x(t)] +Bu(t) +GE [w(t)]

which results in

mx(t + 1) = Amx(t) +Bu(t). (4.10)

Then, (4.5) follows from the total response of the LTI deterministic system

(4.10). Similarly, one obtains (4.6).

Let us define x̃(t) = x(t)−mx(t). By using (4.10), one has

Rx(t+ τ, t) =E
[

(x(t + τ)−mx(t+ τ))(x(t)−mx(t))
T
]

=

=E
[

(Ax(t + τ − 1) +Gw(t+ τ − 1)−Amx(t + τ − 1))x̃(t)T
]

=

=E
[

(Ax̃(t+ τ − 1) +Gw(t+ τ − 1))x̃(t)T
]

=

=AE
[

x̃(t+ τ − 1)x̃(t)T
]

+GE
[

w(t+ τ − 1)x̃(t)T
]

︸ ︷︷ ︸

0 for τ≥1

=

=ARx(t+ τ − 1, t)

where we have exploited the fact that w(t) is a white process and hence

x̃(t), which depends on samples of w up to time t − 1, is uncorrelated with
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w(t+ τ − 1), ∀τ > 0. By iterating backwards, one gets

Rx(t+ τ, t) =ARx(t+ τ − 1, t) =

=A2Rx(t+ τ − 2, t) =

...

=AτRx(t, t), for τ ≥ 1.

For τ = 0 one has

P (t+ 1) = Rx(t+ 1, t+ 1) = E
[

x̃(t+ 1)x̃(t+ 1)T
]

=

= E
[

(Ax̃(t) +Gw(t))(Ax̃(t) +Gw(t))T
]

=

= AP (t)AT +GQGT

where once again we exploited E
[

x̃(t)w(t)T
]

= 0.

Finally, (4.8) can be proven in the same way, by exploiting (4.7) and the

fact that v(t) is uncorrelated with w(t) and x(0), and hence also with x̃(t). "

Remark 4.1. It is worth stressing that all the results in Theorem 4.1 can

be easily extended to the case of a linear time-varying system, in which the

matrices of model M change with time. For example, if the first equation in

(4.3) is x(t + 1) = A(t)x(t) + G(t)w(t) (we set B = 0 for simplicity), (4.5)

becomes

mx(t) = A(t− 1)A(t− 2) · · ·A(0)m0 =
t−1∏

i=0

A(i)m0

The other equations can be amended in a similar way.

The matrix P (t) = Rx(t, t) is the autocovariance matrix of process x(t)

and equation (4.9), which describes its evolution in time, is called recursive

Lyapunov equation. The fact that both mx(t) and P (t) are not constant in

time implies that in general both x(t) and y(t) are not stationary process.

The following result provides conditions under which they are asymptotically

stationary.
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Theorem 4.2. Let λi i = 1 · · ·n, be the eigenvalues of A and assume that

|λi| < 1, ∀i, (i.e., the system is asymptotically stable). Then:

lim
t→∞

P (t) = P̄ ∀P (0) = P0 > 0

where P̄ = P̄ T ≥ 0 is the unique solution of the Lyapunov equation

P̄ = AP̄AT +GQGT .

Moreover, x(t) and y(t) are asymptotically stationary stochastic processes

with zero mean and covariance matrices

Rx(τ) = Aτ P̄ , τ ≥ 0,

Ry(τ) =

{

CAτ P̄ T if τ > 0

CP̄CT +R if τ = 0
.

4.2 The state estimation problem

Consider the linear stochastic system







x(t+ 1) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t) + v(t)
(4.11)

and let Assumption 4.1 hold. We are now ready to formulate the state

estimation problem for system (4.11).

Problem 4.1. (State estimation problem). At each time t, find an estimate

of x(t), based on the knowledge of the input sequence {u(0), u(1), . . . , u(t−1)}
and the output measurements

Y t = {y(0), y(1), · · · , y(t)}.

Being both the data set Y t and the quantity to be estimated x(t) random

variables, this is clearly a Bayesian estimation problem. Therefore, the MSE

estimate x̂(t), minimizing the mean square error E [||x(t)− x̂(t)||2], is the

conditional mean with respect to the data, i.e., x̂MSE(t) = E [x(t)|Y t].
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In order to compute the MSE solution, it is necessary to know the joint

pdf of the state x(t) and the data Y t. If we restrict our attention to linear

estimator, we can compute the linear MSE solution, which requires only

knowledge of the mean and covariance functions of the involved processes.

In fact, one has

x̂LMSE(t) = mx(t) + Px(t),Y t [PY t ]−1(Y t −mY t), (4.12)

where PY t is the covariance matrix of the data vector

Y t =










y(0)

y(1)
...

y(t)










,

while Px(t),Y t is the cross-covariance matrix between x(t) and Y t. Although

such quantities can be computed from model (4.11), by using Assumption

4.1, equation (4.12) cannot be employed in practice because the dimen-

sion of the involved covariance matrices grows as time passes. In fact,

PY t ∈ R(t+1)p×(t+1)p and for large values of t the computation of its inverse is

practically infeasible.

In order to provide a computationally efficient approach to solve Problem

4.1, we aim at finding a recursive solution of the form

x̂(t+ 1) = Φt x̂(t) +Ψt y(t+ 1)

where Φt and Ψt are suitable time-varying matrices which are used to com-

pute a linear combination of the current estimate x̂(t) and the next measure-

ment y(t + 1), providing the new estimate x̂(t + 1), based on the data set

Y t+1. The key idea is that the current estimate x̂(t) embeds all the informa-

tion provided by the data up to time t, Y t. Clearly, the gains Φt and Ψt must

be computed in order to minimize the mean square estimation error. The

solution is based on a 2-step procedure and is known as the Kalman Filter

(KF).
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4.3 The Kalman Filter

Let us first introduce the notation that will be used in the construction of

the LMSE state estimator. We denote by:

• x̂(t|t) the LMSE estimate of x(t) based on Y t;

• x̂(t + 1|t) the LMSE estimate of x(t + 1) based on Y t (LMSE 1-step

ahead prediction);

• P (t|t) = E
[

(x(t)− x̂(t|t))(x(t)− x̂(t|t))T
]

∈ Rn×n the covariance ma-

trix of the estimation error at time t;

• P (t+ 1|t) = E
[

(x(t + 1)− x̂(t+ 1|t))(x(t+ 1)− x̂(t+ 1|t))T
]

∈ Rn×n

the covariance matrix of the 1-step ahead prediction error at time t.

We aim at constructing the LMSE estimate of x(t) through a two-step re-

cursive procedure, also known as prediction-correction algorithm:

1. Prediction: Given x̂(t|t), P (t|t) and the model M, compute x̂(t +

1|t), P (t+ 1|t)

2. Correction: Given x̂(t+ 1|t), P (t+ 1|t), the new measurement y(t+ 1)

and the model M, compute x̂(t+ 1|t+ 1), P (t+ 1|t+ 1)

3. Set t← t+ 1 and go to step 1.

4.3.1 The prediction step

Given x̂(t|t), P (t|t) and the model

x(t + 1) = Ax(t) +Bu(t) +Gw(t)

we want to compute the LMSE estimate x̂(t+1|t) of x(t+1), based on data

up to time t. The objective is to minimze E [||x(t+ 1)− x̂(t+ 1|t)||2] which
is equivalent to minimize

E
[

(x(t+ 1)− x̂(t + 1|t))(x(t+ 1)− x̂(t+ 1|t))T
]
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in the matricial sense. Let us introduce the notation for the estimation error

x̃(t|t) = x(t)− x̂(t|t) and the prediction error x̃(t+1|t) = x(t+1)− x̂(t+1|t).
Then one has

min
x̂

E
[

(x(t+ 1)− x̂(t+ 1|t))(x(t + 1)− x̂(t+ 1|t))T
]

=

= min
x̂

E
[

(Ax(t) +Bu(t) +Gw(t)− x̂(t+ 1|t))(· · · )T
]

=

= min
x̂

E
[

(Ax̂(t|t) + Ax̃(t|t) +Bu(t) +Gw(t)− x̂(t + 1|t))(· · · )T
]

(4.13)

where the notation (· · · )T is used to denote the transpose of the same term

that appears on the left. Let

1© = Ax̂(t|t) +Bu(t)− x̂(t+ 1|t),

2© = Ax̃(t|t) +Gw(t).

It is easy to see that E
[

1© 2©T
]

= 0. In fact, a property of the LMSE estimate

is that its estimation error is uncorrelated from the data, i.e. E [x̃(t|t) Y t] = 0.

The term 1© is a linear combination of the data up to time t, namely Y t and

u(t). On the other hand, in 2© both x̃(t|t) and w(t) are uncorrelated from

Y t. Hence, (4.13) becomes

min
x̂(t+1|t)

E
[

(Ax̂(t|t) +Bu(t)− x̂(t+ 1|t))(· · · )T
]

+E
[

(Ax̃(t|t) +Gw(t))(· · · )T
]

.
(4.14)

While the second term in (4.14) does not depend on the prediction x̂(t+1|t),
the first term can be minimized by setting

x̂(t + 1|t) = Ax̂(t|t) +Bu(t) (4.15)

which turns out to be the sought LMSE 1-step ahead state prediction. The

corresponding error covariance is given by the second term in (4.14)

P (t+ 1|t) = E
[

(Ax̃(t|t) +Gw(t))(· · · )T
]

=

= E
[

Ax̃(t|t))x̃T (t|t)AT
]

+ E
[

Gw(t)wT (t)GT
]

=

= AE
[

x̃(t|t))x̃T (t|t)
]

AT +GE
[

w(t)wT (t)
]

GT =

= AP (t|t)AT +GQGT (4.16)
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where we have exploited the fact that E [x̃(t|t)w(t)] = 0, being w(t) uncor-

related with both x(t) and Y t.

4.3.2 The correction step

Now assume that x̂(t+1|t), P (t+1|t) and y(t+1) are available. In order to

derive the corrected estimate x̂(t+ 1|t+ 1), which incorporates also the new

information provided by y(t+1), we need to introduce a decoupling property

of the LMSE estimate. Consider the expression of the LMSE estimate of a

random variable x based on data y

x̂LMSE = mx + PxyP
−1
y (y −my). (4.17)

and assume that y is partitioned in two subvectors, i.e.

y =

[

y1

y2

]

.

Then, (4.17) becomes

x̂LMSE = mx +
[

Pxy1
Pxy2

]
[

Py1
Py1y2

Py2y1
Py2

]−1 [

y1 −my1

y2 −my2

]

The computation of the matrix inverse simplifies if y1 and y2 are uncorre-

lated. Indeed, if Py1y2
= 0 one has

x̂LMSE =mx +
[

Pxy1
Pxy2

]
[

Py1
0

0 Py2

]−1 [

y1 −my1

y2 −my2

]

=

=mx +
[

Pxy1
Pxy2

]
[

P−1
y1

0

0 P−1
y2

][

y1 −my1

y2 −my2

]

=

=mx + Pxy1
P−1
y1

(y1 −my1
) + Pxy2

P−1
y2

(y2 −my2
)

=x̂LMSE|y1 + Pxy2
P−1
y2

(y2 −my2
) (4.18)

where x̂LMSE|y1 is the LMSE estimate of x based on the observation of y1

. This suggests that if one is able to decompose the available data in two
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subsets that are uncorrelated with each other, it is possible to first compute

the LMSE estimate based on the first data subset and then update it when

the second data subset becomes available, by just adding the correction term

Pxy2
P−1
y2

(y2 −my2
).

Since in general it is not true that y(t+1) is uncorrelated with Y t (notice

that if this occurs for every time t, y is an uncorrelated process), we want to

find a new process that contains only the information provided by y(t + 1)

which is not correlated with Y t. This turns out to be the so called innovation

process e(t), which is defined as

e(t+ 1) ! y(t+ 1)− Cx̂(t+ 1|t) =
= Cx(t + 1) + v(t+ 1)− Cx̂(t+ 1|t) =
= Cx̃(t+ 1|t) + v(t+ 1).

(4.19)

Proposition 4.1. The innovation process e(t) defined in (4.19) has the fol-

lowing properties.

1. e(t+ 1) is a linear combination of the data Y t+1 =

[

Y t

y(t+ 1)

]

;

2. The process e(t) is a sequence of uncorrelated random variables.

Proof

1. Being e(t + 1) = y(t + 1) − Cx̂(t + 1|t), where x̂(t + 1|t) is a linear

combination of data Y t, one has that e(t+1) is a linear combination of Y t+1.

2. Being e(t+1) = Cx̃(t+1|t)+v(t+1), we have that x̃(t+1|t) is uncorrelated
with Y t because the LMSE estimation error is uncorrelated with the data

used to compute the estimate, while v(t+1) is uncorrelated with Y t because

it is white and independent from w(t) and x(0) (and hence also from x(t)).

Hence, e(t + 1) is uncorrelated with Y t and therefore also with e(i), i =

0, 1, . . . , t, which are linear combinations of Y i. "

By exploiting Proposition 4.1, we compute the LMSE estimate of x(t + 1)

based on [

Y t

e(t + 1)

]

=

[

I 0

∗ 1

][

Y t

y(t+ 1)

]
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i.e., on a nonsingular linear transformation of the original dataset Y t+1. By

assuming y1 = Y t and y2 = e(t + 1), from (4.18) one gets

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) + Px(t+1)e(t+1)P
−1
e(t+1)(e(t + 1)−me(t+1)) (4.20)

where we need to compute the mean and covariance function of e(t+ 1) and

its cross covariance with x(t + 1). The mean is given by

me(t+1) = E [Cx̃(t+ 1|t) + v(t+ 1)] =

= CE [x̃(t+ 1|t)] + E [v(t+ 1)] = 0 (4.21)

in which the first term is zero because the LMSE estimate is unbiased. The

cross-covariance between x(t + 1) and e(t + 1) is given by

Px(t+1)e(t+1) = E
[

(x(t+ 1)−mx(t+1))e
T (t+ 1)

]

=

= E
[

(x(t + 1)−mx(t+1))(Cx̃(t + 1|t) + v(t+ 1))T
]

=

= E[{x̃(t + 1|t)
︸ ︷︷ ︸

1©

+ x̂(t+ 1|t)−mx(t+1)
︸ ︷︷ ︸

2©

}{Cx̃(t + 1|t)
︸ ︷︷ ︸

3©

+ v(t+ 1)
︸ ︷︷ ︸

4©

}T ].

We claim that the only product which is not zero is the one between the

terms 1© and 3©. In fact, x̃(t+1|t) is uncorrelated with x̂(t+1|t), which is a

linear combination of Y t, while v(t + 1) is uncorrelated with both x̂(t + 1|t)
and x̃(t+ 1|t), which depend on y and w up to time t. Therefore,

Px(t+1)e(t+1) = E
[

x̃(t+ 1|t)x̃T (t + 1|t)
]

CT = P (t+ 1|t)CT (4.22)

Then, let us compute the covariance matrix of e(t+ 1)

Pe(t+1) = E
[

(Cx̃(t+ 1|t) + v(t+ 1))(Cx̃(t+ 1|t) + v(t+ 1))T
]

=

= CE
[

(x̃(t+ 1|t)(x̃(t+ 1|t))T
]

CT + E
[

v(t+ 1)vT (t+ 1)
]

=

= CP (t+ 1|t)CT +R (4.23)

By substituting (4.19), (4.21), (4.22) and (4.23) into (4.20), one gets

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) + P (t+ 1|t)CT [CP (t+ 1|t)CT +R]−1·

(y(t+ 1)− Cx̂(t + 1|t))
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which can be written in a shorter form as

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) +K(t+ 1)(y(t+ 1)− Cx̂(t+ 1|t)) (4.24)

where we have introduced the Kalman gain

K(t+ 1) = P (t+ 1|t)CT [CP (t+ 1|t)CT +R]−1.

Finally, we need to compute the covariance of the estimation error at time

t+ 1, which is given by

P (t+ 1|t+ 1) = E
[

x̃(t+ 1|t)x̃T (t + 1|t)
]

=

= E
[

(x(t + 1)− x̂(t+ 1|t)−K(t + 1)[Cx̃(t+ 1|t) + v(t+ 1)])(· · · )T
]

=

= E
[

((I −K(t+ 1)C)x̃(t+ 1|t)−K(t+ 1)v(t+ 1))(· · · )T
]

= (I −K(t+ 1)C)P (t+ 1|t)(I −K(t+ 1)C)T +K(t + 1)RK(t+ 1)T

= P (t+ 1|t)− P (t+ 1|t)CT [CP (t+ 1|t)CT +R]−1CP (t+ 1|t)

= P (t+ 1|t)[I − CTK(t + 1)T ]. (4.25)

4.3.3 Initialization

In order to start the iteration of the Kalman filter, one needs to choose x̂(0|−
1) and P (0| − 1), i.e., the state estimate and the corresponding covariance

error before the first measurement y(0) is processed. The natural choice are

clearly the mean and covariance matrix of x(0), if these quantities are known,

i.e.

x̂(0|− 1) = m0

P (0|− 1) = P0

Otherwise, if such quantities are not available, one can choose x̂(0| − 1) as

any vector which is compatible with the a priori information on x(0), and set

P (0|− 1) =










λ1

λ2

. . .

λn









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with λi > 0, “big enough” so that the resulting confidence interval of xi(0)

covers the initial uncertainty associated to the i-th element of the state vector.

4.4 Properties of the Kalman Filter

Summing up the derivation carried out in the previous section, the Kalman

Filter algorithm is defined as follows.

Initialization: x̂(0|− 1) = m0, P (0|− 1) = P0

For t = 0, 1, 2, · · ·

K(t) = P (t|t− 1)CT [CP (t|t− 1)CT +R]−1 (4.26)

x̂(t|t) = x̂(t|t− 1) +K(t)(y(t)− Cx̂(t|t− 1)) (4.27)

P (t|t) = P (t|t− 1)[I − CTK(t)T ] (4.28)

x̂(t + 1|t) = Ax̂(t|t) +Bu(t) (4.29)

P (t+ 1|t) = AP (t|t)AT +GQGT (4.30)

end

It is worth stressing that the derivation of the Kalman filter does not

change if the model M is time-varying. Hence, the above equation can be

easily extended to the time-varying case by just setting A = A(t), B = B(t),

C = C(t), G = G(t), Q = Q(t), and R = R(t).

Another interesting observation concerns the fact that the evolution of

the matrices P (t|t), P (t + 1|t) and K(t) does not depend on the data set

{u(t), y(t)} which is processed. In fact, the input-output data affect only

the estimates x̂(t|t), x̂(t+ 1|t). This means that the quality of the estimates

(which is determined by the covariances of the estimation errors) depends

only on the model M and not on the actual data realization. Moreover, the

sequences P (t|t), P (t+ 1|t), K(t), for t = 0, 1, . . . , can be computed offline,

before the filter is applied to a data stream, and they remain the same for

all data sets. This is particularly useful in those applications in which the

computational burden at each iteration is critical and must be kept as low

as possible.
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In the following, we analyze other useful properties of the KF algorithm.

4.4.1 The information matrix

Let us rewrite the correction equation for the covariance of the estimation

error as

P (t|t) = P (t|t− 1)−P (t|t− 1)CT [CP (t|t− 1)CT +R]−1CP (t|t− 1) (4.31)

and define the Information matrix

I(t|t) ! P (t|t)−1.

The information matrix is the inverse of the covariance matrix, so the larger

is I(t|t), the smaller is the uncertainty associated to the estimate x̂(t|t) of x(t)
(i.e., the more accurate is the estimate). By recalling the Matrix Inversion

Lemma

(Ā− B̄C̄D̄)−1 = Ā−1 + Ā−1B̄(C̄−1 − D̄Ā−1B̄)−1D̄Ā−1 (4.32)

and applying it to (4.31) with Ā = P (t|t), B̄ = P (t|t− 1)CT , C̄ = [CP (t|t−
1)CT +R]−1 and D̄ = CP (t|t− 1), one gets

I(t|t) = I(t|t− 1) + CTR−1C

where I(t|t − 1) = P (t|t − 1)−1 and CTR−1C can be interpreted as the

quantity of information provided by the new measurement y(t). In the scalar

case (n = p = 1), one has y(t) = c x(t) + v(t), with c ∈ R and

CTR−1C =
c2

σ2
v

which can be seen as a sort of signal-to-noise ratio, between the signal c x(t)

measured by the output sensor and the measurement noise v(t).



16 CHAPTER 4. STATE ESTIMATION

4.4.2 The Kalman Filter as a dynamic system

It is easy to see that the KF is a dynamic system processing the input and

output data to produce state estimates. By substituting (4.27) into (4.29),

one gets

x̂(t+ 1|t) = A{x̂(t|t− 1) +K(t)(y(t)− Cx̂(t|t− 1))}+Bu(t) =

= (A−AK(t)C)x̂(t|t− 1) + AK(t)y(t) +Bu(t)

= (A−AK(t)C) x̂(t|t− 1) +
[

AK(t) B
]
[

y(t)

u(t)

]

(4.33)

which is the equation of a linear time-varying system, whose state vector is

x̂(t+1|t) and the input vector is

[

y(t)

u(t)

]

. Notice that the KF is an inherently

time-varying system, due to the fact that the Kalman gain K(t) changes at

every time instant. The corresponding equation of the prediction error turns

out to be

x̃(t+ 1|t) = x(t + 1)− x̂(t+ 1|t)

= Ax(t) +Bu(t) +Gw(t)

−A{x̂(t|t− 1) +K(t)(y(t)− Cx̂(t|t− 1))}−Bu(t) =

= Ax̃(t|t− 1) +Gw(t)−AK(t){Cx(t) + v(t)− Cx̂(t|t− 1)}

= (A− AK(t)C) x̃(t|t− 1) +Gw(t)− AK(t)v(t) (4.34)

which leads to the evolution of the average prediction error

E [x̃(t+ 1|t)] = (A− AK(t)C)E [x̃(t|t− 1)] . (4.35)

For the covariance of the 1-step ahead prediction error, by substituing

(4.28) into (4.30) one gets

P (t+ 1|t) = AP (t|t− 1)AT +GQGT

− AP (t|t− 1)CT [CP (t|t− 1)CT +R]−1CP (t|t− 1)AT (4.36)

which can be seen as a dynamic system whose state is the matrix P (t|t− 1).

Equation (4.36) is known as the Discrete Riccati equation (DRE).
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4.4.3 The Kalman Filter as a state observer

Being the aim of the KF the computation of a state estimate, there is clearly

a connection with the classical Luenberger state observer for deterministic

systems. Consider the deterministic system







x(t + 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

then, the Luenberger observer is given by

x̂(t+ 1) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)). (4.37)

If we introduce the state estimation error x̃(t) = x(t)− x̂(t), we obtain the

error dynamics

x̃(t+ 1) = (A− LC)x̃(t) (4.38)

If the pair (A,C) is detectable, it is always possible to find a matrix L such

that (A−LC) has all its eigenvalues inside the unit circle. This implies that

system (4.38) is asymptotically stable and hence limt→∞ x̃(t) = 0 for every

initial condition x̃(0). Equation (4.37) can be rewritten as

x̂(t+ 1) = (A− LC)x̂(t) +
[

L B
]
[

y(t)

u(t)

]

in which it is easy to recognize the same structure as in (4.33). Indeed, they

turn out to be the same equation if we set L = AK(t). A similar analogy can

be observed between equations (4.38) and (4.35). This means that the KF

can be seen as a time-varying state observer for the linear stochastic system

(4.11).

4.4.4 The innovation process

Let us consider the innovation process e(t) = y(t)− Cx̂(t|t− 1). It is possible

to reformulate the KF as a dynamic system that processes the signals y(t)
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and u(t), to generate e(t) as the output. In fact, by recalling (4.33) one can

write


















x̂(t + 1|t) = (A−AK(t)C)x̂(t|t− 1) +
[

AK(t) B

]




y(t)

u(t)





e(t) = −Cx̂(t|t− 1) +
[

I 0
]




y(t)

u(t)





This can be seen as a whitening filter, i.e., a system which takes the (usually)

correlated process y(t) and transforms it into the sequence of uncorrelated

random variables e(t) (which is also a white process in the Gaussian case

e(t)).

4.4.5 Extension to non white disturbance and noise

processes

So far, we have supposed that the disturbance process w(t) and the measure-

ment noise v(t) are white. This assumption can be relaxed, provided that

a model for such processes is known. For example, assume that w(t) is a

stochastic process generated by the system

xw(t+ 1) = Awxw(t) +Bwξ(t)

w(t) = Cwxw(t) +Dwξ(t)

where ξ(t) ∼ WP (0, Qξ) and it is assumed to be uncorrelated with the

measurement noise v(t) ∼ WP (0, R). Notice that for an asymptotically

stationary s.p., matrices Aw, Bw, Cw, Dw can be derived by computing a

state space realization of the canonical spectral factor of process w(t). Hence,

we can write

x(t+ 1) = Ax(t) +Bu(t) +Gw(t)

= Ax(t) +Bu(t) +G(Cwxw(t) +Dwξ(t)).
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By defining the extended state vector

x̄(t) =

[

x(t)

xw(t)

]

one can write the system
[

x(t+ 1)

xw(t + 1)

]

=

[

A GCw

0 Aw

][

x(t)

xw(t)

]

+

[

GDw

Bw

]

ξ(t) +

[

B

0

]

u(t) (4.39)

y(t) =
[

C 0
]
[

x(t)

xw(t)

]

+ v(t) (4.40)

Hence, one can apply the standard KF to system (4.39)-(4.40), thus obtaining

an estimate ˆ̄x(t|t) =

[

x̂(t|t)
x̂w(t|t)

]

of the extended state. Notice that, besides

the desired estimate of the state of the original system, this contains also the

estimate of the disturbance state xw(t) as a byproduct.

Similarly, assume that v(t) is not white and it is generated by the system

xv(t+ 1) = Avxv(t) +Bvξ(t)

v(t) = Cvxv(t) +Dvξ(t)

where ξ(t) ∼ WP (0, Qξ) and is uncorrelated with the process disturbance

w(t) ∼WP (0, Q). By defining the extended state vector

x̄(t) =

[

x(t)

xv(t)

]

one obtains the extended system equations
[

x(t + 1)

xv(t + 1)

]

=

[

A 0

0 Av

][

x(t)

xv(t)

]

+

[

G 0

0 Bv

][

w(t)

ξ(t)

]

+

[

B

0

]

u(t) (4.41)

y(t) =
[

C Cv

]
[

x(t)

xv(t)

]

+Dv ξ(t) (4.42)

where the extended process w̄(t) =

[

w(t)

ξ(t)

]

is a white process with zero mean

and covariance matrix

[

Q 0

0 Qξ

]

.
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Also in this case, one may think to apply the standard KF to system (4.41)-

(4.42), thus obtaining an estimate ˆ̄x(t|t) =

[

x̂(t|t)
x̂v(t|t)

]

of the extended state,

which contains the desired state estimate, along with the estimate of the

noise state xv(t). However, it should be noticed that it is not true that the

extended process w̄(t) and the new output noise Dvξ(t) are uncorrelated. In

fact, one has E
[

w̄(t)(Dvξ(t))T
]

= [0 QξD
T
v ]. Therefore, it is customary to

use the version of the Kalman Filter in which item ii) in Assumption 4.1 is

replaced by

E





(

w(t)

v(t)

)(

w(t)

v(t)

)T


 =

[

Q N

N R

]

where N ∈ Rd×p is the cross-covariance between w(t) and v(t). The equations

of such a version of the Kalman Filter turn out to be as follows.

x̂(t|t) = x̂(t|t− 1) +K(t)(y(t)− Cx̂(t|t− 1)) (4.43)

P (t|t) = P (t|t− 1)[I − CTKT (t)] (4.44)

K(t) = P (t|t− 1)CT [CP (t|t− 1)CT +R]−1 (4.45)

x̂(t+ 1|t) = Ax̂(t|t) +Bu(t)

+GN [CP (t|t− 1)CT +R]−1(y(t)− Cx̂(t|t− 1)) (4.46)

P (t+ 1|t) = AP (t|t)AT +GQGT −GN [CP (t|t− 1)CT +R]−1NTGT

− AP (t|t− 1)CT [CP (t|t− 1)CT +R]−1NTGT

−GN [CP (t|t− 1)CT +R]−1CP (t|t− 1)AT (4.47)

which in predictor form takes the more coincise form

x̂(t + 1|t) = Ax̂(t|t− 1) +Bu(t) +Kc(t)(y(t)− Cx̂(t|t− 1)) (4.48)

P (t+ 1|t) = AP (t|t)AT +GQGT −Kc(t)[CP (t|t− 1)CT +R]Kc(t)
T

(4.49)

with

Kc(t) = (AP (t|t− 1)CT +GN)[CP (t|t− 1)CT +R]−1. (4.50)

Finally, the case in which both w(t) and v(t) are not white can be treated

in the same way, by combining the two approaches outlined above.
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4.5 Asymptotic behavior of the KF

A fundamental question on the performance of the Kalman Filter concerns

its asymptotic behavior. In particular, we would like to answer the following

questions

1. What is the asymptotic expected value of the estimation error, i,e.

lim
t→+∞

E [x̃(t|t)] = lim
t→+∞

E [x(t)− x̂(t|t)] (4.51)

and how does it depend on the initialization of the filter? If the limit

in (4.51) is equal to zero, this means that the KF is an asymptotically

unbiased estimator.

2. What is the asymptotic behavior of the DRE (4.36)? Does the limit

lim
t→+∞

P (t + 1|t) exist? How does it depend on the initial condition

P (0|− 1)?

3. Does the Kalman gain K(t) converge to a constant matrix? And if this

is the case, what are the properties of the asymptotic version of system

(4.33)?

The next result provide an answer to the above questions.

Theorem 4.3. Let A,B,C,G,Q,R be constant matrices. Define H ∈ Rn×d

such that HHT = GQGT and assume that the pair (A,C) is detectable and

the pair (A,H) is stabilizable. Then, the following results hold.

1. lim
t→+∞

E [x̃(t|t)] = lim
t→+∞

E [x̃(t+ 1|t)] = 0 , ∀x̂(0|− 1) ∈ Rn

2. lim
t→+∞

P (t+ 1|t) = P∞ < +∞, ∀ P (0|− 1) > 0 where P∞ is the unique

positive semidefinite solution of the Algebraic Riccati Equation (ARE)

P∞ = AP∞AT +GQGT −AP∞CT [CP∞CT +R]−1CP∞AT (4.52)

3. Let

K∞ = lim
t→∞

K(t) = P∞CT [CP∞CT +R]−1.
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Then, the matrix (A − AK∞C) has all its eigenvalues inside the unit

circle.

The first item in Theorem 4.3 states that the state estimates provided by

the KF are asymptotically unbiased. Even more important is the result in

item 2: the covariance of the 1-step ahead prediction error always converges

to the same constant matrix P∞, whatever is the initial covariance matrix

P (0|− 1) chosen to start the KF iterations. Notice that the same occurs for

the covariance matrix of the state estimation error

lim
t→+∞

P (t|t) = P∞ − P∞CT [CP∞CT +R]−1CP∞ = P∞(I − CTKT
∞)

It is also worth pointing out that the above results hold under quite

mild assumptions. The most important one concerns detectability of the

pair (A,C): in fact, if the system is not detectable, it means that there is

a subsystem which is not asymptotically stable and it is also unobservable.

Hence, the covariance of the state estimation error for such subsystem will

eventually grow to infinity. Recall that if a system is fully observable, it is

also detectable.

The other assumption in Theorem 4.3, namely stabilizability of the pair

(A,H), is essentially technical and it is necessary to guarantee that the ARE

(4.52) has a unique positive semidefinite solution. Recall that if (A,H) is

fully reachable, it is also stabilizable. This assumption can be further relaxed

to exclude only unreachable eigenvalues of A with modulus exactly equal to

1: in such a case the ARE may have multiple positive semidefinite solutions,

but they will be ordered (in matrical sense) and P (t + 1|t) will converge to

the largest one.

Finally, the third item in Theorem 4.3 suggests that the time-varying

evolution of the average prediction error in equation (4.35), converges to an

asymptotically stable time-invariant system. This suggests that one may

want to use the constant gain K∞ right from the start, in place of the time-

varying Kalman gain K(t), as explained next.
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4.5.1 The asymptotic Kalman Filter

Let us assume that instead of changing the Kalman gain K(t) at every KF

iteration, we want to use a constant gain. A natural choice is to use K∞,

because we know that it minimizes the asymptotic mean square estimation

error. Then, the recursion (4.27)-(4.30) simplifies to

x̂(t + 1|t) = Ax̂(t|t) +Bu(t) (4.53)

x̂(t + 1|t+ 1) = x̂(t+ 1|t) +K∞(y(t+ 1)− Cx̂(t+ 1|t)) (4.54)

which we will refer to as the Asymptotic Kalman Filter. Clearly, while (4.53)-

(4.54) has the advantage of being a linear time-invariant system, not requiring

the computation of the covariance matrices P (t|t), P (t + 1|t) at every time

step, it does not guarantee anymore to minimize the estimation MSE for

every t, but only as time approaches infinity.

In order to understand which is the trade-off between using a time-

invariant filter and the optimal KF, let us consider the following simple

example involving a scalar state (n = 1)







x(t + 1) = a x(t)

y(t) = x(t) + v(t)
(4.55)

where a ∈ R and v(t) ∼ WP (0, r). The associated KF equations are

x̂(t+ 1|t) = a x̂(t|t)

P (t+ 1|t) = a2P (t|t)

x̂(t+ 1|t+ 1) = x̂(t + 1|t) +K(t + 1)(y(t+ 1)− x̂(t+ 1|t))

P (t+ 1|t+ 1) = P (t+ 1|t)−
P 2(t + 1|t)

P (t+ 1|t) + r
.

In prediction form, they become

x̂(t + 1|t) = ax̂(t|t− 1) + aK(t)(y(t)− x̂(t|t− 1)) (4.56)

P (t+ 1|t) = a2P (t|t− 1)−
a2P 2(t|t− 1)

P (t|t− 1) + r
=

a2P (t|t− 1)r

P (t|t− 1) + r
(4.57)
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The estimation error is given by

x̃(t+ 1|t) = x(t + 1)− x̂(t+ 1|t)

= ax(t)− ax̂(t|t− 1)− aK(t)(x(t) + v(t)− x̂(t|t− 1))

= ax̃(t|t− 1)− aK(t)x̃(t|t− 1)− aK(t)v(t)

= a(1−K(t))x̃(t|t− 1)− aK(t)v(t) (4.58)

where

K(t) =
P (t|t− 1)

P (t|t− 1) + r
.

Now, let us assume that we want to use an LTI filter with constant gain K.

From (4.58), the corresponding estimation error equation will be

x̃(t+ 1) = a(1−K)x̃(t)− aKv(t).

By taking the expected value, being E [v(t)] = 0, one gets

E [x̃(t + 1)] = a(1−K)E [x̃(t)]

and hence the bias error will tend to zero whenever |a(1 − K)| < 1. In

particular, convergence will be faster as K approaches 1. On the other hand,

if we consider the variance of the estimation error

P (t) = E
[

(x̃(t)−mx̃(t))
2
]

by exploiting the fact that x̃(t|t) and v(t) are uncorrelated, we get

P (t+ 1) = E
[{

a(1−K)(x̃(t)−mx̃(t))− aKv(t)
}2
]

= a2(1−K)2E
[

(x̃(t)−mx̃(t))
2
]

+ a2K2E
[

v2(t)
]

= a2(1−K)2P (t) + a2K2r

which is a first order dynamic system in the variable P (t), forced by the

constant input a2K2r. If a2(1 − K)2 < 1 such a system is asymptotically

stable and one has

lim
t→∞

P (t) =
1

1− a2(1−K)2
a2K2r.
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Therefore, it is easy to see that the asymptotic value of the variance of the

estimation error will tend to zero as K approaches zero. Summing up, we

are faced to the typical bias-variance trade off: we need a “large” filter gain

(K → 1) to reduce the bias error as fast as possible, and a “small” gain

(K → 0) to reduce the asymptotic variance (uncertainty) associated to the

estimate. This is the reason why the MSE filter is indeed a time-varying

one: it employs a large gain during the transient, in order to rapidly reduce

the bias error, and a small gain asymptotically, to reduce the variance of the

estimation error.

Figures 4.1-4.3 report the results of a numerical test performed on system

(4.55) with a = 0.9, r = 0.04, and x(0) = 1. Fig. 4.1 shows the evolution of

the true state x(t) and the noisy observation y(t). Fig. 4.2 reports on top

the estimates of two LTI filters with constant gain K = 0.9 and K = 0.1,

respectively. It can be seen that the former quickly reduces the bias error but

shows a remarkable uncertainty in the estimates; conversely, the latter has

a small asymptotic variance of the estimate but it is quite slow in tracking

the true state evolution. The bottom plot reports the estimate provided by

the Kalman Filter, initialized with x̂(0| − 1) = 0 and P (0|− 1) = 1. It can

be observed that the KF succeeds in both reducing the initial bias error and

keeping small the asymptotic error variance. This is clearly due to the time

varying gain K(t), shown in Fig. 4.3, along with the error variance P (t|t).
The considered one-dimensional example is also helpful to provide an

insight in the asymptotic results of Theorem 4.3. Since there is no process

disturbance in system (4.55), one has Q = 0 and the ARE (4.52) reduces to

P∞ =
a2P∞r

P∞ + r

which can be written as

P 2
∞ + P∞r(1− a2) = 0

and therefore it has two solutions






P∞ = 0

P∞ = r(a2 − 1)
(4.59)
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Figure 4.1: Evolution of system (4.55) with a = 0.9, r = 0.04, and x(0) = 1:

x(t) (solid); y(t) (dashed).

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

LTI Filters: K=0.1 (dotted), K=0.9 (dashed)
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Figure 4.2: Top: performance of LTI filters with K = 0.9 (dashed) and

K = 0.1 (dotted), with respect to the true state x(t) (solid). Bottom: KF

estimate x̂(t|t) (dashed) compared to true state x(t) (solid).
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Figure 4.3: Top: Kalman gain K(t). Bottom: variance of estimation error

P (t|t).

If a2 < 1, then the only positive semidefinite solution is P∞ = 0. This is

consistent with the fact that, being H = 0, the pair (A,H) = (a, 0) is not

reachable but it is indeed stabilizable (the system is already asymptotically

stable!). Hence, Theorem 4.3 guarantees that

lim
t→∞

P (t|t− 1) = P∞ = 0

lim
t→∞

K(t) =
P∞

P∞ + r
= K∞ = 0

This is precisely what can be obtained by studying the one-dimensional (non-

linear) system (4.57), which describes the behavior of the variance P (t|t−1).

Notice that in this example the asymptotic Kalman filter simply ignores the

output data (K∞ = 0) and it just waits that the state estimate converges to

zero, like the true state does.

Conversely, if a2 > 1, the pair (a, 0) is not stabilizable and hence we can-

not apply Theorem 4.3. Indeed, both solutions (4.59) are positive semidefi-
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nite. Nevertheless, by analyzing again system (4.57), it can be shown that:

lim
t→∞

P (t|t− 1) = r(a2 − 1)

lim
t→∞

K(t) =
P∞

P∞ + r
=

r(a2 − 1)

r(a2 − 1) + 1
=

a2 − 1

a2

i.e., the covariance converges to the largest solution of the ARE. We stress

that the solution K∞ = 0 this time is unacceptable because the system is

unstable and ignoring the output data would lead to divergence of the error

variance. Instead, K∞ = a2−1
a2

leads to

lim
t→∞

(A− AK(t)C) = a− aK∞ = a− a
a2 − 1

a2
=

1

a

which is indeed inside the unit circle, as a2 > 1 implies
∣
∣ 1
a

∣
∣ < 1. This confirms

that the asymptotic KF is an asymptotically stable LTI filter, guaranteeing

that the expected value of the state estimation error converges to zero also

for unstable systems.

It is also interesting to analyze the case in which the process disturbance

is present. Let

x(t+ 1) = ax(t) + w(t)

with w(t) ∼ WP (0, q) and h =
√
q $= 0, which implies that the pair (a, h) is

always reachable and hence also stabilizable. The ARE becomes

P∞ = a2P∞ + q −
a2P 2

∞

P∞ + r
=

a2P∞r

P∞ + r
+ q

or equivalently

P 2
∞ + P∞[r(1− a2)− q]− rq = 0

which has always a unique positive solution P∞ > 0, for every a ∈ R, q > 0,

r > 0. Hence, Theorem 4.3 guarantees that

lim
t→∞

P (t|t− 1) = P∞.

Notice that in this case P∞ cannot be equal to zero because w(t) steadily

injects uncertainty into the system.



4.6. RECURSIVE SYSTEM IDENTIFICATION 29

4.6 Recursive system identification

Among the wide variety of applications of the KF, a popular one concerns

the problem of online system identification. Consider the parametric sys-

tem identification problem addressed in Chapter 3 and in particular the one

concerning linear regression models (such as ARX, FIR, etc.). The problem

aim is to find the parameter vector θ minimizing the 1-step ahead output

prediction error, i.e.

min
θ

N
∑

t=1

(y(t)− ŷ(t|t− 1))2 (4.60)

where the 1-step ahead prediction is a linear function of the parameters,

ŷ(t|t− 1) = ϕT (t)θ. As an example, for the ARX model

y(t) + a1y(t− 1) + a2y(t− 2) + · · ·+ ana
y(t− na) =

= b1u(t− 1) + b2u(t− 2) + · · ·+ bnb
u(t− nb) + e(t)

with e(t) ∼ WP (0, σ2
e), the regressor vector ϕ(t) is a collection of observed

past values of the input and output signals

ϕ(t) =
[

−y(t− 1) · · · −y(t− na) u(t− 1) · · · u(t− nb)
]T

while the vector θ ∈ Rd, with d = na+nb, contains the unknown parameters

to be estimated

θ =
[

a1 a2 · · · ana
b1 b2 · · · bnb

]T

.

We already know that the unique solution of problem

min
θ

N
∑

t=1

(y(t)− ϕT (t)θ)2

is given by the least squares estimate

θ̂LSN =

(
N
∑

t=1

ϕ(t)ϕT (t)

)−1 N
∑

t=1

ϕ(t)y(t) (4.61)
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provided that the matrix
∑N

t=1 ϕ(t)ϕ
T (t) ∈ Rd×d is nonsingular. Being the

sum of N matrices of rank 1, a necessary condition is that N ≥ d.

The computation of (4.61) is straightforward once we have collected the

entire input-output dataset {u(1), y(1), · · ·u(N), y(N)}. However, in many

practical applications one would like to estimate the parameter vector θ on-

line, i.e., while the input-output data are being collected. A typical example

is that of fault detection, in which the estimate of the parameter θ is con-

tinuously updated and compared to an ideal reference θ0, in order to check

if the system is significantly deviating from its nominal behavior. Another

application is adaptive control, in which the identified model is used to up-

date in real time the parameters of a feedback controller, which is designed

according to the estimated parameter vector θ̂. This means that at each time

t we aim at computing

θ̂t = argmin
θ

t
∑

k=1

(y(k)− ϕT (k)θ)2.

Obviously, the solution is given by the least squares estimate

θ̂LSt =

(
t
∑

k=1

ϕ(k)ϕT (k)

)−1 t
∑

k=1

ϕ(k)y(k) (4.62)

but it would be clearly impractical to use equation (4.62) to compute the pa-

rameter estimates at each time t, as one needs to process a steadily increasing

number of data as t grows.

As an alternative, we look for a recursive solution that updates the esti-

mate at time t by using only the previous estimate at time t−1 and the new

data pair y(t),ϕ(t). Let

R(t) =
t
∑

k=1

ϕ(k)ϕT (k) f(t) =
t
∑

k=1

ϕ(k)y(k)

And rewrite the equation of the least squares estimate (4.62) as

θ̂t = R(t)−1f(t).
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Now, it is easy to see that R(t) and f(t) can be updated in a recursive

manner, by using just the current data pair y(t),ϕ(t) at time t, according to

R(t) = R(t− 1) + ϕ(t)ϕT (t) ,

f(t) = f(t− 1) + ϕ(t)y(t) .

By exploiting the fact that θ̂t−1 = R(t − 1)−1f(t − 1) implies f(t − 1) =

R(t− 1)θ̂t−1, one has

θ̂t = R(t)−1f(t) = R(t)−1(f(t− 1) + ϕ(t)y(t))

= R(t)−1
(

R(t− 1)θ̂t−1 + ϕ(t)y(t)
)

=

= R(t)−1
[
(

R(t)− ϕ(t)ϕT (t)
)

θ̂t−1 + ϕ(t)y(t)
]

=

= R(t)−1R(t)θ̂t−1 +R(t)−1ϕ(t)y(t)− R(t)−1ϕ(t)ϕT (t)θ̂t−1 =

= θ̂t−1 +R(t)−1ϕ(t)
[

y(t)− ϕT (t)θ̂t−1

]

.

Hence, one can update the estimate θ̂t at each time t by using the following

recursive algorithm

θ̂t = θ̂t−1 +R(t)−1ϕ(t)
[

y(t)− ϕT (t)θ̂t−1

]

R(t+ 1) = R(t) + ϕ(t + 1)ϕT (t+ 1)
(4.63)

Inverting the matrix R(t) ∈ Rd×d requires O(d3) operations at each time step.

In order to derive a more efficient algorithm, it is better to propagate the

inverse P (t) = R(t)−1. In fact, by exploiting the Matrix Inversion Lemma

(4.32), one gets

P (t) =
[

R(t− 1) + ϕ(t)ϕT (t)
]−1

=

= P (t− 1)− P (t− 1)ϕ(t)
[

1 + ϕT (t)P (t− 1)ϕ(t)
]−1

ϕT (t)P (t− 1) =

= P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

1 + ϕT (t)P (t− 1)ϕ(t)
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Moreover,

R(t)−1ϕ(t) = P (t)ϕ(t)

= P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

1 + ϕT (t)P (t− 1)ϕ(t)
ϕ(t)

=
P (t− 1)ϕ(t)

1 + ϕT (t)P (t− 1)ϕ(t)
.

By substituting the above relationships into (4.63) one obtains the Recursive

Least Squares (RLS) algorithm

θ̂t = θ̂t−1 + L(t)[y(t)− ϕT (t)θ̂t−1]

L(t) =
P (t− 1)ϕ(t)

1 + ϕT (t)P (t− 1)ϕ(t)

P (t) = P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

1 + ϕT (t)P (t− 1)ϕ(t)

(4.64)

The RLS algorithm has computational complexity O(d2). It should be re-

marked that the first equation in (4.64) uses the output prediction error

y(t)− ŷ(t|t−1) = y(t)−ϕT (t)θ̂t−1 in order to update the parameter estimate

from time t − 1 to time t, by means of the RLS gain L(t), which in turn

depends on the matrix P (t) and the regressor vector ϕ(t).

It is interesting to highlight that the RLS algorithm can be seen as an

application of the Kalman filter to a time-varying linear system. In fact, de-

fine the state vector x(t) as the unknown parameter vector θ to be estimated.

Being θ constant, for a linear regression model y(t) = ϕT (t)θ + e(t) one can

write the state space model

x(t + 1) = x(t)

y(t) = ϕT (t)x(t) + e(t).
(4.65)

This clearly falls within the general framework of the LMSE state estima-

tion problem (4.11), by setting A = I, B = G = Q = 0, C = ϕT (t) and

v(t) = e(t) ∼ WP (0, σ2
e), i.e., R = σ2

e . If we apply to system (4.65) the KF
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algorithm, we get the recursions

x̂(t) = x̂(t− 1) +K(t)[y(t)− ϕT (t)x̂(t− 1)]

K(t) =
P (t− 1)ϕ(t)

σ2
e + ϕT (t)P (t− 1)ϕ(t)

P (t) = P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

σ2
e + ϕT (t)P (t− 1)ϕ(t)

(4.66)

where we used the shorthand notations x̂(t) and P (t), in place of x̂(t|t) =

x̂(t|t−1) and P (t|t) = P (t|t−1), respectively. It is easy to see that equations

(4.66) coincide with those in (4.64), if we set σ2
e = 1. Notice that this can be

done without loss of generality, as one can always scale the linear regression

model by the standard deviation σe thus obtaining a new output equation

ỹ(t) = ϕ̃T (t)θ + ẽ(t) (4.67)

where ỹ(t) = y(t)
σe

, ϕ̃(t) = ϕ(t)
σe

, ẽ(t) = e(t)
σe

and E [ẽ2(t)] = 1. If we apply the

RLS algorithm (4.64) to the linear regression model (4.67) , the resulting

sequence of estimates θ̂t is exactly the same as the sequence x̂(t) returned by

the recursion (4.66).

4.6.1 Initialization of the RLS algorithm

There are several possible ways to initialize the RLS recursion. If one uses

the form (4.63), the matrices R(t) must be full rank (i.e., rank(R(t)) = d),

in order to be invertible. Hence, one can use an initial batch of data for

t = 1, 2, . . . , t0 such that rank(R(t0)) = d (notice that it must be t0 ≥ d).

Then, set

θ̂t0 = R(t0)
−1f(t0)

and iterate the RLS algorithm from t0 onwards (i.e., for t = t0+1, t0+2, · · · ).
Notice that this ensures that the resulting estimates θ̂t are exactly equal to

the batch solution (4.62), for all t > t0.

On the other hand, if one uses the form (4.64), it is possible to start the

recursion straight away at time t = 1 (i.e., when the first data pair y(1),ϕ(1)
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is available). This can be done by choosing any θ̂0 ∈ Rd and any matrix

P (0) = P0 ∈ Rd×d such that P0 = P T
0 > 0. In this case, the RLS algorithm

will return at every time t the solution of the following optimization problem

θ̂t = argmin
θ

t
∑

k=1

(

y(t)− ϕT (t)θ
)2

+ (θ − θ̂0)P
−1
0 (θ − θ̂0) (4.68)

where it is apparent the influence of the initialization. Clearly, the larger is

P0, the smaller is such an influence. In any case, the effect of the initialization

will decay asymptotically and the estimate resulting from (4.68) will converge

to the least squares solution (4.62), as t grows.

4.6.2 Slowly time-varying parameters

The interpretation of the RLS algorithm as an application of the Kalman

filter, allows one to devise some useful extensions of the recursive parame-

ter estimation setting. Let us first consider the case of slowly time-varying

parameters, i.e., parameters that may show a drift which is typically much

slower than the dynamics of the output process y(t). This can be modeled

by the random walk

x(t + 1) = x(t) + w(t)

where w(t) ∼ WP (0, Q). The smaller is Q, the slower is the time variation

in the parameter vector θ (which is modeled by x(t)). By applying the KF

recursions, one gets the algorithm

x̂(t) = x̂(t− 1) +K(t)[y(t)− ϕT (t)x̂(t− 1)]

K(t) =
P (t− 1)ϕ(t)

σ2
e + ϕT (t)P (t− 1)ϕ(t)

P (t) = P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

σ2
e + ϕT (t)P (t− 1)ϕ(t)

+Q

(4.69)

where the only difference with the standard RLS recursion in (4.64) is just

the presence of the matrix Q in the last equation.
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4.6.3 Exponential data weighting

A possible problem of the RLS algorithm is that it may not be sufficiently

reactive to abrupt changes (i.e., rapid variations in θ), once a large amount

of data has been processed. The interpretation in terms of KF provides an

explanation for such a phenomenon: the matrix P (t) represents the covari-

ance of the estimation error and therefore it will become smaller and smaller

as long as new data are processed. This will lead in turn to a vary small gain

L(t) and thus the algorithm will be almost insensitive even to large output

prediction errors y(t)− ϕT (t)x̂(t− 1).

A key idea to overcome this problem is to weight more the last data with

respect to the old ones. For example, this can be done by introducing an

exponential data weighting, which corresponds to solving the optimization

problem

min
θ

t
∑

k=1

λt−k
(

y(t)− ϕT (t)θ
)2

+ λt(θ − θ̂0)P
−1
0 (θ − θ̂0)

where λ ∈ (0, 1) is the forgetting factor, enforcing higher weights for more

recent data. Typical values for λ are chosen in the range [0.95, 0.999], with

smaller values corresponding to more reactive algorithms. The resulting Ex-

ponentially Weighted RLS algorithm (EW-RLS) turns out to be

θ̂t = θ̂t−1 + L(t)
[

y(t)− ϕT (t)θ̂t−1

]

L(t) =
P (t− 1)ϕ(t)

λ+ ϕT (t)P (t− 1)ϕ(t)

P (t) =
1

λ

[

P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

1 + ϕT (t)P (t− 1)ϕ(t)

]

The presence of λ in the second and third equation prevents P (t) and L(t)

from vanishing to zero. On the other hand, a too small λ will lead to large

values of the covariance P (t) of the estimation error, which clearly affects the

quality of the estimate (once again, a reduction in the bias error may result

in an increase of the error variance).


