
Chapter 1

Estimation theory

In this chapter, an introduction to estimation theory is provided. The objec-

tive of an estimation problem is to infer the value of an unknown quantity,

by using information concerning other quantities (the data).

Depending on the type of a priori information available on the unknown

quantity to be estimated, two different settings can be considered:

• Paramteric estimation;

• Bayesian estimation.

Paragraphs 1.1-1.5 discuss parametric estimation problems, while paragraph

1.6 concerns the Bayesian estimation framework.

1.1 Parametric estimation

The aim of a parametric estimation problem is to estimate a deterministic

quantity θ from observations of the random variables y1, . . .yn.

1.1.1 Problem formulation

let:

- θ ∈ Θ ⊆ R
p, an unknown vector of parameters ;
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- y = (y1, . . .yn)
T ∈ Y ⊆ R

n a vector of random variables, hereafter

called observations or measurements ;

- F θ
y (y) , f

θ
y (y) the cumulative distribution function and the probabil-

ity density function, respectively, of the observation vector y, which

depend on the unknown vector θ.

The set Θ, to which the parameter vector θ belongs, is referred to as

the parameter set. It represents the a priori information available on the

admissible values of the vector θ. If all values are admissible, Θ = R
p.

The set Y , containing all the values that the random vector y may take,

is known as observation set. It is assumed that the cdf F θ
y (y) (or equivalently

the pdf f θ
y (y)) is parameterized by the p parameters θ ∈ R

p (which means

that such parameters enter in the expressions of those functions). Hereafter,

the word parameter will be used to denote the entire unknown vector θ. To

emphasize the special case p = 1, we will sometimes use the expression scalar

parameter.

We are now ready to formulate the general version of a parametric esti-

mation problem.

Problem 1.1. Estimate the unknown parameter θ ∈ Θ, by using an obser-

vation y of the random vector y ∈ Y.

In order to solve Problem 1.1, one has to construct an estimator.

Definition 1.1. An estimator T (·) of the parameter θ is a function that

maps the set of observations to the parameter set:

T : Y → Θ.

The value θ̂ = T (y), returned by the estimator when applied to the observa-

tion y of y, is called estimate of θ.

An estimator T (·) defines a rule that associates to each realization y of

the measurement vector y, the quantity θ̂ = T (y) which is an estimate of θ.
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Notice that θ̂ can be seen as a realization of the random variable T (y);

in fact, since T (y) is a function of the random variable y, the estimate θ̂ is

a random variable itself.

1.1.2 Properties of an estimator

According to Definition 1.1, the class of possible estimators is infinite. In

order to characterize the quality of an estimator, it is useful to introduce

some desired properties.

Unbiasedness

A first desirable property is that the expected value of the estimate θ̂ = T (y)

be equal to the actual value of the parameter θ.

Definition 1.2. An estimator T (y) of the parameter θ is unbiased (or cor-

rect) if

Eθ [T (y)] = θ, ∀θ ∈ Θ. (1.1)

In the above definition we used the notation Eθ [·], which stresses the

dependency on θ of the expected value of T (y), due to the fact that the pdf

of y is parameterized by θ itself.

The unbiasedness condition (1.1) guarantees that the estimator T (·) does
not introduce systematic errors, i.e., errors that are not averaged out even

when considering an infinite amount of observations of y. In other words,

T (·) does not overestimate neither underestimate θ, on average (see Fig. 1.1).

Example 1.1. Let y1, . . . ,yn be random variables with mean m. The quan-

tity

y =
1

n

n
∑

i=1

yi (1.2)

is the so-called sample mean. It is easy to verify that y is an unbiased

estimator of m. Indeed, due to the linearity of the expected value operator,
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θ

unbiased
biased

Figure 1.1: Probability density function of an unbiased estimator and of a

biased one.

one has

E [y] = E

[

1

n

n
∑

i=1

yi

]

=
1

n

n
∑

i=1

E [yi] =
1

n

n
∑

i=1

m = m.

△

Example 1.2. Let y1, . . . ,yn be scalar random variables, independent and

identically distributed (i.i.d.) with mean m and variance σ2. The quantity

σ̂2
y =

1

n

n
∑

i=1

(yi − y)2

is a biased estimator of the variance σ2. Indeed, from (1.2) one has

E
[

σ̂2
y

]

=
1

n

n
∑

i=1

E





(

yi −
1

n

n
∑

j=1

yj

)2




=
1

n

n
∑

i=1

1

n2
E





(

nyi −
n
∑

j=1

yj

)2




=
1

n

n
∑

i=1

1

n2
E





(

n(yi −m)−
n
∑

j=1

(yj −m)

)2


 .
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However,

E





(

n(yi −m)−
n
∑

j=1

(yj −m)

)2


 = n2E
[

(yi −m)2
]

− 2nE

[

(yi −m)

n
∑

j=1

(yj −m)

]

+ E





(

n
∑

j=1

(yj −m)

)2




= n2σ2 − 2nσ2 + nσ2

= n(n− 1)σ2

because, for the independency assumption, E
[

(yi −m)(yj −m)
]

= 0 for

i 6= j. Therefore,

E
[

σ̂2
y

]

=
1

n

n
∑

i=1

1

n2
n(n− 1)σ2 =

n− 1

n
σ2 6= σ2.

△

Example 1.3. Let y1, . . . ,yn be i.i.d. scalar random variables, with mean

m and variance σ2. The quantity

S2 =
1

(n− 1)

n
∑

i=1

(yi − y)2

is called sample variance. It is straightforward to verify that S2 is an unbiased

estimator of the variance σ2. In fact, observing that

S2 =
n

n− 1
σ̂2
y,

one has immeantely

E
[

S2
]

=
n

n− 1
E
[

σ̂2
y

]

=
n

n− 1

n− 1

n
σ2 = σ2.

△

Notice that, if T (·) is an unbiased estimator of θ, then g(T (·)) is not in

general an unbiased estimator of g(θ), unless g(·) is a linear function.
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Consistency

Another desirable property of an estimator is to provide an estimate that

converges to the actual value of θ as the number of measurements grows.

Being the estimate a random variable, we need to introduce the notion of

convergence in probability.

Definition 1.3. Let {yi}∞i=1 be a sequence of random variables. The se-

quence of estimators θ̂n = Tn(y1, . . . ,yn) of θ is said to be consistent if θ̂n

converges in probability to θ, for all admissible values of θ, i.e.

lim
n→∞

P
(
∥

∥

∥
θ̂n − θ

∥

∥

∥
≥ ε
)

= 0, ∀ε > 0, ∀θ ∈ Θ.

θ

n = 20

n = 50

n = 100

n = 500

Figure 1.2: Probability density function of a consistent estimator.

Notice that consistency is an asymptotic property of an estimator. It

guarantees that, as the number of data goes to infinity, the probability that

the estimate differ from the actual value of the parameter goes to zero (see

Fig. 1.2).

The next Theorem provides a sufficient condition for consistency of un-

biased estimators.

Theorem 1.1. Let θ̂n be a sequence of unbiased estimators of the scalar

parameter θ:

E
[

θ̂n

]

= θ, ∀n, ∀θ ∈ Θ.
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If

lim
n→∞

E
[

(θ̂n − θ)2
]

= 0,

then the sequence θ̂n is consistent.

Proof

For a random variable x, the Chebishev inequality holds:

P (|x−mx| ≥ ε) ≤ 1

ε2
E
[

(x−mx)
2
]

.

Therefore, one has

lim
n→∞

P
(
∥

∥

∥
θ̂n − θ

∥

∥

∥
≥ ε
)

≤ lim
n→∞

1

ε2
E
[

(θ̂n − θ)2
]

,

from which the result follows immediately. �

Therefore, for a sequence of unbiased estimators to be consistent, it is suffi-

cient that the variance of the estimates goes to zero as the number of mea-

surements grows.

Example 1.4. Let y1, . . . ,yn be i.i.d. random variables with mean m and

variance σ2. In Example 1.1 it has been shown that the sample mean

y =
1

n

n
∑

i=1

yi

is an unbiased estimator of the mean m. Let us now show that it is also a

consistent estimator of m. The variance of the estimate is given by

Var(y) = E
[

(y −m)2
]

= E





(

1

n

n
∑

i=1

yi −m

)2




=
1

n2
E





(

n
∑

i=1

(yi −m)

)2


 =
σ2

n

because the random variables yi are independent. Therefore,

Var(y) =
σ2

n
→ 0 as n → ∞.

Hence, due to Theorem 1.1, the sample mean y is a consistent estimator of

the mean m. △
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The result in Example 1.4 is a special case of the following more general

celebrated result.

Theorem 1.2. (Law of large numbers)

Let {yi}∞i=1 be a sequence of independent random variables with mean m and

finite variance. Then, the sample mean y converges to m in probability.

Mean square error

A criterion for measuring the quality of the estimate provided by an estimator

is the Mean Square Error. Let us first consider the case of a scalar parameter

(θ ∈ R).

Definition 1.4. Let θ ∈ R. The Mean Square Error (MSE) of an estimator

T (·) is defined as

MSE T (·) = Eθ
[

(T (y)− θ)2
]

Notice that if an estimator is unbiased, then the MSE is equal to the

variance of the estimate T (y), and also to the variance of the estimation

error T (y)− θ. On the other hand, for a biased estimator one has

MSE T (·) = Eθ
[

(T (y)−mT (y) +mT (y) − θ)2
]

= Eθ
[

(T (y)−mT (y))
2
]

+ (mT (y) − θ)2

where mT (y) = E [T (y)]. The above expression shows that the MSE of

a biased estimator is the sum of the variance of the estimator and of the

square of the deterministic quantity mT (y)−θ, which is called bias error. As

we will see, the trade off between the variance of the estimator and the bias

error is a fundamental limitation in many practical estimation problems.

The MSE can be used to decide which estimator is better within a family

of estimators.

Definition 1.5. Let T1(·) and T2(·) be two estimators of the parameter θ.

Then, T1(·) is uniformly preferable to T2(·) if

Eθ
[

(T1(y)− θ)2
]

≤ Eθ
[

(T2(y)− θ)2
]

, ∀θ ∈ Θ
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It is worth stressing that in order to be preferable to other estimators, an

estimator must provide a smaller MSE for all the admissible values of the

parameter θ.

The above definitions can be extended quite naturally to the case of a

parameter vector θ ∈ R
p.

Definition 1.6. Let θ ∈ R
p. The Mean Square Error (MSE) of an estimator

T (·) is defined as

MSE T (·) = Eθ
[

‖T (y)− θ)‖2
]

= Eθ
[

tr{(T (y)− θ)(T (y)− θ)T}
]

where tr(M) denotes the trace of the matrix M .

The concept of uniformly preferable estimator is analogous to that in

Definition 1.5. It can be also defined in terms of inequality between the

corresponding covariance matrices, i.e., T1(·) is uniformly preferable to T2(·)
if

Eθ
[

(T1(y)− θ)(T1(y)− θ)T
]

≤ Eθ
[

(T2(y)− θ)(T2(y)− θ)T
]

where the matrix inequality A ≤ B means thatB−A is a positive semidefinite

matrix.

1.1.3 Minimum variance unbiased estimator

Let us restrict our attention to unbiased estimators. Since we have introduced

the concept of mean square error, it is natural to look for the estimator which

minimizes this performance index.

Definition 1.7. An unbiased estimator T ∗(·) of the scalar parameter θ is a

Uniformly Minimum Variance Unbiased Estimator (UMVUE) if

Eθ
[

(T ∗(y)− θ)2
]

≤ Eθ
[

(T (y)− θ)2
]

, ∀θ ∈ Θ (1.3)

for all unbiased estimators T (·) of θ.
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Notice that for an estimator to be UMVUE, it has to satisfy the following

conditions:

• be unbiased;

• have minimum variance among all unbiased estimators;

• the previous condition must hold for every admissible value of the pa-

rameter θ.

Unfortunately, there are many problems for which there does not exist any

UMV UE estimator. For this reason, we often restrict the class of estimators,

in order to find the best one within the considered class. A popular choice

is that of linear estimators, i.e., taking the form

T (y) =

n
∑

i=1

aiyi, (1.4)

with ai ∈ R.

Definition 1.8. A linear unbiased estimator T ∗(·) of the scalar parameter θ

is the Best Linear Unbiased Estimator (BLUE) if

Eθ
[

(T ∗(y)− θ)2
]

≤ Eθ
[

(T (y)− θ)2
]

, ∀θ ∈ Θ

for every linear unbiased estimator T (·) of θ.

Differently from the UMVUE estimator, the BLUE estimator takes on a

simple form and can be easily computed (one has just to find the optimal

values of the coefficients ai).

Example 1.5. Let yi be independent random variables with mean m and

variance σ2
i , i = 1, . . . , n. Assume the variances σ2

i are known. Let us

compute the BLUE estimator of m. Being the estimator linear, it takes on

the form (1.4). In order to be unbiased, T (·) must satisfy

Eθ [T (y)] = Eθ

[

n
∑

i=1

aiyi

]

=

n
∑

i=1

aiE
θ [yi] = m

n
∑

i=1

ai = m
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Therefore, we must enforce the constraint

n
∑

i=1

ai = 1 (1.5)

Now, among all the estimators of form (1.4), with the coefficients ai satisfying

(1.5), we need to find the minimum variance one. Being the observations yi

independent, the variance of T (y) is given by

Eθ
[

(T (y)−m)2
]

= Eθ





(

n
∑

i=1

aiyi −m

)2


 =

n
∑

i=1

a2iσ
2
i .

Summing up, in order to determine the BLUE estimator, we have to solve

the following constrained optimization problem:

min
ai

n
∑

i=1

a2iσ
2
i

s.t.
n
∑

i=1

ai = 1

Let us write the Lagrangian function

L(a1, . . . , an, λ) =
n
∑

i=1

a2iσ
2
i + λ

(

n
∑

i=1

ai − 1

)

and compute the stationary points by imposing

∂L(a1, . . . , an, λ)
∂ai

= 0, i = 1, . . . , n (1.6)

∂L(a1, . . . , an, λ)
∂λ

= 0. (1.7)

From (1.7) we obtain the constraint (1.5), while (1.6) implies that

2aiσ
2
i + λ = 0, i = 1, . . . , n



12 CHAPTER 1. ESTIMATION THEORY

from which

λ = − 1
n
∑

i=1

1

2σ2
i

(1.8)

ai =

1
σ2
i

n
∑

j=1

1

σ2
j

, i = 1, . . . , n (1.9)

Tehrefore, the BLUE estimator of the mean m is given by

m̂BLUE =
1

n
∑

i=1

1

σ2
i

n
∑

i=1

1

σ2
i

yi (1.10)

Notice that if all the measurements have the same variance σ2
i = σ2, the

estimator m̂BLUE boils down to the sample mean y. This means that the

BLUE estimator can be seen as a generalization of the sample mean, in

the case when the measurements yi have different accuracy (i.e., different

variance σ2
i ). In fact, the BLUE estimator is a weighted average of the ob-

servations, in which the weights are inversely proportional to the variance of

the measurements or, seen another way, directly proportional to the precision

of each observation. Let us assume that for a certain i, σ2
i → ∞. This means

that the measurement yi is completely unreliable. Then, the weight 1
σ2
i

of yi

within m̂BLUE will tend to zero. On the other hand, for an infinitely precise

measurement yj (σ
2
j → 0), the corresponding weight 1

σ2
j

will be predominant

over all the other weights and the BLUE estimate will approach that mea-

surement, i.e., m̂BLUE ≃ yj . △

1.2 Cramér-Rao bound

This paragraph introduces a fundamental result which establishes a lower

bound to the variance of every unbiased estimator of the parameter θ.
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Theorem 1.3. (Cramér-Rao bound) Let T (·) be an unbiased estimator

of the scalar parameter θ based on the observations y of the random variables

y ∈ Y, and let that the observation set Y be independent from θ. Then,

under some technical regularity assumptions (see (Rohatgi and Saleh, 2001)),

it holds

Eθ
[

(T (y)− θ)2
]

≥ [In(θ)]
−1

, (1.11)

where

In(θ) = Eθ





(

∂ ln f θ
y (y)

∂θ

)2


 (1.12)

is called Fisher information. Moreover, if the observations y1, . . . ,yn are

independent and identically distributed with the same pdf f θ
y1
(y1), one has

In(θ) = n I1(θ).

When θ is a p-dimensional vector, the Cramér-Rao bound (1.11) becomes

Eθ
[

(T (y)− θ) (T (y)− θ)T
]

≥ [In(θ)]
−1

,

where the inequality must be intended in matricial sense and the matrix

In(θ) ∈ R
p×p is the so-called Fisher information matrix

In(θ) = Eθ





(

∂ ln f θ
y (y)

∂θ

)(

∂ ln f θ
y (y)

∂θ

)T


 .

Notice that the matrix Eθ
[

(T (y)− θ) (T (y)− θ)T
]

is the covariance matrix

of the unbiased estimator T (·).
Theorem 1.3 states that there does not exist any estimator with variance

smaller than [In(θ)]
−1. Notice that In(θ) depends, in general, on the actual

value of the parameter θ (because the partial derivatives must be evaluated

in θ) which is unknown. For this reason, an approximation of the lower

bound is usually computed in practice, by replacing θ with an estimate θ̂.

Nevertheless, the Cramér-Rao is also important because it allows to define

the key concept of efficiency of an estimator.
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Definition 1.9. An unbiased estimator T (·) is efficient if its variance achieves

the Cramér-Rao bound, i.e.

Eθ
[

(T (y)− θ)2
]

= [In(θ)]
−1

.

An efficient estimator has the least possible variance among all unbiased

estimators (therefore, it is also a UMVUE).

In the special case of i.i.d. observations yi, Theorem 1.3 states that

In(θ) = nI1(θ), where I1(θ) is the Fisher information of a single observa-

tion. Therefore, for a fixed θ, the Cramér-Rao bound decreases as 1
n
, as the

number of observations n grows.

Example 1.6. Let y1, . . . ,yn be i.i.d. random variables with mean my and

variance σ2
y. In Examples 1.1 and 1.4, we have seen that the sample mean

y =
1

n

n
∑

i=1

yi

is a consistent unbiased estimator of the mean my. Being the observations

i.i.d., from Theorem 1.3 one has

Eθ
[

(y −my)
2
]

=
σ2
y

n
≥ [In(θ)]

−1 =
[I1(θ)]

−1

n
.

Let us now assume that the yi are distributed according to the Gaussian pdf

fyi
(yi) =

1√
2πσy

e
−

(yi−my)2

2σ2
y .

Let us compute the Fisher information of a single measurement

I1(θ) = Eθ





(

∂ ln f θ
y1

(y1)

∂θ

)2


 .

In this example, the unknown parameter to be estimated is the mean θ = m.

Therefore,

∂ ln f θ
y1

(y1)

∂θ
=

∂

∂m

(

ln
1√
2πσy

− (y1 −m)2

2σ2
y

)
∣

∣

∣

∣

m=my

=
y −my

σ2
y

,
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and hence,

I1(θ) = Eθ

[

(y −my)
2

σ4
y

]

=
1

σ2
y

.

The Cramér-Rao bound takes on the value

[In(θ)]
−1 =

[I1(θ)]
−1

n
=

σ2
y

n
,

which is equal to the variance of the estimator y. Therefore, we can con-

clude that: in the case of i.i.d. Gaussian observations, the sample mean is

an efficient estimator of the mean. △

1.3 Maximum Likelihood Estimator

In general, for a given parametric estimation problem, an efficient estimator

may not exist. In Example 1.6, it has been shown that the Cramér-Rao

bound allows one to check if an estimator is efficient. However, it remains

unclear how to find suitable candidates for efficient estimators and, in the

case that such candidates turn out to be not efficient, whether it is possible

to conclude that for the problem at hand there are no efficient estimators.

An answer to these questions is provided by the class of Maximum Likelihood

estimators.

Definition 1.10. Let y be a vector of observations with pdf f θ
y (y), depend-

ing on the unknown parameter θ ∈ Θ. The likelihood function is defined

as

L(θ|y) = f θ
y (y) .

It is worth remarking that, once the realization y of the random variable

y has been observed (i.e., after the data have been collected), the likelihood

function depends only on the unknown parameter θ (indeed, we refer to

L(θ|y) as the likelihood of θ “given” y).

A meaningful way to estimate θ is to choose the value that maximizes the

probability of the observed data. In fact, by exploiting the meaning of the
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probability density function, maximizing f θ
y (y) with respect to θ corresponds

to choose θ in such a way that the measurement y has the highest possible

probability of having been observed, among all feasible scenarios θ ∈ Θ.

Definition 1.11. The Maximum Likelihood (ML) estimator of the unknown

parameter θ is given by

TML(y) = argmax
θ∈Θ

L(θ|y).

In several problems, in order to ease the computation, it may be conve-

nient to maximize the so-called log-likelihood function:

lnL(θ|y).

Being the natural logarithm a monotonically increasing function, L(θ|y) and
lnL(θ|y) achieve their maxima in the same values.

Remark 1.1. Assuming that the pdf f θ
y (y) be a differentiable function of

θ = (θ1, . . . , θp) ∈ Θ ⊆ R
p, with Θ an open set, if θ̂ is a maximum for L(θ|y),

it has to be a solution of the equations

∂L(θ|y)
∂θi

∣

∣

∣

∣

θ=θ̂

= 0, i = 1, . . . , p (1.13)

or equivalently of

∂ lnL(θ|y)
∂θi

∣

∣

∣

∣

θ=θ̂

= 0, i = 1, . . . , p. (1.14)

It is worth observing that in many problems, even for a scalar parameter

(p = 1), equation (1.13) may admit more than one solution. It may also

happen that the likelihood function is not differentiable everywhere in Θ or

that Θ is not an open set, in which case the maximum can be achieved on

the boundary of Θ. For all these reasons, the computation of the maximum

likelihood estimator requires to study the function L(θ|y) over the entire

domain Θ (see Exercise 1.5). Clearly, this may be a formidable task for high

dimensional parameter vectors.
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Example 1.7. Let y1, . . . ,yn be independent Gaussian random variables,

with unknown mean my and known variance σ2
y. Let us compute the ML

estimator of the mean my.

Being the measurements independent, the lieklihood is given by

L(θ|y) = f θ
y (y) =

n
∏

i=1

1√
2πσy

e
−

(yi−m)2

2σ2
y .

In this case, it is convenient to maximize the log-likelihood, which takes on

the form

lnL(θ|y) =
n
∑

i=1

(

ln
1√
2πσy

− (yi −m)2

2σ2
y

)

= n ln
1√
2πσy

−
n
∑

i=1

(yi −m)2

2σ2
y

.

By imposing the condition (1.14), one gets

∂ lnL(θ|y)
∂θ

=
∂

∂m

(

n ln
1√
2πσy

−
n
∑

i=1

(yi −m)2

2σ2
y

)
∣

∣

∣

∣

∣

m=m̂ML

= 0,

from which
n
∑

i=1

yi − m̂ML

σ2
y

= 0,

and hence

m̂ML =
1

n

n
∑

i=1

yi.

Therefore, in this case the ML estimator coincides with the sample mean.

Since the observations are i.i.d. Gaussian variables, this estimator is also ef-

ficient (see Example 1.6). △

The result in Example 1.7 is not restricted to the specific setting or pdf

considered. The following general theorem illustrates the importance of max-

imum likelihood estimators, in the context of parametric estimation.
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Theorem 1.4. Under the same assumptions for which the Cramér-Rao bound

holds, if there exists an efficient estimator T ∗(·), then T ∗(·) is a maximum

likelihood estimator.

Therefore, if we are looking for an efficient estimator, the only candidates

are maximum likelihood estimators.

Example 1.8. Let y1, . . . ,yn be independent Gaussian random variables,

with mean my and variance σ2
y, both unknown. Let us compute the Maxi-

mum Likelihood estimator of the mean and the variance.

Similarly to what observed in Example 1.7, the log-likelihood turns out

to be

lnL(θ|y) = n ln
1

√

2πσ2
−

n
∑

i=1

(yi −m)2

2σ2
.

The unknown parameter vector to be estimated is θ = (m, σ2)T , for which

condition (1.14) becomes

∂ lnL(θ|y)
∂θ1

=
∂

∂m

(

n ln
1

√

2πσ2
−

n
∑

i=1

(yi −m)2

2σ2

)
∣

∣

∣

∣

∣

(m=m̂ML,σ2=σ̂2
ML

)

= 0,

∂ lnL(θ|y)
∂θ2

=
∂

∂σ2

(

n ln
1

√

2πσ2
−

n
∑

i=1

(yi −m)2

2σ2
y

)
∣

∣

∣

∣

∣

(m=m̂ML,σ2=σ̂2
ML

)

= 0.

By differentiating with respect m and σ2, one gets

n
∑

i=1

yi − m̂ML

σ̂2
ML

= 0

− n

2σ2
ML

+
1

2σ4
ML

n
∑

i=1

(yi − m̂ML)
2 = 0,

from which

m̂ML =
1

n

n
∑

i=1

yi

σ2
ML =

1

n

n
∑

i=1

(yi − m̂ML)
2.
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Although Eθ [m̂ML] = my (see Example 1.1), one has Eθ [σ2
ML] =

n−1
n
σ2
y (see

Example 1.2). Therefore, in this case, the Maximum Likelihood estimator is

biased and hence it is not efficient. Due to Theorem 1.4, we can conclude that

there does not exist any efficient estimator for the parameter θ = (m, σ2)T . △

The previous example shows that Maximum Likelihood estimators can

be biased. However, besides the motivations provided by Theorem 1.4, there

exist other reasons that make such estimators attractive.

Theorem 1.5. If the random variables y1, . . . ,yn are i.i.d., then (under

suitable technical assumptions)

lim
n→+∞

√

In(θ) (TML(y)− θ)

is a random variable with standard normal distribution N(0, 1).

Theorem 1.5 states that the maximum likelihood estimator is:

• asymptotically unbiased;

• consistent;

• asymptotically efficient;

• asymptotically normal.

1.4 Nonlinear estimation with additive noise

A popular class of estimation problems is the one in which the aim is to esti-

mate a parameter θ, by using n measurements y = (y1, . . . ,yn)
T corrupted

by additive noise. Formally, let

h : Θ ⊆ R
p → R

n

be a deterministic function of θ. The aim is to estimate θ by using the

observations

y = h(θ) + ε
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where ε ∈ R
n represents the measurement noise, modeled as a vector of

random variables with pdf fε (ε).

Under this assumptions, the likelihood function is given by

L(θ|y) = f θ
y (y) = fε (y − h(θ)) .

In the case in which the measurement noise ε is distributed according to

the Gaussian pdf

fε (ε) =
1

(2π)n/2(det Σε)1/2
e−

1
2
εTΣ−1

ε ε

with zero mean and known covariance matrix Σε, the log-likelihood function

takes on the form

lnL(θ|y) = K − 1

2
(y − h(θ))TΣ−1

ε (y − h(θ)),

where K is a constant that does not depend on θ. The computation of

the maximum likelihood estimator boils down to the following optimization

problem

θ̂ML = argmax
θ

lnL(θ|y)

= argmin
θ
(y − h(θ))TΣ−1

ε (y − h(θ)). (1.15)

Being h(·), in general, a nonlinear function of θ, the solution of (1.15) can

be computed by resorting to numerical methods. Clearly, the computational

complexity depends not only on the number p of parameters to be estimated

and on the size n of the data set, but also on the structure of h(·). For

example, if h(·) is convex there are efficient algorithms that allow to solve

problems with very large n and p, while if h(·) is noncovex the problem may

become intractable even for relatively small values of p.

1.5 Linear estimation problems

An intersting scenario is the one in which the relationship between the un-

known parameters and the data is linear, i.e. h(θ) = U θ, where U ∈ R
n×p.
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In this case, the measurement equation takes on the form

y = Uθ + ε. (1.16)

In the following, we will assume that rank(U) = p, which means that the

number of linearly independent measurements is not smaller than the number

of parameters to be estimated (otherwise, the problem is ill posed).

We now introduce two popular estimators that can be used to estimate

θ in the setting (1.16). We will discuss their properties, depending on the

assumptions we make on the measurement noise ε. Let us start with the

Least Squares estimator.

Definition 1.12. Let y be a vector of random variables related to θ according

to (1.16). The estimator

TLS(y) = (UTU)−1UTy (1.17)

is called Least Squares (LS) estimator of the parameter θ.

The name of this estimator comes from the fact that it minimizes the

sum of the squared differences between the data realization y and the model

Uθ, i.e.

θ̂LS = argmin
θ

‖y − Uθ‖2 .

Indeed,

‖y − Uθ‖2 = (y − Uθ)T (y − Uθ) = yTy + θTUTUθ − 2yTUθ.

By differentiating with respect to θ, on gets

∂

∂θ
‖y − Uθ‖2

∣

∣

∣

∣

θ=θ̂LS

= 2θ̂TLSU
TU − 2yTU = 0,

where the properties ∂xTAx
∂x

= 2xTA and ∂Ax
∂x

= A have been exploited. By

solving with respect to θ̂TLS, one gets

θ̂TLS = yTU(UTU)−1.
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Finally, by transposing the above expression and taking into account that

the matrix (UTU) is symmetric, one obtains the equation (1.17).

It is worth stressing that the LS estimator does not require any a priori

information about the noise ε to be computed. As we will see in the sequel,

however, the properties of ε will influence those of the LS estimator .

Definition 1.13. Let y be a vector of random variables related to θ according

to (1.16). Let Σε be the covariance matrix of ε. The estimator:

TGM(y) = (UTΣ−1
ε U)−1UTΣ−1

ε y (1.18)

is called Gauss-Markov (GM) estimator (or Weighted Least Squares Estima-

tor) of the parameter θ.

Similarly to what has been shown for the LS estimator, it is easy to verify

that the GM estimator minimizes the weighted sum of squared errors between

y and Uθ, i.e.

θ̂GM = argmin
θ
(y − Uθ)TΣ−1

ε (y − Uθ).

Notice that the Gauss-Markov estimator requires the knowledge of the co-

variance matrix Σε of the measurement noise. By using this information, the

measurements are weighted with a matricial weight that is inversely propor-

tional to their uncertainty.

Under the assumtpion that the noise has zero mean, E [ε] = 0, it is easy

to show that both the LS and the GM estimator are unbiased. For the LS

estimator one has

Eθ
[

θ̂LS

]

= Eθ
[

(UTU)−1UTy
]

= Eθ
[

(UTU)−1UT (Uθ + ε)
]

= Eθ
[

θ + (UTU)−1UTε
]

= θ.

For the GM estimator,

Eθ
[

θ̂GM

]

= Eθ
[

(UTΣ−1
ε U)−1UTΣ−1

ε y
]

= Eθ
[

(UTΣ−1
ε U)−1UTΣ−1

ε (Uθ + ε)
]

= Eθ
[

θ + (UTΣ−1
ε U)−1UTΣ−1

ε ε
]

= θ.
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If the noise vector ε has non-zero mean, mε = E [ε], but the mean mε

is known, the LS and GM estimators can be easily amended to remove the

bias. In fact, if we define the new vector of random variables ε̃ = ε − mε,

the equation (1.16) can be rewritten as

y −mε = Uθ + ε̃, (1.19)

and being clearly E [ε̃] = 0, E [ε̃ε̃′] = Σε, all the treatment can be repeated

by replacing y with y − mε. Therefore, the expressions of the LS and GM

estimators remain those in (1.17) and (1.18), with y replaced by y −mε.

The case in which the mean of ε is unknown is more intriguing. In some

cases, one may try to estimate it from the data, along with the parameter θ.

Assume for example that E [εi] = m̄ε, ∀i. This means that E [ε] = m̄ε · 1,
where 1 = [1 1 . . . 1]T . Now, one can define the extended parameter

vector θ̄ = [θ′ m̄ε]
T ∈ R

p+1, and use the same decomposition as in (1.19) to

obtain

y = [U 1]θ̄ + ε̃

Then, one can apply the LS or GM estimator, by replacing U with [U 1], to

obtain a simultaneous estimate of the p parameters θ and of the scalar mean

m̄ε.

An important property of the Gauss-Markov estimator is that of being

the minimum variance estimator among all linear unbiased estimators, i.e.,

the BLUE (see Definition 1.8). In fact, the following result holds.

Theorem 1.6. Let y be a vector of random variables related to the param-

eter θ according to (1.16). Let Σε be the covariance matrix of ε. Then, the

BLUE estimator of θ is the Gauss-Markov estimator (1.18).The correspond-

ing variance of the estimation error is given by

E
[

(θ̂GM − θ)(θ̂GM − θ)T
]

= (UTΣ−1
ε U)−1. (1.20)

In the special case Σε = σ2
εIn (with In identity matrix of dimension n), i.e.,

when the variables ε are uncorrelated and have the same variance σ2
ε, the

BLUE estimator is the Least Squares estimator (1.17).
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Proof

Since we consider the class of linear unbiased estimators, we have T (y) = Ay,

and E [Ay] = AE [y] = AUθ. Therefore, one must impose the constraint

AU = Ip to guarantee that the estimator is unbiased.

In order to find the minimum variance estimator, it is necessary to minimize

(in matricial sense) the covariance of the estimation error

E
[

(Ay − θ)(Ay − θ)T
]

= E
[

(AUθ + Aε− θ)(·)T
]

= E
[

AεεTAT
]

= AΣεA
T

where we have enforced the constraint AU = Ip in the second equality. Then,

the BLUE estimator is obtained by solving the constrained optimization

problem

ABLUE = arg min
A

AΣεA
T

s.t.

AU = Ip

(1.21)

and then setting T (y) = ABLUE y.

Being the constraint AU = Ip linear in the matrix A, it is possible to param-

eterize all the admissible solutions A as

A = (UTΣ−1
ε U)−1UTΣ−1

ε +M (1.22)

with M ∈ R
p×n such that MU = 0. It is easy to check that all matrices A

defined by (1.22) satisfy the constraint AU = Ip. It is therefore sufficient to

find the one that minimizes the quantity AΣεA
T . By substituting A with

the expression (1.22), one gets

AΣεA
T = (UTΣ−1

ε U)−1UTΣ−1
ε ΣεΣ

−1
ε U(UTΣ−1

ε U)−1

+(UTΣ−1
ε U)−1UTΣ−1

ε ΣεM
T

+MΣεΣ
−1
ε U(UTΣ−1

ε U)−1 +MΣεM
T

= (UTΣ−1
ε U)−1 +MΣεM

T

≥ (UTΣ−1
ε U)−1
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where the second equality is due to MU = 0, while the final inequality

exploits the fact that Σε is positive definite and hence MΣεM
T is posi-

tive semidefinite. Since the expression (UTΣ−1
ε U)−1 does not dipend on M ,

we can conclude that the solution of problem (1.21) is obtained by setting

M = 0 in (1.22), which amounts to choosing ABLUE = (UTΣ−1
ε U)−1UTΣ−1

ε .

Therefore, the BLUE estimator coincides with the Gauss-Markov one. The

expression of the covariance of the estimation error (1.20) is obtained from

AΣεA
T when M = 0.

Finally, if Σε = σ2
εIn one has ABLUE = (UTU)−1UT (whatever is the value

of σ2
ε) and hence the GM estimator boils down to the LS one. �

In Section 1.4 it has been observed that, if the measurement noise ε is

Gaussian, the Maximum Likelihood estimator can be computed by solving

the optimization problem (1.15). If the observations depend linearly on θ, as

in (1.16), such a problem becomes

θ̂ML = argmin
θ
(y − Uθ)TΣ−1

ε (y − Uθ). (1.23)

As it has been noticed after Definition 1.13, the solution of (1.23) is actu-

ally the Gauss-Markov estimator. Therefore, we can state that: in the case

of linear observations corrupted by additive Gaussian noise, the Maximum

Likelihood estimator coincides with the Gauss-Markov estimator. Moreover,

it is possible to show that in this setting

Eθ





(

∂ ln f θ
y (y)

∂θ

)(

∂ ln f θ
y (y)

∂θ

)T


 = UTΣ−1U

and hence the Gauss-Markov estimator is efficient (and UMVUE).

Finally, if the measurements are also independent and have the same

variance σ2
ε, i.e., being the noise Gaussian,

ε ∼ N(0, σ2
εIn),

the, the GM estimator boils down to the LS one. Therefore: in the case

of linear observations, corrupted by independent and identically distributed



26 CHAPTER 1. ESTIMATION THEORY

Gaussian noise, the Maximum Likelihood estimator coincides with the Least

Squares estimator.

The following table summarizes the properties of the GM and LS estima-

tors, depending on the assumptions made on the noise ε.

Assumptions on ε Properties GM Properties LS

none argminθ(y − Uθ)TΣ−1
ε (y − Uθ) argminθ ‖y − Uθ‖2

with known Σε

E [ε] known unbiased unbiased

E [ε] = mε BLUE BLUE

E
[

(ε−mε)(ε−mε)
T
]

= Σε if Σε = σ2
εIn

ε ∼ N(mε,Σε) ML estimator ML estimator

efficient, UMVUE if Σε = σ2
εIn

Table 1.1: Properties of GM and LS estimators.

Example 1.9. On an unknown parameter θ, we collect n measurements

yi = θ + vi , i = 1, . . . , n

where the vi are realizations of n random variables vi, independent, with

zero mean and variance σ2
i , i = 1, . . . , n.

It is immediate to verify that the measurements yi are realizations of random

variables yi, with mean θ and variance σ2
i . Therefore, the estimate of θ can

be cast in terms of the estimate of the mean of n random variables (see

Examples 1.1 and 1.5, and Exercise 1.1).

1.6 Bayesian Estimation

In the Bayesian estimation setting, the quantity to be estimated is not deter-

ministic, but it is modeled as a random variable. In particular, the objective

is to estimate the random variable x ∈ R
m, by using observations of the ran-

dom variable y ∈ R
n (we will denote the unknown variable to be estimated
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by x instead of θ, to distinguish between the parametric and the Bayesian

framework). Clearly, the complete knowledge on the stochastic relationship

between x and y is given by the joint pdf fx,y (x, y).

As in the parametric setting, the aim is to find an estimator x̂ = T (y),

where

T (·) : Rn → R
m

Definition 1.14. In the Bayesian setting, an estimator T (·) is unbiased if

E [T (y)] = E [x] .

Similarly to what has been done in parametric estimation problems, it is

necessary to introduce a criterion to evaluate the quality of an estimator.

Definition 1.15. We define Bayes risk function the quantity

Jr = E [d(x, T (y))] =

∫ +∞

−∞

∫ +∞

−∞

d(x, T (y))fx,y (x, y) dxdy

where d(x, T (y)) denotes the distance between x and its estimate T (y),

according to a suitable metric.

Since the distance d(x, T (y)) is a random variable, the aim is to minimize

its expected value, i.e. to find

T ∗(·) = argmin
T (·)

Jr.

1.6.1 Minimum Mean Square Error Estimator

A standard choice for the distance d(·) is the quadratic error

d(x, T (y)) = ‖x− T (y)‖2 .

Definition 1.16. The minimum Mean Square Error (MSE) estimator is

defined as x̂MSE = T ∗(·), where

T ∗(·) = argmin
T (·)

E
[

‖x− T (y)‖2
]

. (1.24)
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Notice that in (1.24), the expected value is computed with respect to

both random variables x and y, and hence it is necessary to know the joint

pdf fx,y (x, y).

The following fundamental result provides the solution to the minimum

MSE estimation problem.

Theorem 1.7. Let x be a random variable and y a vector of observations.

The minimum MSE estimator x̂MSE of x based on y is equal to the condi-

tional expected value of x given y:

x̂MSE = E [x|y] .

The previous result states that the estimator minimizing the MSE is the

a posteriori expected value of x, given the observation of y, i.e.

x̂MSE =

∫ +∞

−∞

xfx|y(x|y)dx. (1.25)

which is indeed a function of y.

Since it is easy to prove that

E [E [x|y]] = E [x] ,

one can conclude that the minimum MSE estimator is always unbiased.

The minimum MSE estimator has other attractive properties. In partic-

ulare, if we consider the matrix

Q(x, T (y)) = E
[

(x− T (y))(x− T (y))T
]

,

it can be shown that:

• x̂MSE is the estimator minimizing (in matricial sense) Q(x, T (y)), i.e.

Q(x, x̂MSE) ≤ Q(x, T (y)), ∀T (y)

• x̂MSE minimizes every monotonically increasing scalar function ofQ(x, T (y)),

like for example the trace ofQ, corresponding to the MSE, E
[

‖x− T (y)‖2
]

.
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The computation of the minimum MSE estimator may be difficult, or

even intractable, in practical problems, because it requires the knowledge of

the joint pdf fx,y (x, y) and the computation of the integral (1.25).

Example 1.10. Consider two random variables x and y, whose joint pdf is

given by

fx,y (x, y) =







−3
2
x2 + 2xy if 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

0 elsewhere

Let us find the minimum MSE estimator of x based on one observation of y.

From Theorem 1.7, we know that

x̂MSE =

∫ +∞

−∞

xfx|y(x|y)dx.

First, we need to compute

fx|y(x|y) =
fx,y (x, y)

fy (y)
.

The marginal pdf of y can be calculated from the joint pdf as

fy (y) =

∫ 1

0

−3

2
x2 + 2xydx

= −x3

2
+ yx2

∣

∣

∣

∣

x=1

x=0

= y − 1

2
.

Hence, the conditional pdf is given by

fx|y(x|y) =







− 3
2
x2+2xy

y− 1
2

if 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

0 elsewhere

Now, it is possible to compute the minimum MSE estimator

x̂MEQM =

∫ 1

0

x
−3

2
x2 + 2xy

y − 1
2

dx

=
1

y − 1
2

(

−3

8
x4 +

2

3
x3y

)
∣

∣

∣

∣

x=1

x=0

=
2
3
y − 3

8

y − 1
2

.

△
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1.6.2 Linear Mean Square Error Estimator

We now restrict our attention to the class of affine linear estimators

T (y) = Ay + b (1.26)

in which the matrix A ∈ R
m×n and the vector b ∈ R

m are the coefficients of

the estimator to be determined. Among all estimators of the form (1.26), we

aim at finding the one minimizing the MSE.

Definition 1.17. The Linear Mean Square Error (LMSE) estimator is de-

fined as x̂LMSE = A∗y + b∗, where

A∗, b∗ = argmin
A,b

E
[

‖x− Ay − b‖2
]

. (1.27)

Theorem 1.8. Let x be a random variable and y a vector of observations,

such that

E [x] = mx, E [y] = my

E





(

x−mx

y −my

)(

x−mx

y −my

)T


 =

(

Rx Rxy

RT
xy Ry

)

.

Then, the solution of problem (??) is given by

A∗ = RxyR
−1
y ,

b∗ = mx − RxyR
−1
y my.

and hence, the LMSE estimator x̂LMSE of x is given by

x̂LMSE = mx +RxyR
−1
y (y −my).

Proof

First, observe that the cost to be minimized is

E
[

‖x− Ay − b‖2
]

= tr
(

E
[

(x− Ay − b)(x− Ay − b)T
])

.

Since the trace is a monotonically increasing function, solving problem (??)

is equivalent to find A∗, b∗ such that

E
[

(x− A∗y − b∗)(x− A∗y − b∗)T
]

≤ E
[

(x− Ay − b)(x− Ay − b)T
]

∀A, b
(1.28)
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Therefore, by denoting the estimation error as x̃ = x−Ay − b, one gets

E
[

x̃x̃T
]

= E [(x−mx − A(y −my) +mx − Amy − b)

× (x−mx −A(y −my) +mx −Amy − b)T
]

= Rx + ARyA
T −RxyA

T −ARyx

+ (mx − Amy − b)(mx −Amy − b)T

= Rx + ARyA
T −RxyA

T −ART
xy +RxyR

−1
y RT

xy −RxyR
−1
y RT

xy

+ (mx − Amy − b)(mx −Amy − b)T

= Rx − RxyR
−1
y RT

xy +
(

RxyR
−1
y − A

)

Ry

(

RxyR
−1
y − A

)T

+ (mx − Amy − b)(mx −Amy − b)T . (1.29)

Observe that the last two terms of the previous expression are positive

semidefinite matrices. Hence, the solution of problem (1.28) is obtained by

choosing A∗, b∗ such that the last two terms are equal to zero, i.e.

A∗ = RxyR
−1
y ;

b∗ = mx − Amy = mx − RxyR
−1
y my.

This concludes the proof. �

The LMSE estimator is unbiased because the expected value of the esti-

mation error is equal to zero. In fact,

E [x̃] = E [x− x̂LMSE] = mx −E
[

mx +RxyR
−1
y (y −my)

]

= mx −mx +RxyR
−1
y E [y −my] = 0.

By setting A = A∗ and b = b∗ in the last expression in (1.29), we can

compute the variance of the estimation error of the LMSE estimator, which

is equal to

E
[

x̃x̃T
]

= Rx −RxyR
−1
y RT

xy.

It is worth noting that, by interpreting Rx as the a priori uncertainty on

x, Rx − RxyR
−1
y RT

xy represents the new uncertainty on x after having ob-

served the measurement y. Since the matrix RxyR
−1
y RT

xy is always positive
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semidefinite, the effect of the observations is that to reduce the uncertainty

on x. Moreover, such a reduction depends on the size of Rxy, i.e., on the cor-

relation between the measurement y and the unknown x (notice that there

is no uncertainty reduction when Rxy = 0, as expected).

It is worth stressing that in order to compute the LMSE estimator it is

not necessary to know the joint pdf fx,y (x, y), but only the first and second

order statistics mx, my, Rx, Ry, Rxy.

An interesting property of the LMSE estimator is that the estimation

error x̃ is uncorrelated to the observations y. In fact, one has

E
[

x̃yT
]

= E
[(

x−mx − RxyR
−1
y (y −my)

)

yT
]

= Rxy −RxyR
−1
y Ry = 0.

(1.30)

This result is often known as orthogonality principle. Conversely, it is pos-

sible to show that if a linear estimator satisfies the orthogonality condition

E
[

x̃yT
]

= 0, then it is the LMSE estimator.

In the case in which the random variables x,y are jointly Gaussian, with

mean and covariance matrix defined as in Theorem 1.8, we recall that the

conditional expected value of x given the observation of y is given by

E [x|y] = mx + RxyR
−1
y (y −my).

Therefore, we can conclude that: if x,y are Gaussian variables, the LMSE

estimator coincides with the minimum MSE estimator, i.e., x̂MSE = x̂LMSE.

In other words, in the Gaussian case the minimum MSE estimator is a linear

function of the observations y.

Example 1.11. Let y1,y2 be two noisy observations of the scalar random

variable x, having mean mx and variance σ2
x:

y1 = x+ ε1 ,

y2 = x+ ε2 .

Let ε1, ε2 be two independent random variables, with zero mean and variance

σ2
1, σ

2
2, respectively. Under the assumption that x and εi, i = 1, 2, are

independent, we aim at computing the LMSE estimator of x.
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Define the vectors y = (y1 y2)
T and ε = (ε1 ε2)

T , and rewrite the

measurement equations in the form

y = 1x+ ε,

where 1 = (1 1)T .

First, let us compute the mean of y

E [y] = E [1x+ ε] = 1mx

In order to find the estimate x̂LMSE, we have to compute the covariance

matrices Rxy and Ry. We get

Rxy = E
[

(x−mx) (1 (x−mx) + ε)T
]

= σ2
x1

T ,

because x and ε are uncorrelated. Moreover,

Ry = E
[

(1 (x−mx) + ε) (1 (x−mx) + ε)T
]

= 1 σ2
x 1

T +Rε,

where

Rε =

(

σ2
1 0

0 σ2
2

)

is the covariance matrix of ε. Finally, let us compute the inverse of the

measurement covariance matrix

R−1
y =

[

σ2
x

(

1 1

1 1

)

+

(

σ2
1 0

0 σ2
2

)]−1

=

(

σ2
x + σ2

1 σ2
x

σ2
x σ2

x + σ2
2

)−1

=
1

σ2
x(σ

2
1 + σ2

2) + σ2
1σ

2
2

(

σ2
x + σ2

2 −σ2
x

−σ2
x σ2

x + σ2
1

)

.
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Hence, the LMSE estimator is given by

x̂LMSE = mx +RxyR
−1
y (y − 1mx)

= mx + σ2
x1

TR−1
y (y − 1mx)

= mx +
σ2
x

σ2
x(σ

2
1 + σ2

2) + σ2
1σ

2
2

(1 1)

(

σ2
x + σ2

2 −σ2
x

−σ2
x σ2

x + σ2
1

)(

y1 −mx

y2 −mx

)

= mx +
1

σ2
1 + σ2

2 +
σ2
1
σ2
2

σ2
x

(σ2
2 σ2

1)

(

y1 −mx

y2 −mx

)

= mx +
σ2
2y1 + σ2

1y2 −mx(σ
2
1 + σ2

2)

σ2
1 + σ2

2 +
σ2
1
σ2
2

σ2
x

=

mxσ2
1
σ2
2

σ2
x

+ σ2
2y1 + σ2

1y2

σ2
1 + σ2

2 +
σ2
1
σ2
2

σ2
x

=

mx

σ2
x
+ 1

σ2
1

y1 +
1
σ2
2

y2

1
σ2
x
+

σ2
1
+σ2

2

σ2
1
σ2
2

=

mx

σ2
x
+ 1

σ2
1

y1 +
1
σ2
2

y2

1
σ2
x
+ 1

σ2
1

+ 1
σ2
2

.

Notice that each measurement is weighted with a weight that is inversely

proportional to the variance of the noise affecting the measurement. More-

over, the a priori information on x (i.e., its mean mx and variance σ2
x), is

treated as an additional observation of x. In particular, it is interesting to

observe that if σ2
x → +∞ (i.e., the a priori information on x is completely

unreliable), the estimate x̂LMSE takes on the same form of the Gauss-Markov

estimate of the mean mx (see Example 1.5 and Exercise 1.1). This highlights

the relationship between Bayesian and parametric estimation. △

1.7 Exercises

1.1. Verify that in the problem of Example 1.9, the LS and GM estimators

of θ coincide respectively with y in (1.2) and m̂BLUE in (1.10).
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1.2. Let d1, d2 be two i.i.d. random variables, with pdf given by

f(δ) =

{

θe−θδ se δ ≥ 0

0 se δ < 0

Let δ1, δ2 be the available observations of d1, d2. Find the Maximum Like-

lihood estimator of θ.

1.3. Let d1, d2 be independent Gaussian random variables such that

E [d1] = m, E [d2] = 3m, E
[

(d1 −m)2
]

= 2, E
[

(d2 − 3m)2
]

= 4

Let δ1, δ2 be the available observations of d1, d2. Find:

a) the minimum variance estimator of m among all linear unbiased esti-

mators;

b) the variance of such an estimator;

c) the Maximum Likelihood estimator (is it different from the estimator

in item a)?).

1.4. Two measurements are available on the unknown quantity x:

y1 = x+ d1

y2 = 2x+ d2

where d1 and d2 are independent disturbances modeled as random variables

with pdf

f(δ) =

{

λe−λδ se δ ≥ 0

0 se δ < 0

a) Find the Maximum Likelihood estimator of x.

b) Determine if the ML estimator is unbiased.

1.5. Let x and y be two random variables with joint pdf

fx,y(x, y) =











1

2θ3
(3x+ y) 0 ≤ x ≤ θ, 0 ≤ y ≤ θ

0 elsewhere

where θ is a real parameter.
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a) Assume θ = 1 and suppose that an observation y of the random variable

y is available. Compute the minimum MSE estimator x̂MSE of x, based

on the observation y.

b) Assume θ is unknown and suppose that an observation y of the random

variable y is available. Compute the ML estimator θ̂ML of the param-

eter θ, based on the measurement y. Establish if such an estimator is

unbiased.

c) Assume θ is unknown and suppose that two observations x and y of the

random variables x and y are available. Compute the ML estimator

θ̂ML of the parameter θ, based on the measurements x and y.

1.6. Let θ ∈ [−2, 2] and consider the function

f θ(x) =







θx+ 1− θ

2
if x ∈ [0, 1]

0 elsewhere

a) Show that for all θ ∈ [−2, 2], f θ is a probability density function.

b) Let y be a random variable with pdf f θ. Compute mean and variance

of y as functions of θ.

c) Compute the Maximum Likelihood estimator of θ, based on an obser-

vation y of the random variable y.

d) Let y1, . . ., yn be n random variables, each one distributed according

to the pdf f θ, and consider the estimator

T (y1, . . . ,yn) = 12

(

1

n

n
∑

k=1

yk −
1

2

)

Show that T (·) is an unbiased estimator of θ.

e) Find the variance of the estimation error for the estimator T (·) defined
in item d), in the case n = 1. Compute the Fisher information I1(θ)

and show that the inequality (1.11) holds.
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1.7. Let a and b be two unknown quantities, for which we have three different

measurements:
y1 = a+ v1

y2 = b+ v2

y3 = a+ b+ v3

where vi, i = 1, 2, 3, are independent random variables, with zero mean.

Let E [v2
1] = E [v2

3] = 1 and E [v2
2] =

1
2. Find:

a) The LS estimator of a and b;

b) The GM estimator of a and b;

c) The variance of the estimation error E
[

(a− â)2 + (b− b̂)2
]

, for the

estimators computed in items a) and b).

Compare the obtained estimates with those one would have if the observation

y3 were not available. How does the variance of the estimation error change?

1.8. Consider two random variables x and y, whose joint pdf is

fx,y (x, y) =

{

−3
2 x2 + 2xy 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

0 elsewhere

Find the LMSE estimate x̂LMSE of x, based on one observation of y.

Plot the estimate x̂LMSE computed above and the minimum MSE estimate

x̂MSE derived in Example 1.10, as functions of y (the realization of y).

Compute the expected values of both estimates and compare them with the

a priori mean E [x].

1.9. Let x and y be two random variables with joint pdf

fx,y(x, y) =











1

12
(x+ y)e−y 0 ≤ x ≤ 4, y ≥ 0

0 elsewhere

Assume that an observation y of y is available.

a) Find the estimators x̂MSE and x̂LMSE of x, and plot them as functions

of the observation y.
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b) Compute the MSE of the estimators obtained in item a) [Hint: use

MATLAB to compute the integrals].

1.10. Let X be an unknown quantity and assume the following measurement

is available

y = ln

(

1

X

)

+ v

where v is a random variable, whose pdf is given by fv (v) =

{

e−v v ≥ 0

0 v < 0
.

a) Find the Maximum Likelihood estimator of X . Establish if it is biased

or not. Is it possible to find an unbiased estimator of X?

b) Assume that X is a random variable independent from v, whose a

priori pdf is given by

fX(x) =

{

1 0 ≤ x ≤ 1

0 altrimenti
.

Find the MSE and LMSE estimators of X .

c) Plot the estimates obtained in items a) e b) as functions of y.
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