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Lecture 10

Data fitting, approximation, and
estimation

• norm approximation problems

• least-norm and dual norm problems

• ML and MAP estimation

• application: blind deconvolution

• experiment design
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Norm approximation problems

minimize ‖Ax − b‖

• x ∈ Rn is variable; A ∈ Rp×n and b ∈ Rp are
problem data

• ‖ · ‖ is some norm

• r = Ax − b is called residual

• ri = aT
i x − bi is ith residual (aT

i is ith row of A)

• usually overdetermined, i.e., b 6∈ range(A)
(e.g., p > n, A full rank)

interpretations:

• approximate or fit b with linear combination of
columns of A

• b is corrupted measurement of Ax; find ‘least
inconsistent’ value of x for given measurements
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examples:

• ‖r‖ =
√

rTr: least-squares or `2 approximation
(a.k.a. regression)

• ‖r‖ =
√

rTPr, P Â 0: weighted least-squares

• ‖r‖ = maxi |ri|: Chebychev, `∞, or minimax
approximation

• ‖r‖ =
∑

i |ri|: absolute-sum or `1 approximation

can add (convex) constraints

• max deviation from some prior guess,
e.g., ‖x − xprior‖ ≤ a (can be another norm)

• limits on xi, e.g., li ≤ xi ≤ ui

• order-preserving constraints, e.g., x1 ≤ · · · ≤ xn
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Least-norm problems

minimize ‖x‖
subject to Ax = b

• here b ∈ range(A) (e.g., A fat, full rank)

• can convert to norm approximation problem by
eliminating equality constraints

• x serves as residual here (provided Ax = b)

applications:

• extrapolation:

– b is (perfect, linear) measurement of x
– ‖x‖ measures (im)plausibility of x

(i.e., x is more ‘likely’ to be small)

• control:

– x is actuator input
– ‖x‖ measures effort or cost (e.g., energy, fuel)
– Ax is resulting effect; Ax = b specifies result

can add constraints
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Dual norm problems

norm ‖ · ‖ and its dual ‖z‖∗ = sup{ xTz | ‖x‖ ≤ 1 }
norm approximation problem:

minimize ‖r‖
subject to Ax − b = r

dual of norm approximation problem:

maximize λT b
subject to ATλ = 0

‖λ‖∗ ≤ 1

least-norm problem:

minimize ‖x‖
subject to Ax = b

dual of least-norm problem:

maximize bTλ
subject to ‖ATλ‖∗ ≤ 1
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Interpretation of `p norm

‖r‖p =

(∑
i

|ri|p
)1/p

(for p ≥ 1), ‖r‖∞ = max
i

|ri|

|r|p for p = 1, 1.5, 2, 4:
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• large p puts more weight on larger residuals

• small p put more weight on small residuals

• ‖r‖1 least affected by large residuals

• ‖r‖∞ completely determined by large(st) residuals

‖r‖p depends on amplitude distribution of residuals
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example

• minimize ‖Ax − b‖p for p = 1, 2, ∞

• A ∈ R100×30

resulting residuals:
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histogram of amplitude distribution of residuals:
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• p = ∞ gives ‘thinnest’ distribution
(i.e., smallest interval containing all ri)

• p = 1 residual has widest distribution

• p = 1 most very small (or even zero) ri

• p = 2 is in between
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Variations and extensions

minimize
∑m

i=1 h(yi − aT
i x) (or maxi h(yi − aT

i x))

• h is convex

• weights residuals appropriately (for application)

quadratic-linear h

h(z) =
{

z2 |z| ≤ 1
2|z| − 1 |z| > 1

• quadratic penalty for small residuals

• linear penalty for large residuals

‘dead-zone’

h(z) =
{ |z| − 1 |z| > 1

0 |z| ≤ 1

• no penalty for small residuals

• linear for larger residuals
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log barrier for |z| ≤ 1

h(z) =
{ − log(1 − z2) |z| < 1

∞ |z| ≥ 1

• approximately quadratic for small residuals

• rapidly grows as max residual approaches 1

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

h
(z

)

z

log barrier

dead zone

Data fitting, approximation, and estimation 10–10



Maximum likelihood estimation

family of probability densities for y indexed by x ∈ Rn

px(y)

• x is a parameter

• called likelihood function (of x)

maximum likelihood (ML) estimate:
based on observing (a sample of) y, choose as estimate

x̂ = argmax
x

px(y)

variation: maximum a posteriori (MAP) estimate

• x is also random

• choose as estimate x̂ = argmaxx p(y|x)
maximizes conditional density of y given x
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Linear measurements with IID noise

suppose yi = aT
i x + vi, vi IID, density p

px(y) =
m∏

i=1

p(yi − aT
i x)

log-likelihood function is defined as

log px(y) =
m∑

i=1

log p(yi − aT
i x)

ML estimate is x̂ = argmaxx

∑m
i=1 log p(yi − aT

i x)

• finding ML estimate is cvx prob if p is log-concave

• can add convex constraints on x (prior assumptions)

if x is random with density q, independent of vi, MAP
estimate is

x̂ = argmax
x

(
m∑

i=1

log p(yi − aT
i x) + log q(x)

)

(last term gives prior probability of x)
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Examples

• vi Gaussian, p(z) = (2πσ)−1/2e−z2/2σ2

ML estimate is `2 estimate x̂ = argminx ‖Ax− y‖2

• vi double-sided exponential, p(z) = (1/2a)e−|z|/a

ML estimate is `1 estimate x̂ = argminx ‖Ax− y‖1

• vi is exponential, p(z) = (1/a)e−z/a (for z ≥ 0)
ML is found by solving LP

minimize 1T (y − Ax)
subject to y − Ax º 0

• vi are uniform on [−a, a], p(z) = 1/(2a) on [−a, a]
ML estimate is any x satisfying ‖Ax − y‖∞ ≤ a

• vi are uniform on [−a, a], x ∼ N (x̄,Σ)
MAP estimate is found by solving (QP)

minimize (x − x̄)TΣ−1(x − x̄)
subject to ‖Ax − y‖∞ ≤ a
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ML gives statistical interpretation for norms or weight
functions h in terms of noise density p:

h(z) = − log p(z)

• if the tails of the noise distribution fall off rapidly
(or completely), weight function h rises rapidly (or
is ∞)

• if the tails don’t fall off rapidly (e.g., exponential),
weight function h grows more slowly

• h is approx. constant over intervals of approx.
uniform noise distribution

for example, dead-zone estimate with

h(z) =
{ |z| − 1 |z| > 1

0 |z| ≤ 1

corresponds to ML with noise density

p(z) =
{

(1/4)e1−|z| |z| > 1
1/4 |z| ≤ 1

i.e., uniform on [−1, 1], exponential outside [−1, 1]
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Application: blind deconvolution

thanks to: Alper Erdogan

communications system:

x(t)
u(t) y(t)

x̂(t)∗c ∗w

u = c ∗ x, y = w ∗ u, x̂(t) = sgn(y(t + D))

• binary signal x(t) ∈ {−1, 1}, t = 1, . . . , N
• is convolved by channel impulse response c
• then, by equalizer w = (w(0), . . . , w(n − 1))
• binary signal recovered as x̂(t) = sgn(y(t + D))

goal: find equalizer coefficients w ∈ Rn s.t.
(equalized channel) h = c ∗ w satisfies

h(t) ≈
{

a t = D
0 t 6= D

• D is some delay
• a > 0 is some gain

i.e., w approximately deconvolves c, so x̂(t) = x(t)
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standard equalization problem: given c, design w

blind equalization problem: given u, design w

• with little knowledge of channel c

• exploiting known structure of signal x

idea: exploit amplitude distribution of signals

• amplitude distr of x is concentrated on ±1

• amplitude distribution of u is ‘smeared out’ by
channel

• if equalizer w is chosen well, amplitude distribution
of y is concentrated near ±a

suggests method:
choose w to minimize ‖y‖∞ = ‖w ∗ u‖∞,
subject to some normalization, e.g., w(0) = 1

• resulting w tends to ‘squeeze’ ampl distr of y

• hopefully, ampl distr is not only thin, but
concentrated at its extreme points
i.e., y is (nearly) a binary signal
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example. telephone channel model
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unequalized estimator x̂(t) = sgnu(t + D) has 19%
error rate (using D = 5)
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now, solve (`∞) problem

minimize ‖w ∗ u‖∞
subject to w(0) = 1

resulting amplitude distribution of y = w ∗ u is:
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• it worked, just as planned!

• error rate 0%:
x(t) = sgn(y(t + 11)) for t = 1, . . . , 1000
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channel, equalizer, and equalized channel impulse
responses:
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i.e., w is good equalizer with D = 11
(but . . . we don’t know D)

this blind equalization method recovers x up to

• an unknown delay D

• possibly, sign inversion

(neither is a problem in practice)
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Robust least-squares

least-squares (`2) solution of overdetermined equations

x̂ls = argmin
x

(∑
i

(aT
i x − bi)2

)1/2

suppose ai are unknown, but lie in (known) ellipsoids

ai ∈ Ei = {ai + Piu | ‖u‖ ≤ 1}

Pi = PT
i º 0 characterizes uncertainty in ai

define worst-case residual norm as

max
ai∈Ei

(
n∑

i=1

(
aT

i x − bi

)2

)1/2

robust least-squares estimate is given by

x̂rls = argmin
x

max
ai∈Ei

(
n∑

i=1

(
aT

i x − bi

)2

)1/2
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• worst-case residual norm is convex in x

• so finding x̂rls is cvx problem

• in fact we can cast it as SOCP . . .

max
ai∈Ei

∣∣aT
i x − bi

∣∣ = max
‖u‖≤1

∣∣aT
i x − bi + uTPix

∣∣
=

∣∣aT
i x − bi

∣∣ + ‖Pix‖

(u = ±Pix/‖Pix‖ depending on sgn(aT
i x − bi))

hence worst-case residual norm is given by(
n∑

i=1

(∣∣aT
i x − bi

∣∣ + ‖Pix‖
)2

)1/2

. . . an explicit (but complicated) convex function of x

can find robust least-squares estimate via SOCP:

minimize s
subject to ‖t‖ ≤ s

ui + ‖Pix‖ ≤ ti∣∣aT
i x − bi

∣∣ ≤ ui

(variables are x, s, t, u)

Data fitting, approximation, and estimation 10–21



Experiment design

N linear measurements y1, . . . , yN of x ∈ Rp:

yk = aT
k x + wk, k = 1, . . . , N

• measurement noises wk are IID N (0, 1)
• least-squares estimator:

x̂ =

(
N∑

k=1

aka
T
k

)−1 N∑
i=1

ykak

• error covariance

Σ = E(x̂ − x)(x̂ − x)T =

(
N∑

k=1

aka
T
k

)−1

choose ak ∈ {v1, . . . , vm} to make Σ small

• vi are given test vectors
• small Σ can mean trace, determinant, etc.
• Σ depends only on numbers n1, . . . , nm of each

type of test performed

in general get (hard) integer problem
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Relaxation/approximation

• define λi = ni/N
(i.e., fraction of measurements with ak = vi)

• suppose we have N À m

• allow (relax) λi to be real, λi ≥ 0,
∑m

i=1 λi = 1

error covariance is

Σ(λ) =

(
N∑

k=1

aka
T
k

)−1

=
1
N

(
m∑

i=1

λiviv
T
i

)−1

optimal experiment design:

choose λi ≥ 0,
∑m

i=1 λi = 1, to make Σ(λ) ‘small’

• minimize λmax (Σ(λ)) (E-optimal)

• minimize TrΣ(λ) (A-optimal)

• minimize det Σ(λ) (D-optimal)
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E-optimal design: minimize λmax (Σ(λ))

maximize t
subject to

∑m
i=1 λiviv

T
i º tI∑m

i=1 λi = 1, λi ≥ 0, i = 1, . . . , m

. . . an SDP

A-optimal design: minimize TrΣ(λ)

minimize Tr
(∑m

i=1 λiviv
T
i

)−1

subject to
∑m

i=1 λi = 1, λi ≥ 0, i = 1, . . . , m

. . . convex (can be cast as SDP)

D-optimal design: minimize det Σ(λ)

minimize log det
(∑m

i=1 λiviv
T
i

)−1

subject to
∑m

i=1 λi = 1, λi ≥ 0, i = 1, . . . , m∑m
i=1 λiviv

T
i Â 0

. . . convex
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can add other convex constraints, e.g.,

• bounds on cost or time of measurements:

cT
i λ ≤ bi

• no more than 90% of the measurements is
concentrated in less than 10% of the test vectors

b0.1mc∑
i=1

λ[i] ≤ 0.9

(λ[i] is ith largest component of λ)

equivalent to linear inequalities, with auxiliary x, t

b0.1mc t +
m∑

i=1

xi ≤ 0.9, t + xi ≥ λi, x ≥ 0

without 90-10 constraint with 90-10 constraint
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