S. Boyd EE364

Lecture 10

Data fitting, approximation, and
estimation

e norm approximation problems

e |east-norm and dual norm problems
e ML and MAP estimation

e application: blind deconvolution

e experiment design
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Norm approximation problems

minimize ||Az — b||

e xr € R" is variable; A € RP*™ and b € R? are
problem data

e ||| is some norm
o = Ax — b is called residual
e r; =alx — b; is ith residual (a! is ith row of A)
e usually overdetermined, i.e., b & range(A)
(e.g., p>n, A full rank)

interpretations:

e approximate or fit b with linear combination of
columns of A

e b is corrupted measurement of Ax; find ‘least
inconsistent’ value of x for given measurements
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examples:

o |[r]| = VrTr: least-squares or ¢? approximation
(a.k.a. regression)

o |[r]| = vrTPr, P> 0: weighted least-squares

e ||r|| = max;|r;|: Chebychev, ¢°°, or minimax
approximation

o |r|| =3, |r:|: absolute-sum or £* approximation

can add (convex) constraints

e max deviation from some prior guess,
e.g., || — xprior|] < a (can be another norm)

e limitson x;, e.q., [; < x; <,

e order-preserving constraints, e.g., r1 < --- < x,

Data fitting, approximation, and estimation 10-3



Least-norm problems

minimize  ||z||
subject to Az =0b

e here b € range(A) (e.g., A fat, full rank)

e can convert to norm approximation problem by
eliminating equality constraints

e & serves as residual here (provided Ax = b)
applications:

e extrapolation:

— b is (perfect, linear) measurement of x
— ||z|| measures (im)plausibility of x
(i.e., x is more ‘likely’ to be small)

e control:

— x Is actuator Input
— ||x|| measures effort or cost (e.g., energy, fuel)
— Ax is resulting effect; Ax = b specifies result

can add constraints
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Dual norm problems

norm || - || and its dual ||z]|, = sup{ 21z | ||z]| <1}

norm approximation problem:

minimize  ||7||
subjectto Az —b=r

dual of norm approximation problem:
maximize A1D

subject to ATA =0
[Afl« <1

least-norm problem:

minimize |||
subject to Ax =1b

dual of least-norm problem:

maximize b1\
subject to  ||[AT )]« < 1
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Interpretation of /7 norm

1/p
]l = <Z T¢p> (forp > 1), ||rfloc = max|r|

r|? for p=1, 1.5, 2, 4:

7"

e large p puts more weight on larger residuals
e small p put more weight on small residuals
e ||r||1 least affected by large residuals

o ||7||cc completely determined by large(st) residuals

|||, depends on amplitude distribution of residuals
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example

e minimize |Ax —b||, forp =1, 2, o0

o Ac RlOOXSO

resulting residuals:
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Data fitting, approximation, and estimation 10-7



histogram

(2

number of r;

N N
IO o o
wA

(3

number of r;

N B
IO o o
wA

1

number of r;
N B
o o

o

of amplitude distribution of residuals:

I—

—

2

-2 -1 0
r(p=1)

T

T

ﬁmﬁmﬂﬂﬁmﬂﬂﬂmﬂﬂm o

-2 1

7“(29—2)

2

T

‘ Hmﬁmmmﬂﬂﬂﬂmmmﬁmmmﬂmﬂ

T

|
w

-2 -1 0 1

r (p = o0)

e p = 00 gives ‘thinnest’ distribution
(i.e., smallest interval containing all r;)

e p = 1 residual has widest distribution

e p =1 most very small (or even zero) r;

e p =2 isin between
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Variations and extensions

minimize > " h(y; — a} x) (or max; h(y; — ai x))

® /L IS convex

e weights residuals appropriately (for application)

quadratic-linear h

22 2| <1
h(z) = { 20z —1 |z| > 1

e quadratic penalty for small residuals

e linear penalty for large residuals

‘dead-zone’

 —

I A FA el S 1 I
h<z>—{o 2 <1

e no penalty for small residuals

e linear for larger residuals
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log barrier for |z| <1

[ —log(1—2%) 2| <1
hz) = { 00 z| > 1

e approximately quadratic for small residuals

e rapidly grows as max residual approaches 1

141 N
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Maximum likelihood estimation

family of probability densities for y indexed by z € R"

P=(Y)

e x IS a parameter

e called likelihood function (of x)

maximum likelihood (ML) estimate:
based on observing (a sample of) y, choose as estimate

T = argmax p;(y)

variation: maximum a posteriori (MAP) estimate

e 1 Is also random

e choose as estimate & = argmax, p(y|z)
maximizes conditional density of y given x
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Linear measurements with |ID noise

suppose y; = al x + v;, v; 11D, density p

log-likelihood function is defined as

log po(y) = Y _logp(y; — a )
1=1

ML estimate is & = argmax, > .- logp(y; — a; )

e finding ML estimate is cvx prob if p is log-concave

e can add convex constraints on x (prior assumptions)

if © is random with density ¢, independent of v;, MAP
estimate Is

T = argmax (Z log p(y; — al x) + log q(az))

1=1

(last term gives prior probability of x)
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Examples

® Vj; Gaussian, p(z) — (27TO')_1/26—22/202

ML estimate is ¢? estimate & = argmin,, [|[Az — y/|2

e v; double-sided exponential, p(z) = (1/2a)e~1#l/¢

ML estimate is ¢! estimate & = argmin_, ||Az — y||;

e v; is exponential, p(z) = (1/a)e™%/* (for z > 0)
ML is found by solving LP

minimize 17 (y — Ax)
subject to y — Ax = 0

e v; are uniform on [—a,al, p(z) = 1/(2a) on |—a,a]
ML estimate is any x satisfying ||[Ax — y||cc < a

e v; are uniform on [—a,al, v ~ N (Z,X)
MAP estimate is found by solving (QP)

minimize (x —2)1X71(z — 7)
subject to  ||Az — y|leo < @
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ML gives statistical interpretation for norms or weight
functions h in terms of noise density p:

h(z) = —logp(z)

e if the tails of the noise distribution fall off rapidly
(or completely), weight function A rises rapidly (or
is 00)

e if the tails don't fall off rapidly (e.g., exponential),
weight function h grows more slowly

e h is approx. constant over intervals of approx.
uniform noise distribution

for example, dead-zone estimate with

z| =1 |z] >1

h(z):{ﬂ 2| <1

corresponds to ML with noise density

(/e 2z > 1
p(z) = { 1 /4 <1

i.e., uniform on |—1, 1], exponential outside [—1, 1]

Data fitting, approximation, and estimation 10-14



Application: blind deconvolution

thanks to: Alper Erdogan

communications system:

x(t) *C u(t) kW y(t) j Z(t)

u=cxx, y=wxu, x(t)=-sgn(y(t+ D))

binary signal z(t) € {—1,1},t=1,...,N

is convolved by channel impulse response ¢
then, by equalizer w = (w(0),...,w(n — 1))
binary signal recovered as z(t) = sgn(y(t + D))

goal: find equalizer coefficients w € R" s.t.
(equalized channel) h = ¢ x w satisfies

h(t)z{g’ z;g

e D is some delay
e a > (0 Is some gain

i.e., w approximately deconvolves ¢, so z(t) = x(t)
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standard equalization problem: given c, design w

blind equalization problem: given wu, design w

e with little knowledge of channel ¢

e exploiting known structure of signal x
idea: exploit amplitude distribution of signals

e amplitude distr of x is concentrated on +1

e amplitude distribution of u is ‘smeared out’ by
channel

e if equalizer w is chosen well, amplitude distribution
of y is concentrated near +a

suggests method:
choose w to minimize ||y||co = ||w * |00,
subject to some normalization, e.g., w(0) =1

e resulting w tends to ‘squeeze’ ampl distr of y

e hopefullyy, ampl distr is not only thin, but
concentrated at its extreme points
i.e., y is (nearly) a binary signal
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example. telephone channel model

0.8
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generate random 1000-bit signal z € {—1,1}1000

amplitude distribution of x and u:

E= o Moee
u

unequalized estimator Z(t) = sgnu(t + D) has 19%
error rate (using D = 5)
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now, solve (£°°) problem

minimize  ||w * /oo
subject to w(0) =1

resulting amplitude distribution of y = w *x u is:
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e it worked, just as planned!

e error rate 0%:
x(t) = sgn(y(t + 11)) for t = 1,...,1000

Data fitting, approximation, and estimation
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channel, equalizer, and equalized channel impulse
responses:
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i.e., w is good equalizer with D =11
(but . .. we don't know D)

this blind equalization method recovers = up to

e an unknown delay D

e possibly, sign inversion
(neither is a problem in practice)
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Robust least-squares

least-squares (¢°) solution of overdetermined equations

1/2
T1s = argmin Z(a;-ra: — b;)?

x .
1

suppose a; are unknown, but lie in (known) ellipsoids
a; € E = {Ei + Pu ‘ Hu|| < 1}

P; = P! = 0 characterizes uncertainty in a;

define worst-case residual norm as

n 1/2

max Z (a,b-Tx — bi)2

a; €E; i1

robust least-squares estimate is given by

n 1/2

. . 2
Tyls = argmin max g (a;fpx — bz-)
T a; €& \ 4 "
1=
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e worst-case residual norm is convex in x
e so finding 2,5 is cvx problem

e in fact we can cast it as SOCP . ..

max ‘aiTa: — bz-| — max ’6?:1; —b; + UTPZ'CE’
a;€E; Jul|<1

(v = £P;x/||P;x|| depending on sgn(alx — b;))

hence worst-case residual norm is given by

n 1/2
<Z (Jai — b + IPzw)2>

i=1
... an explicit (but complicated) convex function of x

can find robust least-squares estimate via SOCP:
minimize s
subject to ||t]| < s
u; + || Piz|| <t

_T
!a,b- xr — bi| < u,

(variables are x, s, t, u)
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Experiment design

N linear measurements 1, ...,yny of x € R”:
yk:agaj—kwk, k=1,....N

e measurement noises wy are 11D N(0, 1)
e |east-squares estimator:

N -1 N

~ T
xr = E aray, E YA
i=1

k=1

® error covariance

N —1
Y=E@Z-2)@-2) = Zakag
k=1

choose ay, € {v1,...,v.,n} to make X small

e v, are given test vectors

e small > can mean trace, determinant, etc.

e X depends only on numbers nq,...,n,, of each
type of test performed

in general get (hard) integer problem
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Relaxation /approximation

o define \; = n;/N
(i.e., fraction of measurements with a; = v;)

e suppose we have N > m

e allow (relax) \; to bereal, \; >0, > A\, =1

error covariance Is
N 1 . - 1
Y(A) = <kz:1 am%) = (2; Aww?)

optimal experiment design:

choose \; >0, Y., \; = 1, to make X(\) ‘small’

® minimize Apax (2(A)) (E-optimal)
e minimize Tr X () (A-optimal)
e minimize det 3(\) (D-optimal)
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FE-optimal design: minimize Apax (32(A))

maximize t
subject to >0 Nvul = t]

St hi=1, >0, i=1,...

...an SDP

A-optimal design: minimize Tr »()\)

)

minimize Tr (Z?; )\ivivT)_l

subject to > A =1, A, >0, i=1,...

... convex (can be cast as SDP)
D-optimal design: minimize det X(\)

minimize  logdet (Y v, Avv}) -

)

subjectto > . N =1, A >0, i=1,...

Zm T
. . convex

Data fitting, approximation, and estimation
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can add other convex constraints, e.qg.,

e bounds on cost or time of measurements:

I\ <,

1 R

e no more than 90% of the measurements is
concentrated in less than 10% of the test vectors

(A is ith largest component of \)

equivalent to linear inequalities, with auxiliary x, t

LO.lmJt—l—in <09, t4+z;>XN, x>0
i=1

without 90-10 constraint with 90-10 constraint
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