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Class of systems

#t) = [flz(t),ud),w(?)) (SY'S)

Assumptions

0 = f(0,0,0)

Definition 0.1 The system

is Globally Uniformly Asymptotically Stable (GUAS) if there exists a strictly de-
creasing function ¢(t) such that ¢(t) — 0 ast — 0 and a non-decreasing function

Y :RY = R, with ¢(0) = 0 ¥(\) > 0 for A > 0, such that for all w(t) € W
lz(@)]| < ¢@)([lz(0)]])
Definition 0.2 The system is Uniformly Ultimately Bounded (UUB) (practically

stable) within the compact set S, 0 € int[S], if for all k > 0 there exists T such that
for all w(t) € W and ||z(0)]| < k

xz(t) €S, forall t>T.



Analysis problem:

Check if (S) is GUAS (UUB).

Synthesis problem:

Given the system

find a control (in a given class) such that the closed loop system is GUAS (UUB).



Robustness

Definition 0.3 A property P is said robust for the family F of dynamic systems if
any member of F satisfies P

The family F and the property P must be properly specified. For instance if P
is “stability” and F is a family of systems with uncertain parameters ranging in a

set, we have to specify if these parameters are constant or time-varying.



Time-varying parameters

Parameter variation may have a crucial effect on stability. Consider the system

where

a > 0 is a damping parameter

w < 1 uncertainty bound.

For any constant w < 1 and @ > 0, the corresponding time-invariant system

is stable. However, there exist w < 1 and a (small enough) such that for suitable

time-varying w, with |w(t)| < @, (without derivative bounds) the system is unstable.



Lyapunov functions

Consider the system

with f Loc. Lipschitz.

A function V : IR” — R, V € C! such that

V(z) > 0, z#0

and

V(z,w) = VV(2)" f(z,w) <0, z#0,

is a Lyapunov function.



Theorem

If the system

0=f(0,w), weWw

f Loc. Lipschitz, admits a Lyapunov function, then z(t) — 0 as t — oc.



Control-Lyapunov functions

0=f(0,0,w), weW

Consider the function V € C! such that

V(i) > 0, z#0

If there exists a control u = ¢(x) such that
Viz,w) = VV(2)T f(z, ¢(z),w) < =BV (z), = —0,

for some 8 > 0, then V is a control-Lyapunov function.



Dynamic feedback

To work with L.F. we must consider the extended state-space



Quadratic robust stability

The most popular Lyapunov functions are the quadratic ones

V(z) = 2" Px

having gradient

VV(z)' =22TP
Given the system
i(t):f(l‘(t)aw(t))’ OZf(O,U)), weWw

its Lyapunov derivative is

227 Pf(z,w) <0

If such a condition holds, the system is said quadratically stable.



Linear systems

A(A) = A+ DAE,
B(A) = By+DAF, |A]<1,



Quadratic stability

Parametric

V(z,w) = 2T PA(w)z < 0,
iff
ATP+ PA; <0

Non—Parametric

A(A) = Ay + DAE

zTPA(A)z <0, for all

iff Ay is stable and

IE(sI — Ao) "Dlloo < p

for all weWw

(LMI)

IA[] < p,

Al <1

1



Quadratic stabilizability

Parametric case

#(t) = A(w(t))(t) + Bw(t))u(t)

e.g. A(w) = ZwZAZ, Z w; = 1, w; Z 0,
=1 i=1

i=1 i=1

Linear controller case. Consider the control u = Kz
i(t) = [A(w(t)) + B(w(t))K]z(t)
The condition is

Set
Q=P'! KQ=R

then we get

QA + AiQ+R"Bl + B.R <0, (LMT)

which is a linear condition in ) and R



Quadratic stabilizability

Non-parametric case

i(t) = [Ag+ DAEJx(t) + [Bo + DAF]u(t)
y(t) = Coz(t), [lA@)| <1,

u(s) = K(s)y(s) is quadratically stabilizing iff the d-to-z transfer function of the

loop
sz(s) = Apz(s)+ Dd(s) + Byu(s)
z(s) = Ex(s)+ Fu(s)
y(s) = Cox(s)
u(s) = K(s)y(s)
is s.t.



Robust stability

The system
z(t) = Az(t)

is stable iff it admits a quadratic Lyapunov function.

Assume that

is stable. Does it admit a quadratic Lyapunov function?
NO!

robust stability does not imply robust quadratic stability.



0 1 0 1
—14w(t) -1 -1 -1

the system is stable iff

p < pst =1, (robust stability radius)

However the system is quadratically stable iff

p< po= ,  (quadratic stability radius)

Sl



Theorem

The system
z(t) = A(w(t))z(t), weWw

is stable if and only if it admits a piecewise-linear Lyapunov function
Molchanov and Pyatnitskii (1986)
Brayton and Tong (1980)

(also polynomial, piecewise-quadratic, ... )

Theorem
The system

#(t) = Aw(t))z(t) + Bw(t)ult), weW

is stabilizable if and only if it admits a polyhedral control Lyapunov function.

Blanchini (1995)



Quadratic and non-quadratic margins

Take
w € pW

p > 0, and define the following stabilizability margins

pst = sup{p: (S) is stabilizable}

po = sup{p:(S) is quadratically stabilizable}

There are systems for which
psT

PQ

For instance

psT = 00

pe =1



Non-linear versus linear
@(t) = A(w(t))z(t) + Bw(t))u(t), (S)

stabilizability does not imply linear stabilizability (= stabilizability via linear com-

pensator). For instance, the system

0
-1 0

A: B:

w(t
()], lw| < 100
1

is stabilizable but it is not stabilizable by means of a linear state static state feedback

of the form

u = kll'l + kzﬂ?g

(in which k; and k2 do not depend on w).

There are examples of stabilizable systems which cannot be stabilized via linear

(even dynamic) compensators.



Stabilization of nonlinear uncertain systems
Consider the system
&(t) = f(x(t), u(t), w(t)), weW

and assume that there exists a control Lyapunov function V(x) namely, there exists

®(z) such that for all z # 0
VvV ()" f(z,®(z),w) < —BV(x), forall we W

B > 0, then the system with the control u(t) = ¢(x(t)) is asymptotically stable.

Question 1) Given V(z) how can we determine ®(z)?

Question 2) How can we determine V(x)?



Given V(z) determine ®(z) - Selection

Consider the control-affine system

The condition
V(:L‘,w) =VV(2)"(F(z,w) + G(z)u) < =BV ()
yields the following condition on u

VV(2)"G(x)u < =VV (2)"F(z,w) — BV (z)

Take u = ®(z) of the form

~ must be such that for all z and w € W

—1(@)|G(2)"VV(@)|* < =V (2)" F(z,w) - BV (2)



How can we find V? The special case of matched
uncertainties

The uncertainties satisfy the “matching conditions” if
(t) = f(x(t)) + Bg(z(t), w(t)) + Bu(t)

lg(z, w)[| < p(x)

Assume that the nominal systems

is asymptotically stable and it admits a Lyapunov function V € C*:
V(z) = VV(2)" f(z) < =BV ()

then there exists a ”practically stabilizing” control.



One of such controls is the following u as follows

BYVV (z)p*(x)
[BYVV (z)p(x)|| + €

U= —

o(z,w) = VV(2)T[f(z)+ Bg(z,w) + Bu] <

)
)Bp(x)l -
)

(
IVV ()" (z) Bllp(x)
IBYVV (2)p(x)]| + €

IVVT (2) B||*p*(x)

VV ()" f(z) + [VV' (2 IBTVV (z)p(x)|| + €

IN

—BV(x)+e
< —pV(z)+e

The state is confined in the set S = {z: V(z) <¢/S5}.

The above control is not unique !!



Backstepping: beyond matching conditions

Strict feedback form

fi1 fiz 0o ... 0
Ja S Sz .. 0
F(z,w) = N T+ F(0,w)
Jac1a faci2 facis oo faoin
FER T PR O SRR )
fij = ];i,j(xl,xQ,...,xi,w) _
]
0
G(z,w) =
0
| fans

fi,i+1 7é 0.



Example:

#1(t) = m(O)F (@1(8)w(t) + w2(t)

To(t) = wu(t)
jw| <1, |F(z1)| <m
Consider the first equation with the “virtual” control x,
To = S(xl)xl

o1 = wl[F(z)w(t) + S(21)]

where S(z) is smooth and bounded with bounded derivative. If
[F(x1)w(t) + S(z1)] <0

this system is stable. But x5 is not a control variable !!



Then control the first equation

(1) = u(t)

in such a way that x5 is “close” to S(z1)z;

ig =Uu= —k[.fEQ — S(,’El).Tl]

Consider the change of variables

21 =2 1=z

29 — L9 — S(l’1)$1 To = Z9 — S(zl)zl

and the candidate Lyapunov function

V(z1,290) = zf + zg



we have

Zl(t) = ZlF(l‘l)’U} + 29 + S(21)21

z2(t) = S(z1)[z1F(z1)w+ 20 + S(21)21] + 5'(21) + u

the control considered above is

u = —kzo
V = [F(z)w+ S(21)]22 + [1+ 5'(21) + S(21) F(x1)w + S(21)2] 2122 + [S(21) — k22

If £k is sufficiently large then

V < —az? +b|21]|22] — [k — |22 <0, for (z1,25)#0



State estimation for uncertain systems

#(t) = A(w(?))x(t) + B(w(t))u(t)

y(t) = Cua(t)

Observer

A(t) = (Ao — LO)2(t) + Bou(t) + Ly(t)

y(t) = Cux(t)

Define the errore = z — z

é(t) = (Ao + LCO)e(t) + (Ao — A(w(?)))x(t) + (Bo — B(w(t)))u(t)

By its nature, an observer must replicate the system dynamics. If the dynamics is
not known exactly, error convergence depends upon u, w and x. Observer principle

is fragile...



Controlling nonlinear systems via robust control
methods

Given

assume that

that is

for some

then it stabilizes (NL).



Observer design for nonlinear systems by means
of robust control algorithms

z = f(z2(t))+ Ly —Cz)+ Bu
é = [fle+2z)— f(z)]+ LCe

where e(t) = z(t) — z(t). If for all =
[fle+z)— f(z)] = Ae, A€ A,

e.g.

of
a—xeA

and

¢=(A(t) = LC)e,  A(t) € A

is robustly stable, then e(t) — 0.



Bounded parameter variation

Lyapunov function candidate
V(z(t), w(t)) = v(z)
where v(x) is positive definite. The Lyapunov derivative is
V(z,w) = VV,f(z,w) + VVyii

that must be negative for all w € W and v € W and z # 0.



Gain scheduling control

#(t) = F(x(t), w(t)) + G(z(t), w(t))u(?)

u = ®(z,w), gain-scheduling controller

u = O(z), robust controller

In the linear case
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