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Abstract

This paper studies a discrete-time pursuit-evasion game within a convex polyg-
onal environment. Building on solutions of the classic lion-and-man problem,
two strategies are proposed for the pursuer, which guarantee exact capture in
finite time and provide upper bounds on the time-to-capture at each move of
the game. A numerical procedure for updating the so-called center of the game,
which is instrumental for computing the lion’s move, is devised. Numerical sim-
ulations show that optimizing the center position, with respect to a suitable
cost function taking into account the structure of the environment, allows one
to remarkably reduce the number of moves required to capture the evader.

Keywords: Pursuit-evasion games, autonomous agents, game theory, lion and
man problem

1. Introduction

Pursuit-evasion games have been intensively studied in recent years due to
both the intriguing theoretical problems they pose and the number of applica-
tions in several different fields. The interested reader is referred to the surveys
[1, 2] and references therein, for a thorough review of the relevant literature.

When the agents are moving in a limited environment, the complexity of the
problem and the techniques for its solution strongly depend on the assumptions
on the nature of the game and of the structure of the environment. To men-
tion only a well-known watershed, if the agents’ motion model is formulated in
continuous time, an evader can indefinitely escape even in the simple case of
a circular arena [3], and it is necessary to assume a finite radius of capture to
guarantee the success of the pursuer [4, 5, 6]. Conversely, in a discrete-time for-
mulation, there always exist strategies that lead to capture of the evader in finite
time. For example, in the David Gale’s version of the lion-and-man problem,
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which takes place in the positive quadrant of the plane, several different winning
strategies for the lion have been proposed [7, 8]. The approach presented in [9]
for the case of multiple pursuers in an n-dimensional environment, can be ap-
plied also to the case of a single pursuer within a convex polygon, by considering
the presence of virtual pursuers on the polygon sides. All the above approaches
rely on the so-called lion’s move, which amounts to keep the pursuer on the
segment connecting the evader to a reference point, called center of the game,
the main differences being in the way such center is computed and (possibly)
updated during the game. An alternative approach, based on a different lion’s
move, has been recently proposed in [10]. Many other discrete-time settings
have been considered in the literature, including multi-pursuer search in simply
connected polygons [11], in generic polygons [12, 13] and in topological spaces
[14]. Several works have also addressed the presence of sensing limitations, see
e.g., [15, 16].

In this paper, a discrete-time pursuit-evasion problem within a convex polyg-
onal environment is addressed. Two lion strategies are proposed, which extend
to the considered setting the lion’s moves introduced in [7] and [8], respectively.
The former is based on a fixed center chosen once and for all at the beginning of
the game, while the latter updates the center at every game move, according to
a suitable cost function that takes into account the structure of the polygonal
environment. The main contributions consist in showing that the two strategies
guarantee the capture of the evader in finite time and providing an upper bound
on the time-to-capture at each move of the game. An algorithm for computing
the optimal game center is also provided. The results of an extensive campaign
of numerical simulations are reported, to assess the performance of the proposed
strategies. With respect to the solutions presented in [7, 8], the main novelty
lies in that the game center (and hence the pursuer strategy) depends explicitly
on the structure of the environment, and in particular on its vertices, in a non
trivial way.

The rest of the paper is organized as follows. The lion and man problem
is reviewed in Section 2, along with the solutions proposed in the literature.
The two new lion strategies for convex polygonal environments are presented in
Section 3. The algorithm for the computation of the optimal center is devised
in Section 4. Numerical simulations are provided in Section 5, while concluding
remarks are drawn in Section 6.

1.1. Notation

Let R
n be the n-dimensional Euclidean space and R

n
+ the n-dimensional

Euclidean space of non-negative numbers. We denote by ⌈x⌉ the smallest integer
greater or equal to x. A row vector with elements v1, . . . , vn is denoted by
V = [v1, . . . , vn], while V ′ is the transpose of V . Given two vectors V and W ,
notation V ≻ W denotes the componentwise strict inequality. C(C, r) is the
circle of center C and radius r, i.e., C(C, r) = {p ∈ R

2 : ‖C − p‖ ≤ r}.
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2. Review of lion and man problem

In this section, we recall two lion strategies devised for the lion and man
problem formulated by David Gale (problem 31 in [17]). In this problem, a lion
(pursuer) and a man (evader) can move in the first quadrant of the Cartesian
plane. Space is continuous while time is discrete, i.e., players move in turn. By
convention, the man moves first. Both players can travel the same maximum
distance in a single move, set to 1 without loss of generality. The lion wins the
game if, at a finite time t, he is able to move exactly to the man position. Let
Mt ∈ R

2
+ and Lt ∈ R

2
+ denote the man and lion position at time t, respectively.

Let the initial condition be such that L0 ≻ M0. If this condition is not satisfied,
the man easily wins the game by moving straight up or to the right.

2.1. Fixed Center Lion Strategy

If L0 ≻ M0, a lion strategy able to guarantee the lion victory for any possible
man strategy has been proposed in [7]. Such a strategy is based on the compu-
tation of a point (center) which remains fixed throughout the game. For this
reason, this strategy will be referred to as Fixed Center Lion Strategy (FCLS).

Let us define the unit vector pointing from Mt to Lt as

Wt =
Lt −Mt

‖Lt −Mt‖
. (1)

Definition 1. Let M0 and L0 be given. A point C0 = [x0, y0]
′ ∈ R

2
+ is said

center of the FCLS if

1. r0 = ‖C0 − L0‖ = max{x0, y0} ,

2. C0 = L0 + r0W0 .

The quantity r0 is named the radius of the FCLS.

Definition 2 (Lion’s move). At a given time t, let the man move from Mt

to Mt+1. The lion moves according to the following rules:

• if ‖Mt+1 − Lt‖ ≤ 1, then the lion moves to Mt+1 and wins the game;

• if ‖Mt+1 −Lt‖ > 1, the lion moves to a point Lt+1 on the line connecting
Mt+1 to the center, such that ‖Lt+1 − Lt‖ = 1. Between the two points
satisfying such a condition, he chooses the one closer to Mt.

An example of FCLS lion’s moves is illustrated in Fig. 1-a.

2.2. Moving Center Lion Strategy

A variation of the FCLS has been recently proposed in [8]. Contrary to the
FCLS, in this strategy the center is updated at each time. For this reason, we
refer to this strategy as Moving Center Lion Strategy (MCLS). The center at a
generic time t is computed according to the following definition.
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Figure 1: Examples of lion’s moves. a: FCLS, b: MCLS.

Definition 3. Let Mt and Lt be given. A point Ct = [xt, yt]
′ ∈ R

2
+ is said

center of the MCLS at time t if

1. rt = ‖Ct − Lt‖ = max{xt, yt} ,

2. Ct = Lt + rtWt .

The quantity rt is the radius of the MCLS at time t.

The MCLS proceeds as follows (an example is shown in Fig. 1-b). At time
t = 0, set C0 as in Definition 1. At a generic time t, let the man move from Mt

to Mt+1. Then:

• the lion moves from Lt to Lt+1 according to Definition 2, with center Ct;

• the center is updated from Ct to Ct+1, according to Definition 3.

In [8], it has been shown that the MCLS guarantees that the lion wins the
game in finite time. Moreover, the following theorem has been proved.

Theorem 1. Let NFCLS
max and NMCLS

max denote the maximum number of moves
to end the game needed by the FCLS and MCLS, respectively. Then,

NMCLS
max ≤ NFCLS

max . (2)

Theorem 1 states that the MCLS dominates the FCLS. Moreover, numerical
simulations show that the number of moves needed by the MCLS is in general
much less than that of FCLS [8]. In the next section, the ideas at the basis
of FCLS and MCLS are employed to devise lion strategies able to cope with
convex polygonal environments.
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3. Lion strategies in convex polygons

In this section, it is assumed that the man and the lion move within a convex
polygonal environment. Two lion’s strategies based on the choice of a suitable
center will be described. The former is based on a fixed center, while the latter
relies on a center which changes at each time step. Notice that, since the
environment is closed, the assumption L0 ≻ M0 related to the initial conditions
is no longer needed.

Let P ⊂ R
2 be a convex polygon defining the game environment and let

V = {V (i) ∈ P , i = 1, . . . , n} be the set of vertices of P . An alternative way to
define P is

P = {x ∈ R
2 : Ax ≤ b} (3)

where A ∈ R
n×2 and b ∈ R

n.
Let us now introduce the concept of center for a convex polygonal environ-

ment.

Definition 4. Let the game environment P ⊂ R
2 be a convex polygon. At time

t, let Wt be given by (1) and set

Ct = Ct(rt) , Lt + rtWt (4)

with rt ≥ 0. If Ct ∈ P, then Ct is a center in P at time t, and rt = ‖Ct − Lt‖
is the corresponding radius.

Notice that, at a given time t, different values of rt provide different centers.
By (3), the constraint Ct ∈ P is equivalent to

A (Lt + rtWt) ≤ b .

Then, one can compute the maximum radius rt such that Ct ∈ P by solving the
following Linear Program (LP)

rmax
t =sup r (5)

s.t. :

A(Lt + rWt) ≤ b

Therefore, the admissible interval for the radius at time t is rt ∈ [0, rmax
t ].

Definition 5. At a given time t, let rt ∈ [0, rmax
t ] be fixed and set Ct = Ct(rt)

according to (4).

• A point Q ∈ P is said reachable from Mt if there exists a continuous path
inside P from Mt to Q which does not intersect C(Ct, rt).

• The contaminated area at time t is defined as

Ât(Ct) = {Q ∈ P : Q is reachable from Mt} . (6)
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• The cleared area at time t is given by Ãt(Ct) = P\Ât(Ct).

• The set of reachable vertices of P at time t is defined as

VR
t (Ct) = {V ∈ V : V ∈ Ât(Ct)} . (7)

• The reachable vertex farthest from Ct is given by

Vmax
t (Ct) = arg max

V ∈VR

t
(Ct)

‖Ct − V ‖ (8)

Notice that the cleared area is the region that the man cannot enter without
being captured by the lion, while the contaminated area is its complement. The
reachable vertices are defined as the vertices (potentially) reachable by the man,
i.e., belonging to the contaminated area. Clearly, the lion wins whenever the
contaminated area collapses to zero. In Fig. 2, two examples showing the above
defined regions are reported. In the left figure, the cleared area is given by
Ãt(Ct) = C(Ct, rt) ∩ P , while in the right one Ãt(Ct) ⊃ (C(Ct, rt) ∩ P). Notice
that, as shown in the latter case, the cleared area may contain points of P which
are outside C(Ct, rt).

Mt

Ct

P

Lt

rt

Mt

Ct

P

Lt

rt

Figure 2: Examples showing the cleared area Ãt(rt) (green), the contaminated area Ât(rt)
(gray) and the reachable vertices VR

t
(Ct) (blue dots).

Let us now introduce the cost function which will be used throughout the
paper to evaluate the progress of the game:

Jt(Ct) = ‖Ct − Vmax
t (Ct)‖

2 − ‖Ct − Lt‖
2 = ‖Ct − V max

t (Ct)‖
2 − r2t (9)

where V max
t (Ct) is given by (8). In particular, the function Jt will allow us to

derive upper bounds on the number of game moves.
The two lion strategies considered in the paper are presented next.

3.1. Polygonal Fixed Center Lion Strategy

In this subsection, a lion strategy for convex polygonal environments based
on a fixed center is described. At the beginning of the game, let us set C0 as in
Definition 4, i.e., C0 = C0(r0) for some r0, and let us keep it fixed throughout the
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game. At any time step, the lion’s move is performed according to Definition 2,
with center C0. We will refer to such a lion strategy as Polygonal Fixed Center
Lion Strategy (P-FCLS).

At a given time t, the cost (9) boils down to

Jt(C0) = ‖C0 − V max
t (C0)‖

2 − ‖C0 − Lt‖
2, ∀t ≥ 0. (10)

The next lemma is instrumental for proving that the P-FCLS leads to a victory
of the lion in a finite number of moves, irrespectively of the strategy adopted
by the man.

Lemma 1. Let the lion play the P-FCLS with center C0. Then,

Jt+1(C0) ≤ Jt(C0)− 1.

Proof: According to Definition 2, Lt lies on the segment connecting Mt and C0.
Therefore, at each time t, there exists rt ≥ 0 such that C0 = Lt + rtWt, with
Wt given by (1). By Lemma 1 in [7], for any man’s move one has

‖C0 − Lt+1‖
2 ≥ ‖C0 − Lt‖

2 + 1 (11)

i.e., r2t+1 ≥ r2t + 1. This means that rt is a strictly increasing sequence.
From Definition 5, one gets that the contaminated area keeps decreasing, i.e.,
Ât+1(C0) ⊂ Ât(C0). In turn, from (7) and (8), one has that ‖C0 − V max

t (C0)‖
is a nonincreasing sequence. Hence, by using (11), one has

Jt+1(C0) = ‖C0 − V max
t+1 (C0)‖

2 − ‖C0 − Lt+1‖
2

≤ ‖C0 − V max
t (C0)‖

2 − ‖C0 − Lt‖
2 − 1 = Jt(C0)− 1,

which proves the claim. �

Lemma 1 states that, for a fixed center, the function Jt decreases at least
by 1 at each step. Then, at a generic time, it is possible to exploit this result
to derive an upper bound on the number of moves necessary to conclude the
game.

Theorem 2. Let the lion play the P-FCLS with center C0. Then, ⌈Jt(C0)⌉ is
an upper bound on the number of moves needed by the lion to win the game after
time t.

Proof: Let us set N = ⌈Jt(C0)⌉. By Lemma 1, Jt is a function which decreases
at least by 1 at each step, so one has Jt+N (C0) ≤ 0. By (10), this means that
‖C0−Vmax

t+N (C0)‖ ≤ ‖C0−Lt+N‖. By Definition 2, Lt+N belongs to the segment
with extremal points Mt+N and C0, and then

‖C0 −Mt+N‖ > ‖C0 − Lt+N‖ ≥ ‖C0 − V max
t+N (C0)‖ .

Since V max
t+N (C0) is the reachable vertex farthest from C0 at time t + N , this

would imply Mt+N is outside the contaminated area Ât(C0), which means that
the man is captured by the lion within time t+N . �
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For ease of notation, in the rest of the paper we will omit the symbol ⌈·⌉ and
refer directly to the function Jt as the upper bound on the number of moves.

According to Theorem 2, at a generic time t, the quantity Jt(C0) provides an
upper bound on the remaining number of moves to end the game. In particular,
the P-FCLS guarantees that the lion wins the game in at most J0(C0) moves,
for every initial condition L0 and M0, and for every choice of C0, no matter of
the strategy adopted by the man.

In [7], it has been shown that if the lion and the man are close enough, the
optimal man strategy is to move orthogonally to Wt at any time t. Under these
conditions, one has

‖C0 − Lt+1‖
2 ≃ ‖C0 − Lt‖

2 + 1 . (12)

So, if the farthest vertex V max
t (C0) remains the same, Jt(C0) decreases by

(about) 1 at each step, and the bound given by Theorem 2 is almost tight.
An alternative approach, which significantly improves over the P-FCLS, is

presented in the next subsection.

3.2. Polygonal Moving Center Lion Strategy

Instead of fixing the center once and for all at the beginning of the game, it
may be useful to change it at every move. A meaningful criterion for selecting
the center is trying to minimize the remaining number of moves before the end
of the game.

By Theorem 2, at time t, the game will last for at most Jt moves if the center
is kept fixed for the rest of the game. Hence, a meaningful choice of the center
is the one minimizing Jt in (9). Let us state the following definition.

Definition 6. At a given time t, the optimal radius r∗t is defined as

r∗t = arg min
r∈[0,rmax

t
]
Jt(Ct(r)) (13)

and the corresponding optimal center is

C∗
t = Ct(r

∗
t ) = Lt + r∗tWt . (14)

By building on the notion of optimal center, the Polygonal Moving Center
Lion Strategy (P-MCLS) is defined as follows: at a generic time t, let the man
move from Mt to Mt+1. Then,

• the lion moves from Lt to Lt+1 according to Definition 2;

• the center is updated from C∗
t to C∗

t+1 according to Definition 6.

The following result shows that the P-MCLS is always a winning strategy
for the lion.

Theorem 3. Let the lion play the P-MCLS. For any initial condition M0 and
L0, the lion wins the game in at most J0(C

∗
0 ) moves, with C∗

0 given by (14).
Moreover, at every time t, the remaining moves of the game are bounded by
Jt(C

∗
t ).
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Proof: Let C∗
0 be given by (14). According to (13)-(14), at t = 1 one has

J1(C
∗
1 ) ≤ J1(C

∗
0 ) ≤ J0(C

∗
0 )− 1 (15)

where the first inequality is due to the fact that both C∗
0 and C∗

1 are candidate
centers at t = 1 (with the latter minimizing J1), while the second inequality
stems from Lemma 1. By iterating the same reasoning at each time t, one gets

Jt(C
∗
t ) ≤ Jt(C

∗
t−1) ≤ Jt−1(C

∗
t−1)− 1 (16)

which implies that Jt(C
∗
t ) ≤ 0 for t ≥ J0(C

∗
0 ). By (9), this means that ‖C∗

t −
V max
t (C∗

t )‖ ≤ ‖C∗
t − Lt‖. Since ‖C∗

t −Mt‖ > ‖C∗
t − Lt‖, one gets

‖C∗
t −Mt‖ > ‖C∗

t − V max
t (C∗

t )‖

i.e., Mt /∈ Ât(C
∗
t ), and hence one can conclude that capture must occur in the

first J0(C
∗
0 ) moves. Clearly, the same idea can be applied at each time t, and

hence Jt(C
∗
t ) is an upper bound to the number of remaining moves from time t

onwards. �

A byproduct of the proof of Theorem 3 is the fact that at each move t,
the upper bound on the number of remaining moves for the P-MCLS decreases
more than the corresponding bound for the P-FCLS. Indeed, being both C∗

t−1

and C∗
t candidate centers at time t, and Jt(C

∗
t ) ≤ Jt(C

∗
t−1), moving the center

from C∗
t−1 to C∗

t reduces the bound more than keeping the center fixed at
C∗

t−1. It should be remarked that this does not guarantee that the upper bound
associated to the P-MCLS is always smaller than that of the P-FCLS, because
the actual values of the bounds depend also on the strategy adopted by the
man. Nevertheless, as recalled at the end of Section 3.1, if the lion and man are
sufficiently close at the beginning of the game, the man can play in such a way
that the P-FCLS bound Jt(C0) decreases approximately by 1 at every move. In
such cases, the leftmost inequality in (16) guarantees that the P-MCLS bound
dominates the P-FCLS one, i.e., Jt(C

∗
t ) ≤ Jt(C0), ∀t. This provides a strong

motivation for choosing the moving center approach, as it will be confirmed by
the simulation campaign presented in the next section.

Remark 1. When using the P-FCLS, the center C0 is fixed once and for all
at the beginning of the game. Since r2t = ‖C0 − Lt‖2 increases by at least 1 at
each move, the circle C(C0, rt) is steadily growing. According to Definition 5,
this implies that the cleared area is increasing by a finite quantity at each move
and the game surely ends when the cleared area encompasses the whole P.

The cleared area related to P-MCLS evolves in a different way. At each time
step, the optimal center and radius change according to Definition 6 and then
there is no guarantee that Ãt(C

∗
t ) ⊆ Ãt+1(C

∗
t+1). Even if the cleared area may

shrink at some move, the P-MCLS chooses the optimal center to minimize (9),
which represents an upper bound on the game duration. Of course, also in this
case, the cleared area at the end of the game will contain the whole environment,
i.e., the contaminated area vanishes so that no safe move can be played by the
man.
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Remark 2. Notice that in Definition 4, it is required that the center Ct belongs
to the polygon P. This condition is essential to guarantee a feasible lion’s move,
i.e., a lion’s move inside P. In fact, as a counterexample, let us assume that
Ct /∈ P, as depicted in Fig. 3. By performing the move according to Definition 2,
the lion position at time t + 1 may lie outside P. On the contrary, since P is
convex, if Ct ∈ P then the whole segment with extremal points Mt+1 and Ct

is inside P and then Lt is inside P too. Alternative approaches relaxing the
constraint Ct ∈ P can be devised, but they require minor amendments of the
lion’s move in Definition 2.

Ct

Lt

MtMt+1

P

Lt+1

Figure 3: Example of an unfeasible lion’s move when Ct /∈ P.

Remark 3. The approach proposed in [9] for the case of multiple pursuers can
be adapted to the problem considered in this paper, by placing virtual pursuers
on the sides of the polygon. Then, it can be shown that the lion strategy called
“spheres”, adopted in [9], is equivalent to the P-FLCS, for any choice of the
center C0 consistent with Definition 4.

4. Computation of the optimal center

In this section, an algorithm to compute the optimal radius and center ac-
cording to Definition 6 is presented. By (14), once r∗t is known, C∗

t is directly
computed. So, we will focus on the computation of the optimal radius r∗t in
(13), which in general may not be trivial.

By exploiting (8), for a given rt and Ct = Ct(rt), let us rewrite (9) as

Jt(Ct) = ‖Ct − V max
t (Ct)‖

2 − r2t

= max
V ∈VR

t
(Ct)

‖Lt + rtWt − V ‖2 − r2t

= max
V ∈VR

t
(Ct)

‖Lt − V ‖2 + r2t ‖Wt‖
2 + 2rt(Lt − V )′Wt − r2t

= max
V ∈VR

t
(Ct)

‖Lt − V ‖2 + 2rt(Lt − V )′Wt (17)
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where the last equality comes from ‖Wt‖ = 1 in (1).
Hence, the optimal radius expression (13) can be rewritten as

r∗t = arg min
r∈[0,rmax

t
]

max
V ∈VR

t
(Ct(r))

‖Lt − V ‖2 + 2r(Lt − V )′Wt (18)

At a given time t, let us define for i = 1, . . . , n

Ni,t = ‖Lt − V (i)‖2

mi,t = 2(Lt − V (i))′Wt .

By substituting, (18) becomes

r∗t = arg min
r∈[0,rmax

t
]

max
i:V (i)∈VR

t
(Ct(r))

Ni,t +mi,t r . (19)

Let us consider the following LP

(J, r) =arg min
J,r

J (20)

s.t. :

Ni,t +mi,t r ≤ J , i = 1, . . . , n

0 ≤ r ≤ rmax
t

Let C be the center associated to the solution r. The following cases can
occur:

i) if VR
t (C) = V , i.e., all the vertices are reachable, then r∗t = r and J∗

t = J .
In fact, under this condition, (19) can be written as

r∗t = arg min
r∈[0,rmax

t
]

max
i=1,...,n

Ni,t +mi,t r (21)

whose solution is given by (20).

ii) if VR
t (C) ⊂ V , not all the vertices in V are reachable by the man, and so

J provides an upper bound to J∗
t , i.e., J ≥ J∗

t .

Computing r∗t in the latter case is more involved than in the former one: it
requires a numerical procedure, which will be devised next.

Remark 4. Notice that the optimal radius r∗t (and hence the optimal center)
may not be unique. An example of such a situation is depicted in Fig. 4, where
all the points belonging to the segment R are optimal centers. In fact, for any
rt such that Ct = Ct(rt) ∈ R, the reachable vertex farthest from Ct is V max

t ,
and hence Jt(Ct) = ‖Ct − V max

t ‖2 − r2t = ‖Lt − V max
t ‖2 which does not depend

on rt. In such cases, any r∗t ∈ R can be chosen.
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Lt

Mt

P

V
max

t

R
Ct = Ct(rt)
rt

Figure 4: All the centers belonging to the segment R are optimal.

Let us define the following quantities

V̂t = {V ∈ V : (Lt − V )′Wt ≥ 0}

Ṽt = {V ∈ V : (Lt − V )′Wt ≤ 0} .

Assuming the lion faces the man, V̂t and Ṽt contain the vertices of V in front of
and behind the lion, respectively.

The following lemmas provide useful properties of the set of reachable ver-
tices.

Lemma 2. At a given time t, let rt ∈ [0, rmax
t ] be given and let Ct be the

corresponding center. Then V̂t ⊆ VR
t (Ct).

Proof: Let S be the line orthogonal to Wt passing through Lt. Since Mt, Lt

and Ct are collinear, then C(Ct, rt) ∩ S = {Lt}. So, V̂t ∩ Ãt(Ct) = ∅ and hence

V̂t ⊆ Ât(Ct). The result follows from the definition of VR
t (Ct) in (7). �

Lemma 3. At a given time t, let r̃t ≥ 0 be given, such that r̃t < rt ≤ rmax
t .

Let C̃t = Ct(r̃t) and Ct = Ct(rt). Then VR
t (C̃t) ⊇ VR

t (Ct).

Proof: Since C̃t, Ct and Lt are collinear, one has C(C̃t, r̃t) ⊂ C(Ct, rt). Then,

by the definition of contaminated area in (6), one has Ât(C̃t) ⊇ Ât(Ct) and the
result follows directly. �

It is now possible to state the theorem which will be used to design an
algorithm for the computation of r∗t .

Theorem 4. At a given time t, let rt ∈ [0, rmax
t ], Ct be the corresponding center

and

Vmax
t (Ct) = {V ∈ VR

t (Ct) : ‖Ct − V ‖ ≥ ‖Ct − V ‖, ∀V ∈ VR
t (Ct)}. (22)

Then,

i) if Vmax
t (Ct) ∩ V̂t 6= ∅, then ∃r∗t : r

∗
t ≤ rt;

ii) if Vmax
t (Ct) ∩ Ṽt 6= ∅, then ∃r∗t : r

∗
t ≥ rt.
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Proof: i) Let V̂ ∈ Vmax
t (Ct) ∩ V̂t. By (17), one has

Jt(Ct) = ‖Ct − V max
t (Ct)‖

2 − r2t = ‖Lt − V̂ ‖2 + 2rt(Lt − V̂ )′Wt . (23)

Let r̂t ∈ (rt, r
max
t ] and Ĉt = Ct(r̂t). Since V̂ ∈ V̂t, then by Lemma 2, V̂ ∈

VR
t (Ĉt). By (17), one gets

Jt(Ĉt) = max
V ∈VR

t
(Ĉt)

‖Lt − V ‖2 + 2r̂t(Lt − V )′Wt

≥ ‖Lt − V̂ ‖2 + 2r̂t(Lt − V̂ )′Wt ≥ Jt(Ct)

where the last inequality follows by (23) and by V̂ ∈ V̂t, i.e., (Lt − V̂ )′Wt ≥ 0.

So, for any r̂t > rt, one has Jt(Ĉt) ≥ Jt(Ct) and then item i) is proved.

ii) Let Ṽ ∈ Vmax
t (Ct) ∩ Ṽt. By (17), one has

Jt(Ct) = ‖Ct − V max
t (Ct)‖

2 − r2t = ‖Lt − Ṽ ‖2 + 2rt(Lt − Ṽ )′Wt . (24)

Let r̃t ∈ [0, rt) and C̃t = Ct(r̃t). Since Ṽ ∈ Vmax
t (Ct), by (22) one has Ṽ ∈

VR
t (Ct), and by Lemma 3, Ṽ ∈ VR

t (C̃t). By (17), one gets

Jt(C̃t) = max
V ∈VR

t
(C̃t)

‖Lt − V ‖2 + 2r̃t(Lt − V )′Wt

≥ ‖Lt − Ṽ ‖2 + 2r̃t(Lt − Ṽ )′Wt ≥ Jt(Ct)

where the last inequality follows by (24) and by Ṽ ∈ Ṽt, i.e., (Lt − Ṽ )′Wt ≤ 0.

So, for any r̃t < rt, one has Jt(C̃t) ≥ Jt(Ct) which proves ii). �

The intuition at the basis of Theorem 4 is as follows. Let a center Ct and
the corresponding radius rt be given. Assume for simplicity that V max

t (Ct) is
the unique vertex farthest from Ct. Let the lion face the man. Theorem 4 states
that, if V max

t (Ct) is in front of the lion, i.e., V max
t (Ct) ∈ V̂t, then there exists at

least one optimal radius r∗t such that r∗t ≤ rt (recall that by Remark 4, different
values of the radius may be optimal). An opposite result holds if V max

t (Ct) is
behind the lion.

Theorem 4 allows one to devise a numerical procedure for computing r∗t ,
reported in Algorithm 1. If the condition on line 7 is satisfied, according to
(21), r∗t is the solution of the LP (20) and the procedure ends. Otherwise,
a bisection on the interval [0, rmax

t ] is performed, by exploiting the result of
Theorem 4.

Remark 5. The computational burden of Algorithm 1 is mainly dictated by
the solution of the two LPs in (5) and (20) and by the chosen tolerance ǫr.
It is worth remarking that there is not a strict precision requirement in the
computation of the optimal center C∗

t . In fact, the result in Theorem 3 holds
for any choice of the center C∗

t which guarantees Jt(C
∗
t ) ≤ Jt(C

∗
t−1) in the left

hand side of (16).
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Algorithm 1 Algorithm for the computation of r∗t , C
∗
t and J∗

t .

1: Data: V , Lt, Mt

2: Result: r∗t , C
∗
t , J

∗
t

3: Wt = (Lt −Mt)/‖Lt −Mt‖

4: rmax = solve LP in (5)

5: (J, r) = solve LP in (20)

6: C = Lt + rWt

7: if VR
t (C) == V then

8: r∗t = r, C∗
t = C, J∗

t = J

9: else

10: r = 0, R = rmax

11: while (R− r) > εr do

12: r̂ = (r +R)/2, Ĉ = Lt + r̂Wt

13: V max
t (Ĉ) = arg max

V ∈VR

t
(Ĉ)

‖Ĉ − V ‖

14: if (V max
t (Ĉ)− Lt)

′ Wt ≤ 0 then

15: R = r̂

16: else

17: r = r̂

18: end if

19: end while

20: r∗t = R, C∗
t = Lt + r∗tWt

21: V max
t (C∗

t ) = arg max
V ∈VR

t
(C∗

t
)
‖C∗

t − V ‖

22: J∗
t = ‖C∗

t − V max
t (C∗

t )‖
2 − r∗t

2

23: end if

5. Numerical simulations

In this section, the results of a campaign of numerical simulations are re-
ported, to show the effectiveness of the P-MCLS. In particular, a comparison
between P-FCLS and P-MCLS is reported. When playing the P-FCLS, the fixed
center C∗

0 is chosen according to (13)-(14).
At present, the optimal strategy for the man, allowing him to survive as

long as possible, has not been devised yet. However, if the two players are
close enough, it can be shown that the man’s move which maximizes Jt+1(Ct)
is orthogonal to Wt (see [7]). Hence, in general, the man can choose between
two feasible moves. Depending on which one he chooses, the following strategies
can be defined:
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• MSL: looking at the lion, between the two feasible moves, the man chooses
the left one.

• MSR: similar to MSL, but the man selects the right move.

• MSV(i): between the two feasible moves, the man goes to the point closest
to a given vertex V (i). By adopting this strategy, the man will likely be
captured in the surroundings of V (i).

• MSJ: the man moves to the point which maximizes Jt+1(C
∗
t+1). Notice

that maximizing Jt+1(C
∗
t+1) does not necessarily imply that this move is

globally optimal. Anyway, this strategy is locally optimal in the sense
that it maximizes the same function the lion is minimizing, when he plays
the P-MCLS.

To evaluate the performance of the two lion strategies, Monte Carlo simu-
lations have been performed. Ten different polygons have been considered. For
each game environment, 100 initial conditions have been randomly generated.

All the man strategies introduced above have been played against each lion
algorithm1. For each game, the man strategy which allows him to survive longer
has been considered. Hereafter, all the reported results refer to such games.
Notice that, although the optimal man strategy is unknown, the obtained results
can be seen as worst-case performances of the lion strategies, since they have
been obtained for the best man strategy among all the considered ones.

For a given polygon p = 1, . . . , 10 and game g = 1, . . . , 100, let NF
p (g) and

NM
p (g) be the number of moves needed by the lion to capture the man for the

P-FCLS and P-MCLS, respectively.
To assess the performance of the lion algorithms, for a given environment p

and game g, the ratio between NM
p (g) and NF

p (g) is considered, i.e.,

Rp(g) =
NM

p (g)

NF
p (g)

.

In all the 1000 games played, the average value of Rp(g) turns out to be 0.65
with standard deviation 0.24. For each specific polygon p, the average Rp(g)
ranges from 0.22 to 0.81. Analyzing the shape of the ten environments, it turns
out that the smallest values of Rp occur for “squeezed” polygons while largest
values are related to “roundish” ones. This suggests that the benefits of the
P-MCLS are more significant when the evader can choose among qualitatively
different escape directions.

In Fig. 5, the value of Jt averaged over 100 games is reported, for one of
the considered environment. The man strategy which allows him to survive
longer is considered for each game. One may notice that when playing the
P-FCLS Jt(C

∗
0 ) decreases by approximately 1 at each step, as expected. On

1Regarding MSV(i), one game for each vertex V (i) has been played.
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the contrary, when the P-MCLS is adopted, Jt(C
∗
t ) provides a faster decrease,

especially during the first moves, providing a much smaller bound on the capture
time.
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Figure 5: Average value of Jt over the first 500 moves for the P-FCLS (solid red) and the
P-MCLS (dashed blue).

Concerning the strategies adopted by the man, the simulations do not reveal
a strategy which is significantly better than the others. In fact, among all the
simulated games, the MSV(i) strategy turned out to be the most effective in
the 59.5% of the games. However, recall that this is rather a set of strategies
depending on the specific vertex V (i) and in most cases there was not a preferred
vertex prevailing over the others. This confirms that the optimal strategy for
the man remains an open problem.

6. Conclusions

Two new pursuit strategies have been proposed for a formulation of the lion
and man problem within convex polygonal environments. The solution based
on a fixed center has the benefit of being extremely simple and needs only the
selection of a suitable center at the beginning of the game. The moving center
strategy requires a numerical procedure for updating the center at each move.
On the other hand, numerical simulations have shown that it outperforms the
fixed center strategy in terms of both upper bound on the game duration and
actual number of moves necessary for capturing the evader.

The moving center approach looks very promising and its application to
more complex settings is the subject of ongoing research. For instance, one may
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consider the case of multiple pursuers chasing a single evader. Another inter-
esting scenario is that of environments described by simply connected polygons.
In [11], a pursuer strategy similar to the P-FCLS has been adopted for a game
with two pursuers against one evader. The use of a moving center strategy
is expected to remarkably reduce the capture time, as observed in the case of
convex polygons.
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