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Abstract—In this paper, a novel lion strategy for David Gale’s
lion and man problem is proposed. The devised approach
enhances a popular strategy proposed by Sgall, which relieson
the computation of a suitable “center”. The key idea of the
new strategy is to update the center at each move, instead of
computing it once and for all at the beginning of the game.
Convergence of the proposed lion strategy is proven and an
upper bound on the game length is derived, which dominates
the existing bounds.
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I. I NTRODUCTION

PURSUIT-EVASION games have attracted the interest of
researchers for long time, both for the intriguing mathe-

matics they require (see [1] for a nice introduction), and for the
variety of applications they find in different contexts, ranging
from mobile robotics to surveillance, resource harvesting,
network security and many others. When the game is played
in a limited environment, problems become even more chal-
lenging. Among the huge number of different formulations (an
extensive survey is provided in [2]), two main classifications
can be singled out, concerning respectively time and space
being continuous or discrete. If continuous time is assumed,
it is well known that an evader can indefinitely escape a
single pursuer travelling at the same velocity, even in very
simple continuous environments, like a circle [3]. On the
other hand, if time is discrete, the pursuer can capture the
evader in finite time, in many situations of interest. This has
generated a rich literature, considering different assumptions
on the number of pursuers, the structure of the environment
and the information available to the players (see, e.g., [4]–[9]
and references therein).
A fundamental problem at the basis of the above literature
is the so-calledlion and man problem, whose formulation
is ascribed to Gale (see problem 31 in [10]). A lion and a
man move alternately in the positive quadrant of the plane,
travelling a distance of at most one unit at each move. It
is known that the lion can catch the man in finite time,
provided that his initial coordinates are componentwise larger
than those of the man. Nevertheless, the optimal lion strategy
is still an open problem. In [11], Sgall has proposed a nice
strategy for the lion, which guarantees capture in finite time.
Moreover, he has given an upper bound on the capture time
which is achieved for some specific initial conditions. Sgall’s
strategy is based on the definition of a fixedcenter, depending
on the initial lion and man positions: then, the lion always
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keeps on the line connecting the center to the man’s position,
until capture occurs. This strategy has been used in several
mobile robotics application, as reported in the tutorial [12].
In particular, a slight variation of the solution proposed in
[11] is adopted iteratively in [5], where it is instrumentalto
devise a strategy for two pursuers to capture an evader in
simply connected polygonal environments. A similar strategy
is employed in [13], when dealing with games in monotone
polygons with line-of-sight visibility.
In this paper, a new lion strategy is proposed for the lion and
man problem, which improves the one proposed in [11]. The
main idea is to compute a new center at each move, in order to
enhance the advantage gained by the lion in a single step. This
turns out to be effective also on the whole, as it allows one
to derive an upper bound on the maximum number of moves
required to guarantee capture, which dominates the one given
in [11]. Simulations of randomly generated games confirm the
superiority of the proposed strategy.
The paper is organized as follows. In Section II, the lion and
man problem is formulated. The solution proposed in [11]
is reviewed in Section III. The new strategy is introduced
in Section IV and its convergence properties are derived in
Section V. Numerical examples are reported in Section VI,
while in Section VII conclusions are drawn.

II. PROBLEM FORMULATION

The notation adopted in the paper is standard. LetN andRn
+

denote the set of all natural numbers and then-dimensional
Euclidean space of non-negative numbers, respectively. Let
⌈x⌉ be the smallest integer greater or equal tox. A row vector
with elementsv1, . . . , vn is denoted byV = [v1, . . . , vn],
while V ′ is the transpose ofV .
In this paper, we consider the version of thelion and man
problem formulated by David Gale. Two players, a man and
a lion, can move in the first quadrant of the Cartesian plane.
Time is assumed discrete, while space is continuous. At each
round (hereafter calledtime) both players are allowed to move
to any point inside the non-negative quadrant, with distance
less or equal to a given radiusr from their current position.
Hereafter, it will be assumedr = 1 without loss of generality.
The man moves first. Let us denote byMt ∈ R

2
+ andLt ∈

R
2
+ the man and lion position at timet, respectively. Hence,

‖Mt+1 − Mt‖ ≤ 1, ‖Lt+1 − Lt‖ ≤ 1. The game ends (lion
wins) if the lion movesexactly to the man position. If the
man can escape indefinitely from the lion, the man wins. It
is assumed that the initial man coordinates are strictly smaller
than the corresponding lion coordinates, otherwise it is easy
to see that the man wins the game by moving straight up or
right.



III. F IXED CENTER L ION STRATEGY

Before introducing the proposed lion strategy, let us recall
the one devised in [11], hereafter referred to asFixed Center
Lion Strategy (FCLS). If the initial man coordinates are strictly
smaller than the corresponding lion coordinates, the FCLS
allows the lion to capture the man in a finite number of moves,
for any man strategy.
Definition 1: Let M0 andL0 be the man and lion position at
time 0, respectively. LetC0 = [x0, y0]

′ ∈ R
2
+ be the point

satisfying

1) C0 = L0 + η(L0 −M0), with η > 0 ;
2) ‖C0 − L0‖ = max{x0, y0} .

ThenC0 is called thecenterof the FCLS.
Let C0 be the center of the FCLS. Such a center is fixed and
does not change during the game. At a given timet, let the
man move fromMt to Mt+1. The lion adopts the following
strategy (FCLS):

• if ‖Mt+1 − Lt‖ ≤ 1, then the lion moves toMt+1 and
catches the man;

• otherwise, the lion moves to a point on the line connecting
Mt+1 to C0 with unitary distance fromLt. Between the
two points satisfying such a condition, he chooses the
one farther fromC0.

Let C0 = [x0, y0]
′ and denote byr0 andm0 the greatest and

smallest element ofC0, respectively, i.e.,r0 = max{x0, y0}
andm0 = min{x0, y0}. Let us denote byNFCLS

max the upper
bound derived in [11] on the maximum number of moves
needed by the lion to catch the man by using FCLS. The
next results, proved in [11], will be useful in the sequel.
Proposition 1:Let the lion play the FCLS. At everyt, one has

i) ‖Lt − C0‖2 + 1 ≤ ‖Lt+1 − C0‖2 ≤ ‖C0‖2 ;
ii) both elements ofC0 − Lt are strictly positive.

Proposition 2: Let the lion play the FCLS. Then, the lion
captures the man in a number of moves equal at most to

NFCLS
max =

⌈
‖C0‖2 − ‖C0 − L0‖2

⌉
=

⌈
m2

0

⌉
(1)

The bound in (1) has been proved to be tight whenever the
lion and the man start sufficiently close to each other. In this
case, the optimal strategy for the man is to move orthogonally
w.r.t. the line connecting him toC0.

IV. M OVING CENTER L ION STRATEGY

In this section, the proposed lion strategy, hereafter referred
to as Moving Center Lion Strategy (MCLS), is introduced.
The main difference between MCLS and FCLN regards the
computation of the center. While in FCLS the center in
computed once and for all at the beginning of the game, in
the proposed strategy it is updated at each move, and then it
is used to compute the lion move.
Before describing the devised lion strategy, let us introduce
some definitions which will be used throughout the paper.
Definition 2: Let Mt andLt be the man and lion position at
time t, respectively. LetCt = [xt, yt]

′ ∈ R
2
+ be the point

satisfying

1) Ct = Lt + η(Lt −Mt), with η > 0
2) ‖Ct − Lt‖ = max{xt, yt} .

ThenCt is called thecenterof the MCLS at timet.
Definition 3: At a given time t, let us define the following
quantities:

1) rt = max{xt, yt} = ‖Ct − Lt‖
2) mt = min{xt, yt}
3) r̃t+1 = ‖Lt+1 − Ct‖ .

At a given timet, let the man move fromMt to Mt+1. The
lion moves according to the following strategy (MCLS):

• compute the centerCt, based on man and lion position
at time t, according to Definition 2;

• if ‖Mt+1 − Lt‖ ≤ 1, then the lion moves toMt+1 and
catches the man;

• otherwise, the lion moves to a point on the line connecting
Mt+1 to Ct with unitary distance fromLt. Between the
two points satisfying such a condition, he chooses the
one farther fromCt.

The following propositions hold.
Proposition 3:Let the lion play the MCLS. At every timet,
one has

i) ‖Lt − Ct‖2 + 1 ≤ ‖Lt+1 − Ct‖2 ≤ ‖Ct‖2 ;
ii) both elements ofCt − Lt+1 are strictly positive ;
iii) the following inequalities hold

r2t + 1 ≤ r̃2t+1 ≤ r2t +m2
t . (2)

Proof: Items i) − ii) follow directly from Proposition 1,
because at each timet, the centerCt is defined in the same
way asC0 in Definition 1. Itemiii) stems from Definition 3
and itemi).
Proposition 4:At a given timet, let mt ≤ 1 and let the lion
play the MCLS. Then, the lion captures the man in one move.
Proof: The proof is a direct consequence of Proposition 2,
with C0 = Ct andL0 = Lt.
Remark 1:It is worth stressing the key difference between the
FCLS and the MCLS. The FCLS is based on a circle centered
in the fixed centerC0, with radius equal to the distance center-
lion. Such a circle defines acleared area, i.e. a region the
man cannot enter, otherwise he is captured in the next move.
Capture is guaranteed by the fact that the radius of the circle
steadily increases at each move and will include the origin
in finite time. The MCLS proposed in this paper is based
on a different invariant. A cleared area is the portion of the
plane outside the rectangle whose opposite vertices are the
origin and the moving centerCt (i.e., the dashed rectangle
in the first quadrant of Fig. 2). In the next section, it will be
proven that the center moves in such a way that this rectangle
shrinks at every move. Then, capture is achieved by proving
that the minimum side of the rectangle goes below 1 in finite
time, which guarantees that the lion wins at the next move,
according to Proposition 4.

V. CONVERGENCE ANALYSIS

In this section, an upper bound to the maximum number
of moves needed by the lion to catch the man, when using
the MCLS, is derived. Moreover, it is shown that such an
upper bound is always smaller than the upper boundNFCLS

max

provided by the FCLS.



Before stating the main results, some technical lemmas are
needed. The first one states the key invariant of the proposed
strategy: both coordinates of the moving center are strictly
decreasing, i.e., the center keeps moving leftwards and down-
wards, approaching the origin.
Lemma 1:Let Ct = [xt, yt]. Then, at every time t,xt+1 < xt

andyt+1 < yt.
Proof: In the MCLS,Lt+1 lies on the line connectingCt and
Mt+1. On the other hand, by Definition 2,Ct+1 lies on the
line joining Lt+1 andMt+1. Hence,Ct, Lt+1 andCt+1 are
collinear, i.e.

Ct+1 = Ct + (Ct − Lt+1)α , Ct + [dx, dy]
′ (3)

whereα, dx, dy ∈ R. By Proposition 3, both coordinates of
Ct − Lt+1 are strictly positive, i.e.,sign(dx) = sign(dy) =
sign(α). Hence, it is sufficient to show thatα < 0. To
arrive at a contradiction, assumeα ≥ 0 and let us define
d =

√
d2x + d2y ≥ 0, see Fig. 1. Then, beingdx ≥ 0 and

dy ≥ 0, from (3) and Definition 3, one has

‖Ct+1 − Lt+1‖ = r̃t+1 + d > rt + d ≥ rt +max{dx, dy}
≥ max{xt + dx, yt + dy} = max{xt+1, yt+1}

where the strict inequality comes from (2). Since‖Ct+1 −
Lt+1‖ > max{xt+1, yt+1}, Ct+1 cannot be a center, accord-
ing to Definition 2.
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Fig. 1. The contradiction in the proof of Lemma 1.

The next Lemma provides an explicit expression for the worst
move of the lionLt+1, in terms of the minimum coordinate
mt+1 of the updated centerCt+1.
Lemma 2:Let rt andmt be given according to Definition 3.
Let r̃t+1 be a fixed constant, such thatr̃t+1 > rt and assume
thatLt+1 satisfies‖Ct − Lt+1‖ = r̃t+1. Then,

m̂t+1 , max
Lt+1:‖Ct−Lt+1‖=r̃t+1

mt+1

= max



mt

rt−
√
r̃2t+1 −m2

t

r̃t+1−
√
r̃2t+1 −m2

t

, rt
mt−

√
r̃2t+1 − r2t

r̃t+1−
√
r̃2t+1 − r2t



 .

(4)

Proof: Let us consider the casert = xt (the casert = yt
is analogous). LetCt+1 = [xt+1, yt+1] be the center at time
t + 1, andθ be the angle between thex axis and the vector
Ct−Lt+1. Notice that, sinceCt+1 lies on the line connecting
Lt+1 andCt, θ is also the angle between thex axis and the
vector Ct+1 − Lt+1 (see Fig. 2). It follows thatθ ∈ [θ, θ]
where

θ = arccos

(
rt

r̃t+1

)
and θ = arcsin

(
mt

r̃t+1

)
.

Ctmt

rt

r̃t+1

O

θ

θθ

Lt+1

Ct+1

rt+1

xt+1

yt+1

Fig. 2. Sketch of the proof of Lemma 2.

Let us defineδ = r̃t+1− rt+1. By Definition 2 and Lemma 1,
it turns outδ > 0. Moreover, one has

xt+1 = rt − δ cos θ , fx(θ) (5)

yt+1 = mt − δ sin θ , fy(θ) . (6)

Let us defineM(θ) = min{fx(θ), fy(θ)} and R(θ) =
max{fx(θ), fy(θ)}. Then, findingm̂t+1 defined in (4), boils
down to

m̂t+1 = max
θ∈[θ, θ]

min{xt+1, yt+1}

= max
θ∈[θ, θ]

min{fx(θ), fy(θ)} = max
θ∈[θ, θ]

M(θ) . (7)

Let us analyze the caseM(θ) = fx(θ), R(θ) = fy(θ). Notice
that there exists at least one value ofθ such that this condition
is satisfied. In fact, forθ = θ one has

M(θ) = fx(θ) = rt − (r̃t+1 − rt+1) cos(θ)

=
rt+1 rt
r̃t+1

< rt+1 = fy(θ) = R(θ) .

SinceR(θ) = fy(θ) = rt+1, by (6) one hasrt+1 = mt −
(r̃t+1 − rt+1) sin(θ) which leads to

rt+1 =
mt − r̃t+1 sin(θ)

1− sin(θ)
. (8)

By substituting (8) into (5), after some algebra one gets

M(θ) = fx(θ) = rt − (r̃t+1 − rt+1) cos(θ)

= rt −
(r̃t+1 −mt) cos(θ)

1− sin(θ)
. (9)



Taking derivatives w.r.t.θ one obtains

∂M(θ)

∂θ
=

mt − r̃t+1

1− sin(θ)
< 0

since r̃t+1 > rt ≥ mt. Since the minimum feasible value of
θ is θ and by using (8), one has

max
θ:M(θ)=fx(θ)

M(θ) = M(θ) =
rt+1 rt
r̃t+1

=
rt

r̃t+1

mt − r̃t+1 sin(θ)

1− sin(θ)
= rt

mt −
√
r̃2t+1 − r2t

r̃t+1 −
√

r̃2t+1 − r2t

. (10)

Let us now repeat the same reasoning for the case in which
M(θ) = fy(θ). Notice thatθ = θ satisfies such a condition,
yielding

M(θ) = fy(θ) = mt − (r̃t+1 − rt+1) sin(θ)

=
rt+1 mt

r̃t+1
< rt+1 = fx(θ) = R(θ) .

SinceR(θ) = fx(θ) = rt+1, by (5) one hasrt+1 = rt −
(r̃t+1 − rt+1) cos(θ) which leads to

rt+1 =
rt − r̃t+1 cos(θ)

1− cos(θ)
. (11)

Substituting (11) into (6), after some algebra one gets

M(θ) = fy(θ) = rt − (r̃t+1 − rt+1) sin(θ)

= mt −
(r̃t+1 − rt) sin(θ)

1− cos(θ)
. (12)

Taking derivatives w.r.t.θ one obtains

∂M(θ)

∂θ
=

r̃t+1 − rt
1− cos(θ)

> 0 .

Thus,

max
θ:M(θ)=fy(θ)

M(θ) = M(θ) =
rt+1 mt

r̃t+1

=
mt

r̃t+1

rt − r̃t+1 cos(θ)

1− cos(θ)
= mt

rt −
√
r̃2t+1 −m2

t

r̃t+1 −
√
r̃2t+1 −m2

t

. (13)

The result follows directly by (10) and (13).
In order to show that the MCLS leads to capture of the
man in a finite number of moves, it is sufficient to prove
that the strategy leads tomt ≤ 1 for some finitet (recall
Proposition 4). In this respect, the worst situation for thelion
is the one in whichmt is maximized at each step. Lemma 2
states that for givenCt andr̃t+1, the lion locationLt+1 which
maximizes the smallest element of the next centerCt+1, is one
of the two points on the coordinate axes with distancer̃t+1

from Ct. These points correspond to the extreme anglesθ and
θ for the direction ofCt − Lt+1 in Fig. 2.
Now, in order to establish an upper bound on the capture time,
it is useful to find the worst-case position of the centerCt,
resulting in the maximum possible value ofmt+1. This gives
the worst possible center move fromCt to Ct+1.
Lemma 3:At a given timet, let m̂t+1 be defined as in (4).
Then,

r∗t , arg max
mt≤rt≤r̃t+1

m̂t+1 = mt (14)

and

m∗
t+1 , max

mt≤rt≤r̃t+1

m̂t+1 = mt

mt −
√
r̃2t+1 −m2

t

r̃t+1 −
√
r̃2t+1 −m2

t

. (15)

Proof: Let β , rt/mt ≥ 1. Then, (14) is equivalent to find

β∗ = arg max
β≥1

m̂t+1 .

Recalling (2), letγ , r̃t+1/rt > 1. For givenrt, mt andr̃t+1,
Lemma 2 states that

m̂t+1 = max

{
mt

β −
√
β2γ2 − 1

βγ −
√
β2γ2 − 1

, mt

1− β
√
γ2 − 1

γ −
√
γ2 − 1

}
.

Let us first consider the casêmt+1 = mt
β−

√
β2γ2−1

βγ−
√

β2γ2−1
.

∂m̂t+1

∂β
= mt

(γ − 1)

(√
β2γ2 − 1− β2γ2√

β2γ2−1

)

(
βγ −

√
β2γ2 − 1

)2

=
mt(1− γ)

√
β2γ2 − 1

(
βγ −

√
β2γ2 − 1

)2 < 0 .

Since
∂m̂t+1

∂β
< 0, β∗ corresponds to its minimum feasible

value, i.e.,β∗ = 1, leading tor∗t = mt.

Let us now consider the casêmt+1 = mt
1−β

√
γ2−1

γ−
√

γ2−1
.

By following the same reasoning, one gets once again
∂m̂t+1

∂β
< 0, and thenr∗t = mt. Expression (15) is obtained

by direct substitution into (4).
Lemma 3 states that, for a givenmt, the centerCt which
(potentially) leads to the maximummt+1 at the subsequent
step isCt = [mt,mt]

′. This is instrumental to define an upper
bound to the evolution ofmt.
Theorem 1:Let mt > 1 and let the lion play the MCLS. Then,
for any possible man strategy, one has

mt+1 ≤ mt(mt − 1)√
1 +m2

t − 1
.

Proof: By Lemma 2 and Lemma 3, one has

m∗
t+1 = max

rt≥mt

m̂t+1 = mt

mt −
√
r̃2t+1 −m2

t

r̃t+1 −
√
r̃2t+1 −m2

t

. (16)

Let us definêr = r̃t+1/mt. By substituting into (16), one has

m∗
t+1 = mt

1−
√
r̂2 − 1

r̂ −
√
r̂2 − 1

. (17)

Taking derivatives w.r.t.̂r, one has

∂m∗
t+1

∂r̂
= mt

r̂ − 1−
√
r̂2 − 1

(
r̂ −

√
r̂2 − 1

)2

which vanishes for̂r = 1. It can be easily checked thatr̂ = 1

corresponds to a maximum and
∂m∗

t+1

∂r̂
< 0, ∀r̂ > 1, i.e.

∀r̃t+1 > mt.



Since by (2) one has that̃r2t+1 ≥ r2t + 1 = m2
t + 1, the

maximum value form∗
t+1 is achieved for̃rt+1 =

√
m2

t + 1.
By substituting in (17) one has

m∗
t+1=mt

mt −
√
m2

t + 1−m2
t√

m2
t + 1−

√
m2

t +1−m2
t

= mt

mt − 1√
m2

t + 1−1

which concludes the proof.
A direct consequence of Theorem 1 is that MCLS leads to
capture of the man in a finite number of moves. An upper
bound to such a number is now derived.
Let us consider the recursion

bt+1 =
bt(bt − 1)√
1 + b2t − 1

, g(bt) . (18)

Let us fix b0 = m0 > 1. Since the functiong(bt) is monotone
increasing forbt > 1, by Theorem 1 one has that, ifmt ≤ bt,
then

mt+1 ≤ g(mt) ≤ g(bt) = bt+1 .

Therefore, recursion (18) returns an upper bound ofmt, for
all t. By Proposition 4, ifmt ≤ 1 then the game ends at the
next move. Sinceg(bt) < 0 when bt < 1, an upper bound to
the maximum number of moves before the game ends can be
computed as follows

NMCLS
max = min{t ∈ N : bt < 0} . (19)

Notice thatNMCLS
max is a function ofm0, although it is difficult

to express this dependence explicitly. Clearly,NMCLS
max can be

computed by recursively evaluatingbt in (18) until bt < 0.
In Fig. 3, NMCLS

max and NFCLS
max = ⌈m2

0⌉ are compared for
m0 ∈ [1, 10].
From Fig. 3 it is apparent thatNMCLS

max ≤ NFCLS
max , and

equality holds only for small values ofm0 (due to the
discretization introduced by the fact that the number of moves
must be integer). This is proved in the next theorem for every
m0 > 1.
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Fig. 3. Upper bounds on the number of moves for different values ofm0.
Comparison betweenNFCLS

max (blue) andNMCLS
max (red).

Theorem 2:Let NMCLS
max andNFCLS

max be defined as in (19)
and (1), respectively. Then,

NMCLS
max ≤ NFCLS

max , ∀m0 > 1. (20)

Proof: System (18) can be rewritten as

bt+1 =
(bt − 1)(

√
1 + b2t + 1)

bt
. (21)

Let bt > 1. By squaring (21), one gets

b2t+1 =
(bt − 1)2(b2t + 2 + 2

√
1 + b2t )

b2t

= b2t −
2b3t − 3b2t + 4bt − 2− 2(bt − 1)2

√
1 + b2t

b2t

= b2t − 1− 2

b2t

[
(b3t − b2t + 2bt − 1)− (bt − 1)2

√
1 + b2t

]

= b2t − 1− 2(bt − 1)

b2t

[
(b2t − bt + 1)− (bt − 1)

√
1 + b2t

]

≤ b2t − 1

because(b2t − bt + 1) > (bt − 1)
√
1 + b2t for all bt > 1.

Therefore, system (18) decays always faster than system

m2
t+1 = m2

t − 1 .

SinceNFCLS
max = ⌈m2

0⌉ = min{t ∈ N : mt < 0} andNMCLS
max

is defined by (19), then (20) immediately follows.

VI. N UMERICAL EXAMPLES

In this section, two numerical examples are reported in order
to show the effectiveness of the proposed lion strategy.
Example 1:The behavior of FCLS and MCLS is first com-
pared on a single game. The initial position of the man and
the lion areM0 = [2, 3]′ andL0 = [3, 4]′, respectively. The
center of the FCLS turns out to beC0 = [12.657, 13.657]′.
The man plays the strategy proposed in [11], which works as
follows. At each timet, the man moves to a point orthogonal to
the line connecting him to the lion. Between the two possible
directions, he chooses the one which maximizes the product
of his coordinates.
The number of moves needed by the FCLS to capture the man
is 98, while 38 moves are sufficient for the proposed strategy.
The paths traveled by the lion (black) and by the man (red)
are depicted in Fig. 4. For the MCLS, the last part of the
trajectory of the centerCt is drawn in blue. Notice thatCt

keeps moving towards the origin, as dictated by Lemma 1.
Example 2:A set of 10000 games have been simulated. Let
M0 = [xm, ym]′ andL0 = [xl, yl]

′ denote the man and lion
initial positions, respectively, which have been randomlygen-
erated from a uniform distribution such thatxm, ym ∈ (0, 10)
and (xl − xm), (yl − ym) ∈ (0, 10). The man plays the same
strategy as in Example 1.
Three lion algorithms are compared: FCLS, MCLS and the
SPHERES algorithm reported in [4], which will be denoted by
the superscriptsF,M, S, respectively. The SPHERES strategy
was devised for multiple pursuer games, but it can be easily
adapted to the case of a single pursuer. In particular, it can
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Fig. 4. Example 1. Paths traveled by the lion (black) and by the man (red)
for FCLS and MCLS. Dots denote the initial positions while the circle is the
capture point. The last part of the path of the MCLS center is drawn in blue.

be seen as a generalized fixed-center strategy, in which the
centerCS

0 can be any point such thatCS
0 = L0+ξ(CF

0 −L0),
whereξ ≥ 1. Notice that, among all the feasible centers of
the SPHERES algorithm, the FCLS selects the one closest to
the lion (ξ = 1).
In the simulated games,ξ = 3 has been chosen for the
SPHERES algorithm. For a fixed lion strategya and for a
given gamek, let Na(k) denote the number of moves needed
by the lion to capture the man. Let us define the performance
indexes:

ra(k) =
Na(k)

NF (k)

ramax = max
k

ra(k)

ga = max
k

Na(k)

Na
max(k)

whereNa
max(k) is the upper bound on the number of moves

for strategya (which changes withk because it depends on
the initial condition). Letra be the average value ofra(k)
over all played games.
In Table I, the above performance indexes are shown for the
different lion strategies. On average, the proposed method
allows the lion to catch the man in a number of moves which
is less than20% of that needed by the FCLS, while the
SPHERES algorithm provides an even poorer performance. In
general, it has been observed that such a performance degrades
as ξ increases, thus suggesting that the FCLS choice of the
center position is the optimal one for a fixed-center strategy.
For all the simulated games, the MCLS is able to end the game
in a number of moves which is less than69% w.r.t. the FCLS,
as testified byrMmax. Moreover,gM shows that the number
of moves of the MCLS never approaches the upper bound,
being the maximum ratio about 0.37. The much higher value
of gF , close to 0.9, is not surprising because the bound for the
FCLS has been proved to be tight in [11]. On the whole, it is
apparent that the proposed technique based on a moving center
outperforms the pursuer strategies based on a fixed center, and
the gap between the actual performances is much larger than
that foreseen by the upper bounds.

TABLE I
PERFORMANCE INDEXES FOR THE CONSIDERED LION STRATEGIES

r rmax g

FCLS 1 1 0.894
MCLS 0.197 0.689 0.367

SPHERES 2.806 3.013 0.468

VII. C ONCLUSIONS

A new lion strategy has been devised for the discrete-time
version of the lion and man problem. This solution dominates
the one proposed by Sgall in [11] in terms of maximum
number of moves required to guarantee man capture.
An interesting feature of the proposed approach is that the
upper bound on the number of moves does not seem to be tight.
Indeed, for randomly chosen initial conditions of lion and man,
numerical simulations show that the actual number of steps in
which the lion reaches the man turns out to be much smaller
than that predicted by the bound. Unfortunately, the optimal
man strategy for counteracting the proposed lion algorithm,
for generic initial conditions, is still an open problem. Itis
expected that such a result would allow one to significantly
improve the upper bound on the number of moves.
We believe that the proposed result is helpful in all the contexts
in which the lion and man problem solution is used as a
building block within more complex strategies for pursuit-
evasion games. The application of the new lion algorithm in
these problems and the evaluation of its benefits is the subject
of ongoing research.
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