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Abstract—In this paper, a novel lion strategy for David Gale's keeps on the line connecting the center to the man’s position
lion and man problem is proposed. The devised approach yntil capture occurs. This strategy has been used in several
enhances a popular strategy proposed by Sgall, which reliesn — qpije robotics application, as reported in the tutoria2][1

the computation of a suitable “center”. The key idea of the | ticul liaht it f th uti ed i
new strategy is to update the center at each move, instead of N partcular, a shight variation ot the solution proposeu |

computing it once and for all at the beginning of the game. [11] is adopted iteratively in [5], where it is instrumental
Convergence of the proposed lion strategy is proven and an devise a strategy for two pursuers to capture an evader in

upper bound on the game length is derived, which dominates simply connected polygonal environments. A similar sggte
the existing bounds. is employed in [13], when dealing with games in monotone
Index Terms—Robotics, autonomous systems, game theory polygons with line-of-sight visibility.
In this paper, a new lion strategy is proposed for the lion and
man problem, which improves the one proposed in [11]. The
main idea is to compute a new center at each move, in order to
URSUIT-EVASION games have attracted the interest @nhance the advantage gained by the lion in a single step. Thi
researchers for long time, both for the intriguing math@yrns out to be effective also on the whole, as it allows one
matics they require (see [1] for a nice introduction), andfie to derive an upper bound on the maximum number of moves
variety of applications they find in different contexts, g&1y required to guarantee capture, which dominates the one give
from mobile robotics to surveillance, resource harvesting, [11]. Simulations of randomly generated games confirm the
network security and many others. When the game is playggperiority of the proposed strategy.
in a limited environment, problems become even more chaihe paper is organized as follows. In Section I, the lion and
lenging. Among the huge number of different formulations (aman problem is formulated. The solution proposed in [11]
extensive survey is provided in [2]), two main classificasio is reviewed in Section Ill. The new strategy is introduced
can be singled out, concerning respectively time and spageSection IV and its convergence properties are derived in
being continuous or discrete. If continuous time is assumeSkection V. Numerical examples are reported in Section VI,
it is well known that an evader can indefinitely escape \g@hile in Section VII conclusions are drawn.
single pursuer travelling at the same velocity, even in very
simple continuous environments, like a circle [3]. On the Il. PROBLEM FORMULATION

other hand, if time is discrete, the pursuer can capture tige notation adopted in the paper is standard.NemndR”
evader in finite time, in many situations of interest. This hgjenote the set of all natural numbers and md|men3|onal
generated a rich literature, considering different assiomp Eyclidean space of non-negative numbers, respectively. Le
on the number of pursuers, the structure of the enwronmemq be the smallest integer greater or equatid\ row vector
and the information available to the players (see, e.g=[#] with elementsu,, ..., v, is denoted byV = [vy,...,vn],
and references therein). while V' is the transpose of .
A fundamental problem at the basis of the above literaturg this paper, we consider the version of then and man
is the so-calledion and man problemwhose formulation problemformulated by David Gale. Two players, a man and
is ascribed to Gale (see problem 31 in [10]). A lion and & lion, can move in the first quadrant of the Cartesian plane.
man move alternately in the positive quadrant of the plangime is assumed discrete, while space is continuous. At each
travelling a distance of at most one unit at each move. dyund (hereafter calletime) both players are allowed to move
is known that the lion can catch the man in finite timeo any point inside the non-negative quadrant, with distanc
provided that his initial coordinates are componentwisgda |ess or equal to a given radiusfrom their current position.
than those of the man. Nevertheless, the optimal lion gfyateHereafter, it will be assumed= 1 without loss of generality.
is still an open problem. In [11], Sgall has proposed a nicghe man moves first. Let us denote By, € R2 and L, €
strategy for the lion, which guarantees capture in flnlteetlmR2 the man and lion position at time respectlvely Hence,
Moreover, he has given an upper bound on the capture tlrmwjt+1 M| <1, L:|| < 1. The game ends (lion
which is achieved for some specific initial conditions. $gal wins) if the lion movesexactlyto the man position. If the
strategy is based on the definition of a fixeghter depending man can escape indefinitely from the lion, the man wins. It
on the initial lion and man positions: then, the lion alwayg assumed that the initial man coordinates are strictlyllsma
o _ _ o _ . than the corresponding lion coordinates, otherwise it B/ea
M. Casini and A. Garulli are with the Dipartimento di Ingegae

dell’informazione e Scienze Matematiche, Universita @in@, via Roma 56, tQ see that the man wins the game by moving straight up or
53100 Siena, ltaly. E-mail: casini@dii.unisi.it, gar@ldii.unisi.it. rlght.

I. INTRODUCTION




Il1. FIXED CENTERLION STRATEGY ThenC; is called thecenterof the MCLS at timet.

Before introducing the proposed lion strategy, let us tecdf€finition 3: At a given timet, let us define the following
the one devised in [11], hereafter referred toFased Center guantities:

Lion Strategy (FCLS)f the initial man coordinates are strictly 1) r; = max{x:,y:} = ||Cr — L4||

smaller than the corresponding lion coordinates, the FCLS2) m; = min{z, y;}

allows the lion to capture the man in a finite number of moves, 3) 711 = ||Li41 — Cil| -

for any man strategy. At a given timet, let the man move from/; to M;,. The
Definition 1: Let M, and Lo be the man and lion position atjion moves according to the following strategy (MCLS):

; ) - ke ;
time 0, respectively. LetCy = [zo, yo]' € R% be the point | o0 te the centef, based on man and lion position

satisfying at time¢, according to Definition 2;

1) Co = Lo+ n(Lo — My), withn >0 ; o if |[My11 — L¢|| < 1, then the lion moves td/,,; and

2) [|Co — Lol = max{zo, yo} - catches the man;
Then(y is called thecenterof the FCLS. « otherwise, the lion moves to a point on the line connecting
Let Cy be the center of the FCLS. Such a center is fixed and M., to C; with unitary distance froml;. Between the
does not change during the game. At a given timéet the two points satisfying such a condition, he chooses the
man move fromM; to M,,,. The lion adopts the following one farther fromC.
strategy (FCLS): The following propositions hold.

o if |Myy1 — Li|| < 1, then the lion moves td/,,; and Proposition 3:Let the lion play the MCLS. At every time,

catches the man; one has

« otherwise, thg lion moves to a point on the line connectingi) ILe — Gl +1 < |[Les1 — G2 < ||CL))?
M1 to Cy with unitary distance fronl.,. Between the i) both elements of”, — L, are strictly positive :
two points satisfying such a condition, he chooses thm) the following inequalities hold
one farther fromCy,.
Let Cy = [z0, yo]’ and denote by, andm the greatest and 1P+ 1<y <rimi (2)

smallest element of, respectively, i.e.ro ;Cflsax{xo’%} Proof: Items i) — i) follow directly from Proposition 1,
andmgy = min{zg, yo}. Let us denote by,

maz (€ UPPET hacaise at each time the centerC, is defined in the same

bound derived in [11] on the maximum number of MOVeg, a5y in Definition 1. Itemiii) stems from Definition 3
needed by the lion to catch the man by using FCLS. Thg 4 items). -

next re;ylts, proved ir,] [11], will be useful in the sequel. Proposition 4:At a given timet, let m; < 1 and let the lion
Proposition 1:Let the lion play the FCLS. At every, one has play the MCLS. Then, the lion captures the man in one move.
) 1L — Col* +1 < [|Legr — Col|* < [|Col? Proof: The proof is a direct consequence of Proposition 2,
i) both elements of”y — L, are strictly positive. with Cy = C; and Ly = L. -
Proposition 2: Let the lion play the FCLS. Then, the lionRemark 1:t is worth stressing the key difference between the
captures the man in a number of moves equal at most to FCLS and the MCLS. The FCLS is based on a circle centered
FCLS 2 2 2 in the fixed cente€y, with radius equal to the distance center-
Ninaz” = [I1C0I* = 11Co = Loll*] = [mg] (2) lion. Such a circle defines aleare?d area i.e. a region the
The bound in (1) has been proved to be tight whenever th&an cannot enter, otherwise he is captured in the next move.
lion and the man start sufficiently close to each other. Ia thCapture is guaranteed by the fact that the radius of theecircl
case, the optimal strategy for the man is to move orthogpnaditeadily increases at each move and will include the origin

w.r.t. the line connecting him t¢’. in finite time. The MCLS proposed in this paper is based
on a different invariant. A cleared area is the portion of the
IV. MOVING CENTERLION STRATEGY plane outside the rectangle whose opposite vertices are the

. ; . origin and the moving centef; (i.e., the dashed rectangle
In this section, the proposed lion strategy, hereafterrrede in the first quadrant of Fig. 2). In the next section, it will be

to as Moving Center Lion Strategy (MCLS}s introduced. ) .
The main difference between MCLS and FCLN regards ﬂp%olven that the center moves in such away that this rectaqgle
.shrinks at every move. Then, capture is achieved by proving

computation of the center. While in FCLS the center i o X L
o that the minimum side of the rectangle goes below 1 in finite
computed once and for all at the beginning of the game, In . : >
o tln][e, which guarantees that the lion wins at the next move,
the proposed strategy it is updated at each move, and thegclcordin to Pronosition 4
is used to compute the lion move. 9 P '
Before describing the devised lion strategy, let us intoadu

some definitions which will be used throughout the paper. V. CONVERGENCE ANALYSIS
Definition 2: Let M, and L, be the man and lion position at|n this section, an upper bound to the maximum number
time ¢, respectively. LetC; = [z;, y;]' € R} be the point of moves needed by the lion to catch the man, when using
satisfying the MCLS, is derived. Moreover, it is shown that such an
1) Cy =Ly +n(Ly — My), withnp > 0 upper bound is always smaller than the upper bo e
2) [|Cy — Ly|| = max{zs, yi} - provided by the FCLS.



Before stating the main results, some technical lemmas &mwof. Let us consider the case = x; (the caser; =

needed. The first one states the key invariant of the proposednalogous). LeC;1 = [z:4+1, y:+1] be the center at time
strategy: both coordinates of the moving center are strich + 1, andf# be the angle between the axis and the vector
decreasing, i.e., the center keeps moving leftwards anchdow; — L, ;. Notice that, sinc&’;,, lies on the line connecting

wards, approaching the origin. L1 and Cy, 6 is also the angle between theaxis and the
Lemma 1:Let C; = [z¢, ). Then, at every time ty;41 < z; vector Cyy1 — L1 (see Fig. 2). It follows that < [0, 4]
andy; 11 < y. where
Proof: In the MCLS, L, lies on the line connecting; and - _ . my
M;,1. On the other hand, by Definition Z;;,, lies on the 8 = arccos (m) and ¢ = arcsin (le) :
line joining L¢+1 and M;;,. Hence,Cy, Ly+1 andCyyq are
collinear, i.e.
A
Ciy1=0C, + (Ct — Lt+1)oz £ Cy + [dz, dy]/ (3) C;

wherea, d,,d, € R. By Proposition 3, both coordinates of
Cy — L4, are strictly positive, i.e.sign(d,) = sign(dy) =
sign(a). Hence, it is sufficient to show thak < 0. To
arrive at a contradiction, assume > 0 and let us define

d = \/d%2+d2 > 0, see Fig. 1. Then, beind, > 0 and
d, > 0, from (3) and Definition 3, one has
HCtJrl — Lt+1|| = ftJrl +d> T + d >ry + max{dz,dy}
> max{zr; + dz, yr + dy} = max{z11, Y41}

where the strict inequality comes from (2). Sing€;;1 —
Lyt > max{x;1,y:4+1}, Cry1 cannot be a center, accord-

ing to Definition 2. ] = -
t
Yeg1 + G
dy Fig. 2. Sketch of the proof of Lemma 2.
LW ‘
Let us define® = 7,1 — r;11. By Definition 2 and Lemma 1,
it turns outd > 0. Moreover, one has
Tyy1 = 14— 0cosd £ fm(e) )
Yer1 = my—dsing = f(0) . (6)
Let us defineM(0) = min{f,(9), f,(0)} and R(0) =
max{f.(6), f,(0)}. Then, findingm,, defined in (4), boils
down to
M1 = max min{@¢q1, Yep1}
0e[o, 9]
= max min{fz(0), fy(0)} = max M(0) . (7)
e : ; 0€[o, 0] 0€lo, 0]
o it Tyt Let us analyze the caset(§) = f.(6), R(¢) = f,(8). Notice

that there exists at least one valuedafuch that this condition

Fig. 1. The contradiction in the proof of Lemma 1. is satisfied. In fact, fo¥ = # one has

The next Lemma provides an explicit expression for the Worst — aq(g) —  £,(0) = r; — (Fes1 — reg1) cos(8)
move of the lionL,, 1, in terms of the minimum coordinate - Toql Tt -
my41 Of the updated centef) ;. = F <rep1 = fy(@) = R(9) -

Lemma 2:Let r, andm; be given according to Definition 3. _. - - -
Let 7, be a fixed constant, such that., > r, and assume SJnCER(G) = Jy(0) = 1111, Dy (6) one hasyyy = m; —

that L, , satisfies||C; — L;1|| = 7+,1. Then, (Fe41 = 7e41) sin(9) which leads to
Myl 2 max m Tii1 = M — T sin(6) (8)
= 1= -
t+l Liyq: HCt Ly ” T4l s + 1-— Sln(@)

/Tt+1 /Tt+1 By substituting (8) into (5), after some algebra one gets
[ [ ' M) = fo(0) =ri — (Frqe1 — re41) cos(6)
THl UG TtH i~ (Fe41 —my) cos(P)

(4) - 1 —sin(6)

= max

)



Taking derivatives w.r.td one obtains and
OM(O) _ mu—Tia _ ) R my — m
00 1 —sin(6) mi,, = . gl?tagxﬁﬂ M1 = my— — = (15)
sincef, 11 > ¢ > my. Since the minimum feasible value of T4l = /T =T
6 is § and by using (8), one has Proof: Let 8 = r;/m; > 1. Then, (14) is equivalent to find
M(6) = M(9) = "2

Tt+1

max _ N
6:M(6)=F.(6) p* = arg WA T

. 2 g2 . - . _
Ty my — Ty 8in(6) me Tip1 — T Recalling (2), lety = 741/ > 1. For givenr;, m; and 1,

TR 1-sn(@) " Fopt — /th L rf_ (0 Lemma 2 states that
+
. . B-VBP -1  1-By/7P-1
Let us now repeat the same reasoning for the case in whi¢h:+1 = max {mt J 7 my 72 T (-
M(0) = f,(6). Notice thatd = 4 satisfies such a condition, By =By = TV T

yielding 3 _ 3 Let us first consider the case; 1 = my ;
M) = [fy(0) =my — (Fr41 — re41) sin(0)
Te41 My — — 2 2
= ——— <rq1 = f2(0) =R() . R —O (/B2 -1 - B2
Tt+1 t1 = f2(6) ®) O b )< 7 \/m)
. ~an - t
SinceR(0) = f.(0) = ri11, by (5) one has iy = 7 — op (ﬁW _ \/m)2
(Ft41 — r441) cos(f) which leads to .
Tt—Ft+1COS(9) - mt( _’Y) ) <O

TS T cos() - VPP =1 (87— VP 1)

Substituting (11) into (6), after some algebra one gets

M) = [y(0) =ri— (Frs1 — reg1)sin(6)

. OMys1
Since +

< 0, p* corresponds to its minimum feasible
value, i.e.,f* = 1, leading tor; = m;.

Tie1 — 1¢) sin(@ . o B —
= mi— ot ) ©) : (12) Let us now consider the cas@,,; = m, 2Vt
1 — cos(6) SV
. L . By following the same reasoning, one gets once again
Taking derivatives w.r.td one obtains Biesn

DM (0) Frir— 1 < 0, and thenr; = m,. Expression (15) is obtained

20  1-— cos(0) 0. by direct substitution into (4). [
Lemma 3 states that, for a given,, the centerC; which

Thus, (potentially) leads to the maximumm,,, at the subsequent
max  M(0) = M(@) = Te1 e step isCy = [my, mt]_’. This is instrumental to define an upper
0:M(0)=Fy(9) Tt+1 bound to the evolution ofn;.
. — ry — [72 2 Theorem 1ietm; > 1 and let the lion play the MCLS. Then,
_ M T T cos(d) - 1 ' . (13) forany possible man strategy, one has

Te41 1 —cos(f) it — /72, —m?
Mip1 <

The result follows directly by (10) and (13). [ ] Vi+m?Z—1 '
In order to show that the MCLS leads to capture of thgroof: By Lemma 2 and Lemma 3, one has
man in a finite number of moves, it is sufficient to prove

mt(mt — 1)

that the strategy leads tm; < 1 for some finitet (recall my — /T —mi

Proposition 4). In this respect, the worst situation for liba mig = Jax mgy = my > 5 (16)
. . . . . . t— t ~ ™.

is the one in whichm,; is maximized at each step. Lemma 2 T+l = A/ Tig1r — T

states that for give@; and; 4, the lion locationL;; which
maximizes the smallest element of the next ce@ter, is one
of the two points on the coordinate axes with distafgce . 1=z —1
from C;. These points correspond to the extreme angjlasd M1 = mtf V1

0 for t.he direction Ofct. — Le+a In Fig. 2. ._Taking derivatives w.r.t#, one has

Now, in order to establish an upper bound on the capture time,

it is useful to find the worst-case position of the centgr omiy, = 1-vr2-1
resulting in the maximum possible value f;; ;. This gives or M (72 _JP2 1)2
the worst possible center move frof} to Cy, 1.

Lemma 3:At a given timet, let 7,41 be defined as in (4). which vanishes fof = 1. It can be easily checked that= 1

Let us define® = 7,41 /m;. By substituting into (16), one has

(17)

: omy .
Then, N corresponds to a maximum and% < 0, Vr > 1, le.
r; = arg  max Mgl = My (14) Vg1 > my. "

my <re<Tii1



Since by (2) one has that,, > r7 + 1 = m? + 1, the Theorem 2:Let NS5 and NECLS be defined as in (19)

maximum value form;,, is achieved forr, ., = /m? +1. and (1), respectively. Then,
By substituting in (17) one has Nf,‘fagLS < an;gmLs Vmp > 1. (20)
2 2
. my — /mi + 1 —mj m — 1 Proof: System (18) can be rewritten as
M1 =M 2 2 5 — Mt 2 el
vmE kL mpLom g+ y (- DW/TER+) 21
which concludes the proof. ] = by ' (21)

A direct consequence of Theorem 1 is that MCLS leads L% :

: - t b, > 1. By squaring (21), one gets
capture of the man in a finite number of moves. An upper L y squaring (21) 9
bound to such a number is now derived. 2 (by — 1)2(b7 + 2 4 24/1 + b?)
Let us consider the recursion t+l b?

203 — 3b7 4 4by — 2 — 2(by — 1)%4/1 + b?
LUy I T t

2
Let us fixby = mo > 1. Since the functiony(b,) is monotone = b —1— ¥ {(b? — b} +2b = 1) = (b — 1)*\/1 + b?]
increasing for; > 1, by Theorem 1 one has that,f; < b,, t

2(by — 1
then :bg_l_(tbig) [(bf—bt+1)—(bt—1)w/1+bf}
t

myy1 < g(my) < g(by) = bigr -
<b;—1

Therefore, recursion (18) returns an upper bounadngf for

all t. By Proposition 4, ifm, < 1 then the game ends at thebecauseb; — b, + 1) > (b, — 1)/1 + b7 for all b, > 1.

next move. Sincg(b;) < 0 whenb, < 1, an upper bound to Therefore, system (18) decays always faster than system

the maximum number of moves before the game ends can be 9 9
mi,, =my — 1.

computed as follows

Since NECLS — [m2] = min{t € N: m; < 0} and NMCLS

max max

Nz 5 =min{t € N: b, <0} . (19) s defined by (19), then (20) immediately follows.

Notice thatNMCLS is a function ofmy, although it is difficult
to express this dependence explicitly. Cleady}.¢ > can be
computed by recursively evaluatirig in (18) until b, < 0. In this section, two numerical examples are reported inrorde
In Fig. 3, NMCLS and NECLS = [m2] are compared for to show the effectiveness of the proposed lion strategy.
mg € [1, 10]. Example 1:The behavior of FCLS and MCLS is first com-
From Fig. 3 it is apparent thalv LS < NFCLS and pared on a single game. The initial position of the man and
equality holds only for small values ofny (due to the the lion areM, = [2,3]) and Ly = [3,4], respectively. The
discretization introduced by the fact that the number of esovcenter of the FCLS turns out to k&, = [12.657,13.657]".
must be integer). This is proved in the next theorem for evefjne man plays the strategy proposed in [11], which works as
mo > 1. follows. At each time, the man moves to a point orthogonal to
the line connecting him to the lion. Between the two possible

directions, he chooses the one which maximizes the product

VI. NUMERICAL EXAMPLES

— of his coordinates.
, ] The number of moves needed by the FCLS to capture the man
is 98, while 38 moves are sufficient for the proposed strategy
The paths traveled by the lion (black) and by the man (red)
are depicted in Fig. 4. For the MCLS, the last part of the
trajectory of the cente€’; is drawn in blue. Notice thaf;
keeps moving towards the origin, as dictated by Lemma 1.
Example 2:A set of 10000 games have been simulated. Let
My = [&m,ym] and Ly = [z;,y;])" denote the man and lion
initial positions, respectively, which have been randogeyn-
erated from a uniform distribution such that,, y., € (0, 10)
and (z; — zy), (y1 — ym) € (0,10). The man plays the same
strategy as in Example 1.
Three lion algorithms are compared: FCLS, MCLS and the
% 2 s 4 5 & 1 8 9 1 SPHERES algorithm reported in [4], which will be denoted by
the superscript#’, M, S, respectively. The SPHERES strategy
Fig. 3. Upper bounds on the number of moves for different amlafm,. Was devised for multiple pursuer games, but it can be easily
Comparison betweetV,,,¢5' (blue) andN )5S (red). adapted to the case of a single pursuer. In particular, it can

~ =) ©
=] S =]
T T

o
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T

Upper bound on the number of moves
w x
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4 FCLS TABLE |
PERFORMANCE INDEXES FOR THE CONSIDERED LION STRATEGIES
3 T Tmax g
\\ FCLS 1 1 0.894
2 \ MCLS | 0.197 | 0.689 | 0.367
, \ SPHERES| 2.806 | 3.013 | 0.468

VII. CONCLUSIONS

A new lion strategy has been devised for the discrete-time
version of the lion and man problem. This solution dominates
the one proposed by Sgall in [11] in terms of maximum
number of moves required to guarantee man capture.

An interesting feature of the proposed approach is that the
upper bound on the number of moves does not seem to be tight.
Indeed, for randomly chosen initial conditions of lion andm

be seen as a generalized fixed-center strategy, in which finerical simulations show that the actual number of steps i
centerC$ can be any point such thet = Lo+&(CF — Lo) which the lion reaches the man turns out to be much smaller

where¢ > 1. Notice that, among all the feasible centers dfan that predicted by the bound. Unfortunately, the oftima
the SPHERES algorithm, the FCLS selects the one closes{1g" Strategy for counteracting the proposed lion algorithm

Fig. 4. Example 1. Paths traveled by the lion (black) and keyrtran (red)
for FCLS and MCLS. Dots denote the initial positions while ttircle is the
capture point. The last part of the path of the MCLS centerrasvd in blue.

the lion ¢ = 1). for generic initial conditions, is still an open problem.ist

In the simulated games; = 3 has been chosen for the,
SPHERES algorithm. For a fixed lion strategyand for a
given gamek, let N%(k) denote the number of moves neede
by the lion to capture the man. Let us define the performan
indexes:

MVe

[
_N(R) 2]

e Na (&
where N¢ ,..(k) is the upper bound on the number of moves,,
for strategya (which changes withk because it depends on
the initial condition). LetF* be the average value of*(k)
over all played games. [5]
In Table I, the above performance indexes are shown for the
different lion strategies. On average, the proposed methdél
allows the lion to catch the man in a number of moves which
is less than20% of that needed by the FCLS, while the [7]
SPHERES algorithm provides an even poorer performance. In
general, it has been observed that such a performance @sgrad
as ¢ increases, thus suggesting that the FCLS choice of thg
center position is the optimal one for a fixed-center stiateg
For all the simulated games, the MCLS is able to end the game
in a number of moves which is less thé®’% w.r.t. the FCLS, [9]
as testified byr} . Moreover,¢g™ shows that the number
of moves of the MCLS never approaches the upper bourH:b]
being the maximum ratio about 0.37. The much higher value
of g%, close to 0.9, is not surprising because the bound for tHé!
FCLS has been proved to be tight in [11]. On the whole, it i§2]
apparent that the proposed technique based on a moving centé
outperforms the pursuer strategies based on a fixed center, a
the gap between the actual performances is much larger thsh
that foreseen by the upper bounds.

a __

expected that such a result would allow one to significantly
improve the upper bound on the number of moves.

believe that the proposed result is helpful in all the ertst

|@ewhich the lion and man problem solution is used as a
building block within more complex strategies for pursuit-
evasion games. The application of the new lion algorithm in
these problems and the evaluation of its benefits is the subje
of ongoing research.
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