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Abstract

In this paper, a new family of pursuit strategies is presrite a fundamental pursuit-evasion game: the lion and man
problem. The classic formulation due to David Gale is comrsd: the players move alternatively in a discrete-timarggaind
are constrained to remain in the non-negative quadranteopléine. The proposed solution relies on the stepwise artion
of a suitable functional, whose generality provides an ajpg degree of freedom for customization within specificspit
problems and bounded environments. Numerical simulatéhrsv the benefits of the new approach with respect to existing
pursuit strategies.
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|. INTRODUCTION

Pursuit-evasion is a popular research topic which is relet@a number of applications in mobile robotics (see, ¢14,,

[2], [3] and the surveys [4], [5]). Among the many alternatiformulations, the main differences concern the consilere
environment (limited or unlimited, with or without obstas| convex or not, etc.) and the time evolution, which can be
continuous or discrete.

A fundamental discrete-time formulation within a limitedvironment is the classiton and man problenj6]. A lion
(pursuer) and a man (evader) move one at a time in a two-dioraisenvironment. The distance they can travel each time
is bounded by a fixed constant and they are constrained toimém#he positive quadrant of the plane. The lion wins the
game when it is able to reach exactly the position of the marthé continuous-time version of the game, it has been
proven that the man is able to indefinitely escape the liom éveclosed environments like a circle [7]. On the contrany, i
the considered discrete-time framework, it is known thatimnig strategy for the lion always exists, if the lion ssadn
the upper right side with respect to the man. An ingenious §tvategy which guarantees capture in finite time has been
proposed in [8]. Recently, an improved version has beerepted in [9], whose upper bound on the capture time dominates
the one given in [8]. However, the lion strategy minimizirgp tcapture time has not been devised yet. It is worth strgssin
that reducing the capture time is important, because thasie pursuit algorithms are used as building blocks withoren
complex strategies, such as multiple pursuer schemes [18lirsuit with line-of-sight visibility [11].

In this paper, we present a new family of pursuit strategiedie lion and man problem. The approach is based on the
choice of a suitable functional which is minimized by thenliat each move. As a byproduct, the strictly convex level esirv
of the functional iteratively limit the feasible space wlehe man can move without being captured. The possibility of
choosing among an entire family of admissible functionpteyides a remarkable degree of freedom which can be egploit
within complex pursuit schemes, depending on the objedtiven the structure of the environment. Numerical simufaio
show that the proposed method provides a significant restuctf the capture time with respect to the approaches in [8],
[9].

The paper is organized as follows. In Section I, the considi@roblem is formulated, while the proposed lion strategy
and its main properties are presented in Section Il and &gpectively. An algorithm implementing the lion strategy i
described in Section V. Numerical simulations are repome8ection VI, while conclusions are drawn in Section VII.

Il. PROBLEM FORMULATION

The notation adopted in the paper is standard R’etdenote then-dimensional Euclidean space of non-negative numbers.
A row vector with elements, ..., v, is denoted by = [v1,...,v,], while V' is the transpose df’. Denote byC(C, )
the circle of center” and radiug . NotationV LW means that two vectors andWV are orthogonal, whilé” - 1/ denotes
the componentwise strict inequality.

In this paper, we consider the version of tli@en and man problenformulated by David Gale [6]. Two players move
in the non-negative quadrant of the Cartesian plane. Tinesssimed discrete, while space is continuous. At each round
(hereafter calledime) both players are allowed to travel a distance less or equal given radius- from their current
position (w...o.g.; = 1 is assumed). The man moves first at each round. Let us denat leyR? and L, € R the man
and lion position at time, respectively. Hence|M,; 1 — M| < 1, |[Li+1 — L¢|| < 1. The game ends (lion wins) if the
lion moves exactly to the man position.
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The man wins if he is able to escape indefinitely from the libis assumed that the initial man coordinates are strictly
smaller than the corresponding lion coordinates, othenitiss straightforward to observe that the man wins the gagne b
moving straight upwards or to the right.

The proposed lion strategy aims at minimizing a cost fumetialefined as follows.

Definition 1: A function f : R — R, is called aclearing function (C-functionif it satisfies the following properties:

o f(P)=0ifand only if P =[0,0];

o VP, > Pi, one hasf(P) > f(P1);

e f([z,0]") < oo and f([0,y]') < oo, Vz,y € RZ;

o let Ffg ={P € R : f(P)= B} be theg-level curve off; for any fixeds3 > 0, there exists a strictly convex function

d
gp such that for any® = [zp,yp]’ € F, yp = gs(zp) andc/ (P) = %‘ <0.

T |,,

2

We recall that a functiom is strictly convex if it is twice differentiable an%% > 0.

As it will become clear in the next section, the level curvés separate the portion of the non-negative quadrant in
which the man can move@ntaminated regionfrom the cleared region5], which is the zone where the man cannot enter
(otherwise he is captured in the next move). Notice tHatcollapses to the origin fof = 0.

Due to the symmetry of the game w.r.t. the coordinate axisataral choice is to deal with clearing functions which are
symmetric w.r.t. the bisector of the non-negative quadremthe following, two examples of such functions are repdrt

Example 1 (equilateral hyperbola)

Let

flz,y)) =cl@+y) +ay =8, 1)

for ¢ > 0 given. For fixeds, Fp is a branch of equilateral hyperbola centered-z, —c|’. In fact, f can be written as
f([z,y]") = (x + ¢)(y + ¢) — (B+ ¢*) = 0. Moreover, one hag = gs(x) = i‘ff, with z € [0, B/c].

Example 2 (quarter of circumference)
Let us consider

fzyl)=z+y+ 22y =6 )

For a givengs, Fj is the lower left quarter of the circumferencé[3, 5], 8). In fact, from (z — 8)? + (y — 8)? = 52,
solving for 8 one has5 = x + y £+ +/2xy. We are interested in the solutigh= « + y + +/2xy. For givens, it follows that

y=gp(z) =5 —+/2z8 — 22, with x € [0, J].

IIl. CLEARING FUNCTION LION STRATEGY

In this section, the proposed lion strategy, hereafterredeto asClearing Function Lion Strategy (CFLSs described.
Such a strategy is based on the choice of a C-function andiésessive minimization until capture occurs.
Definition 2: At any timet, let R; denote the straight line whose points are equidistant/toand L, i.e.,

Ri={PeRL: [P~ Ml =[P~ L} . ®)
Such a line is sometime calldihe of controland it provides the Voronoi partition of the environmentoasated toM,
and L, [3]. Since both coordinates of the man must be strictly leéss those of the lion (otherwise man escapes), the line

of control can be written as
Re={(z,y) €RY:y=aww+b} 4)

with a; < 0 andb, > 0. As a consequence, since the environment is restrictedetmdm-negative quadrant, the line of
control collapses to a segment and the Voronoi cell assatiat the man is a triangle.
Let f denote the C-function chosen once and for all at the beginofrthe game. At a given timg let

By = sup f(P) %)
PeER:
and
P, =arg sup f(P)=Fp NR; . (6)
PeR:

The uniqueness af; in (6) is guaranteed by the strict convexity @f,.
Let M;,, and L; be given. The aim of the proposed strategy is to move the tioa positionZ;,; such thats;,; is
minimized, i.e.,

L, ,=ar inf
t+1 g ILesrmLil<1 Br+1
= arg inf sup f(P) . (7

[ Le+1—Le]|<1 PeER 41



Moreover, let us define

B, = in Bii1 = inf sup f(P (8)
P -s<t O T L€t peryy, P)
and
Py =arg sup f(P)=Fp;, NRip1 . 9
PGRt+1

The rational behind this strategy is to push the curfelgvel curve as close as possible to the origin, in order toimize
the contaminated region. In fact, if the man crossgs, he also crosses the line of contfl and therefore the lion will
catch him in the next move.

For a given C-functionf, the computation ofL;,, in (7) is not straightforward, in general. In the next sectisome
properties of the CFLS are reported in order to fully chardee the optimal lion move. Fig. 1 shows an example of an
optimal lion move, along with the involved level curves.

A

Fig. 1. Example of an optimal lion move.

IV. PROPERTIES OF THECFLS

At a given timet, let M,;,, and L, be given. We want to compute the optimal lion mavg, ; satisfying (7). Hereafter,
we assumé| M1 — L|| > 1, otherwise the lion catches the man in one step.
Let us define

~ M, L
G, = %ﬂ (10)

and, for a givenlL; 1, My + L
Cit1 = % (11)

as the midpoints betweeM/;, and L;, and M;,; and L;., respectively. Notice that, by (3) one hé%,; € R:+1 and
Riy1L(Ciy1 — Miy1). By (11), one gets
Lt+1 - 2 Ot+1 - Mt+1. (12)

Notice that for anyL;, € C(L;, 1) there exists a uniqué';;, € C(@, 1/2) and viceversa, see Fig. 2. Therefore, solving
problem (7) is equivalent to solving the following problem

Ciyy = arg inf Br+1
Ci41€C(C,1/2)
= arg inf sup f(P) (13)

Ci41€C(Cy,1/2) PER:y1



M,

Fig. 2. Definition of Cs.

and then according to (12), sét,, =2C}, | — M.
The next lemma provides some useful propertie€’df; .
Lemma 1:Let M, and L, be such that|M,,, — L;|| > 1, and P/, , andC},; be given by (9) and (13). Le =

M‘%J“P:“ andr = ‘% . Then, the following conditions hold:
i) 12 = Myl = 1Z = Pyl =12 - Ciall = (14)
ii) C(Z,r) N C(Cy,1/2) = C7,, . (15)

Proof: Being P}, ,,Cf, 1 € Riy1, (M1 —Cf 1) must be orthogonal toP, , — C/, ;). Hence, condition i) is a direct

consequence of Thales’ Theorem (see Fig. 3). N N
Let us now prove condition ii). First, let us prove th@tZ, ) andC(Cy, 1/2) do not coincide, i.e.C(Z,r) # C(Cy,1/2).
By (10) one has thaZ = C; implies P}, ; = L, andr = 1/2 implies || M, — L|| = 1, which contradicts the hypothesis
|Myy1 — L] > 1. SinceC;; must belong both ta(Z,r) and toC(C,1/2), one hasC(Z,r) N C(Cy,1/2) # 0. So,
C(Z,r) andC(C},1/2) intersect in one or two points. By contradiction, let us ass€(Z,r) andC(C;,1/2) intersect in
two points. Let3;, , = f(P},) and Fg, be the corresponding C-function level curve. By (8),; = R¢1 N Fj;, . For
each candidaté€’;, , € C(@t, 1/2), let Ry 41 be the line of control passing through 1, i.e., the line of control associated
to My, and Ly = 2@“: M;+1, according to (12). By simple geometric arguments, it caoligerved that it is always
possible to find &, € C(C;,1/2) such that| Z—C,,+|| < r and the corresponding line of contr@} ,; does not intersect
Ri41 in the first quadrant (an example is shown in Fig. 4). Thesfdue the strict convexity of the C-functior®,
does not intersect also the level curig, . From the definition of C-function, this means thabp , %, | f(P) < Bfyq,
which contradicts the definition af}, ; in (13). [ |

Notice that condition i) in Lemma 1 states thaf; ., P, andC},, belong to the circleC(Z,r), while condition ii)
imposes that the circle&(Z,r) andC(C},1/2) are tangent inCy, ,, see Fig. 3.

Theorem 1:Let M;,, L; and P}, be given. Then, the optimal lion move at time- 1 is given by

Ly =Li+V; (16)
where .

R

HPtJrl - Lt”
Proof: Let
g My + Py
2

and

Z_ét Pl — Ly

vi—2=8 : .
|1Z — Ct]] 1Py — L

By item ii) in Lemma 1, one has
* ~ Vi
Cinn=Ci+ 5

By (12) and (10), one has

L:+1:2C:+1—Mt+1:2Ct+‘/;5—Mt+1=Lt+V;g. |



Fig. 3. Proof of Lemma 1: definition of’}, ;.

From Theorem 1, it is apparent that the optimal lion mdye, relies on the computation a?,, in (9). Hereafter, a
useful characterization of such a point is provided.
Lemma 2:Let M1, Ly and P, ; be given. Then,

HPtj—l — Lif| - ”Pt*-i-l —Mp||=1. _ 17)
Proof: Let Z andr be defined as in Lemma 1. By item ii) of Lemmad(Z,r) andC(C;,1/2) are tangent. So,
|Z — C:]| =r+ 1/2 and by item i) of Lemma 1 one has

1Z —Cl| = |Z — Myga|| +1/2 .

By substitutingZ and C, with their corresponding expressions, (17) holds. |
Definition 3: Let M, and L; be given. Let us define

Tiy1 ={P €RY: |P— Ly|| - |P — Myya| = 1}

which, according to (17), contains the locus of poifs, for all possible choices of the C-functigh

Notice thatZ;., is the branch of the hyperbola (restricted to the first quatjireloser toM,; with focal pointsi;,
and L; and major axis equal to 1. Such a curve does not depenf] bat only onM,; and L,. The next result gives the
key property ofP;, ; which will be exploited for its computation.

Theorem 2:Let M;,, and L; be given. Let3;,, and P}, , be defined by (8) and (9), respectively. Then

Pl =L 1 N Repr = Loy N Fpy, (18)
Proof: Recall thatR,, is the line passing througk; , andC}, ;. By (9) and by Lemma 2 one hag* ; € Ry
and P}, € I,,1, respectively. By (16)F; ,, L;,, and L, lie on the same line, see Fig. 3. We want to prove tRat
is the unique point inZ;, N Ry11. Let P € Ry, P # P7,. SinceP, L; , and L, are not aligned, by the triangle
inequality one hadg|P — L¢| < ||P — L}, | + 1. Moreover, by Definition 2, one hagP — M| = ||[P — L;,,|| and
then||P — L;|| — ||P — M;11|| < 1. Since (17) is not satisfied? ¢ Z,,,. Therefore,P ; = 7,1 N R.41 holds. Hence,
Ri41 is tangent toZ;, in P, and it is also tangent t(b«“ﬁgﬂin the same point, due to (9). Sin@g,; is the branch
of hyperbola closer tal/;,1, it is clear thatZ,, and Fg:. | lie on opposite sides w.r.iR;; and therefore we have also
Ptﬁ-l =Tit1 N Fﬁ:+1' |
The following result provides a sufficient condition for ttegmination of the pursuit-evasion game.
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Fig. 4. Proof of Lemma 1. The line of contr@®;; does not interse(*Fﬁ;f+1 in the first quadrant, leading to a contradiction.

Proposition 1: Given L, and M, let R, = [zr, 0] and R, = [0, yr]’ denote the intersections &, with the coordinate
axes. Ifl = max{xpr, yr} < % then the game ends in one move.

Proof: Let R! be the segment with endpoints, = [I, 0] andQ, = [0, I]’. Let T be the triangle with vertice§).,
Q, and the origin, andS be the square with diagon@&!, see Fig. 5. If the man moves to a poihf,; aboveR,, the
lion catches him in one move. 1, lies belowR., surely M; ., € T. Since M; is belowR;, by the definition of line
of control in (3), it follows thatl, € S. Sincel < % the length ofR! is < 1 and for anyC € S one hasC(C,1) O T.
Therefore, the lion is able to catch the man in one move for &y, € 7. [ |

V. COMPUTATION OF THE OPTIMAL LION MOVE

In this section, the properties of the CFLS presented in tleipus section are exploited to devise an algorithm for
computing the lion move.

At a given timet, let L, = [x;, /' and M1 = [, ym]' be given. Theorem 1 states that the knowledgePpf, is
sufficient to compute the optimal lion mov&, ;. SinceZ;,; can be easily computed, the idea is to exploit the relation
Pl =Zi41 N Fgy, | in (18) in order to compute’;, ;.

Let cZ++1(P) denote the angular coefficient of the line tangenfto, in P € Z;,,. Moreover, recall that/ (P) is the
angular coefficient of the tangent to the level cuigat P (remind that givenP, suchFj is unique). HencepP, ; is the
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Fig. 5. Sketch of the proof of Proposition 1.

unique point such that’+1 (P}, ;) = ¢/ (Py_,). From the strict convexity of the C-function and the defanitiof Z, 1, it

can be shown that’+!(P) — ¢/ (P) is a strictly decreasing function d? and P}, , is its unique zero. Hence?;, ; can be
computed via a simple bisection search.
Let us describe the branch of hyperbdla ; by the equation

A2? + Bay +Cy* + Dz +Ey+F =0

with

A=4—4(x —p)?

B =—=8(z1 — 2m) (Y1 — Ym)

C=4—4(y — ym)2

D = 4(x; — xm) (2] — 23, + 47 — yi) — 421 + )

E = 4(y, — ym)(x? — 22, + v? — y2) — 4y + ym)

F =4} +y7)(@h, +um) — (o + a5, + 97 +ym — 12
Let us define

= inf Py, i = sup FH(P)

min max
PeTin PETi iy

and let their negative components be defined as

Ti+1 e T
CIt+1 _ { Cmin 1 if Cmin <0

0 Jif S0 19
T _ | anda i endi <0
0 L if cndt >0

Let P, = [zp,, yp,]’, i = 1,2 denote the intersection @, with the coordinate axes. Notice thRt and P, may lie on
the same axis. Now;Z+* and@**+* can be easily derived from the derivativesf , in P, and P.



The pseudocode to compulg, , given L; and M, is reported in Algorithm 1. To avoid a bisection search in the
semi-infinite intervalc € (—oo, 0], we exploit the increasing mapping = h(c) = =, which leads to a bisection search
inw e (—1,0].

Data: Ly, M4
Result: L},
Computec’++1, cle+t;
w = h(ch+1); W = h(ctt+);
while (W — w) > tolerance do
W = (T + w)/2;
é=h=t(w);
P = compute_tangent_point(Ls, Miy1,¢);
f = angular_coef ficient(P);
if ¢/ < ¢ then
| w=w;
else
| w=w;
end

Q

end

P—L; .
V = Bl
TP=Le

Ly =Li+V;
Algorithm 1: Algorithm for the computation of the optimal lion move.

Initially, ¢Z++1 ande’+* are computed according to (19). At each iteration, the chaidiangular coefficieritis selected.
The functionconput e_t angent _poi nt compute<;,, for given L, and M, 1, and then returns the poifit € 7, such
that cZ++1(P) = ¢. For the chosen C-functiofi, the functionangul ar _coef fi ci ent returnsc/ (P). Then, a bisection
step is performed by comparing and¢. Once a predefined precision is reachgg,, is computed by using (16).

VI. COMPARISON WITH OTHER STRATEGIES

In this section, the proposed lion strategy is compared witter strategies available in the literature. In partiguize
consider the lion strategy proposed in [8], hereafter refeto asLion Strategy 1 (LS1)and a variation of it denoted as
Lion Strategy 2 (LS2)presented in [9]. Concerning the CFLS, the chosen C-fands the quarter of circumference given
in (2).

For computational purposes, we assume that the lion wingdnee if, at a given time, the distance between the two
players becomes less than a given capture radliu®., |[L; — M;|| < . Notice that when dealing with pursuit-evasion
problems in real world applications, it is customary to séinde capture radiug > 0.

In order to simulate the considered pursuit strategies,haseto define also the evasion strategy adopted by the man. It
is worth remarking that the “best” man strategy (i.e., thestxgase man behaviour for the lion) has not been devised yet
for any of the considered approaches. Therefore, two @tiweyman strategies are used in the simulations, denotédSiy
andMS2 At any timet, such strategies set the man positioh;1: ||M;+1 — M;|| = 1 for known M, and L,. They are
derived as follows.

MS1: M, is set such thatM,,, — M;) L (L; — M;). Between the two candidate points, the one with the greatest
product of the two coordinates is chosen. If the previousigsaire unfeasible, i.e., their distance frémis less thanl + 6,
then the man moves to a poiff,;; such that||A, 11 — L,|| = 1 + 6 + &, wheree is a given tolerance. Loosely speaking,
the man aims at moving in a direction which is “as orthogomsapassible” to the line connecting the man and the lion at
time ¢. The choice of the orthogonal direction is motivated by & sbitrade-off between going towards the lion (which is
not a good choice!) and moving in the opposite direction,clwhiesults in approaching the region close to the origin,reshe
capture occurs (see Proposition 1).

MS2: This strategy has been explicitly designed to playrsidahe CFLS. At any time, the man moves to a point aimed
at maximizing the cosp. Firstly, the man moves towardd, as long as|M;1 — L;|| > 1 + ¢; during these moves the
functional cost cannot decrease w.r.t. the initial valige When such moves are not feasible anymore, the man moves to a
“safe” point satisfying

My = arg sup f(Mzyq)
[Miyr — M|l =1
Mg — Le|| > 146 +¢

where the tolerance is set as in MS1.



TABLE |
AVERAGE GAME LENGTH FOR DIFFERENT STRATEGIES

LS1 | LS2 | CFLS
MS1 | 151.2 | 98.8 | 51.3
MS2 | 249 | 241 | 30.6

TABLE Il
AVERAGE GAME LENGTH IN WORSFCASE SENSE AND NORMALIZED RELATIVE REDUCTION

LS1 LS2 | CFLS
Nuwe | 151.2 | 98.8 52.3
Twe 1 0.680 | 0.448

A simulation campaign consisting of 10000 games has bedprpezd with the following data. Ledy = |2, y:m]" and
Lo = [z, 4] denote the man and lion initial positions, respectivelyctSpositions have been randomly generated with
uniform distribution such that, > My; in particular, the initial positions have been generatedltainz,,, v, € (0,10)
and (z; — xm), (yi — ym) € (0,10). The capture radius is set o= 10~°, and the tolerance = 10~°.

For a fixed lion strategy and for a given garelet us denote byV,,s1(k) and Ny s2(k) the number of moves needed
by the lion to catch the man for the two man strategies.Ngfs; and N 5,50 be the average values ofy;51 and Njygo
over all the simulated games.

These figures are reported in Table | for the considered lic@tegies. It is evident that the CFLS outperforms the other
two strategies when the man plays MS1. On the contrary, theSG¥hibits a slightly worse performance when playing
against MS2. This fact is not surprising since MS2 was ekplidesigned to compete against the CFLS. Howeveé{; s
is much greater thaV ;s- for all the lion strategies, showing that MS2 is in general@se man strategy than MSL1.

To provide a fair comparison, for a given lion strategy thesti@ase game length is computed as

ch(k) = max{NMsg(k), N]ugl (k)}, Vk .
The relative reduction in terms of moves w.r.t. the strate§y is defined as follows
_ Nuyc(k)
NG R)

Let N,,. and7,,. denote the average values df,. andr,., respectively. BothV,,. and7,. are shown in Table Il for
the considered lion strategies. It can be observed thatyerage, playing the CFLS allows the lion to catch the man in a
number of moves which is abodt% of those needed by the LS1.

Twe(k)

VII. CONCLUSIONS

A new class of pursuit strategies has been introduced focl#ssic lion and man problem. The approach is based on
the optimization of a suitable functional, which can be perfed efficiently, irrespectively of the specific choice bét
functional itself. A formal proof that capture occurs in fatime for any choice of the clearing function will be prefssh
in a forthcoming work.

A main feature of the proposed approach is its flexibilitye tthoice of the C-function is a degree of freedom that can
be exploited within different pursuit-evasion settingsc@ding to the specific problem objective. For example, cae
imagine to adapt the function to the local shape of the enmrent portion to be cleared, or to the location of different
evaders in multi-agent games. The application of the preg@sirsuit scheme to the above scenarios will be the subject o
future investigations.
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