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Abstract

In this paper, a new family of pursuit strategies is presented for a fundamental pursuit-evasion game: the lion and man
problem. The classic formulation due to David Gale is considered: the players move alternatively in a discrete-time setting and
are constrained to remain in the non-negative quadrant of the plane. The proposed solution relies on the stepwise optimization
of a suitable functional, whose generality provides an appealing degree of freedom for customization within specific pursuit
problems and bounded environments. Numerical simulationsshow the benefits of the new approach with respect to existing
pursuit strategies.
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I. I NTRODUCTION

Pursuit-evasion is a popular research topic which is relevant to a number of applications in mobile robotics (see, e.g.,[1],
[2], [3] and the surveys [4], [5]). Among the many alternative formulations, the main differences concern the considered
environment (limited or unlimited, with or without obstacles, convex or not, etc.) and the time evolution, which can be
continuous or discrete.

A fundamental discrete-time formulation within a limited environment is the classiclion and man problem[6]. A lion
(pursuer) and a man (evader) move one at a time in a two-dimensional environment. The distance they can travel each time
is bounded by a fixed constant and they are constrained to remain in the positive quadrant of the plane. The lion wins the
game when it is able to reach exactly the position of the man. In the continuous-time version of the game, it has been
proven that the man is able to indefinitely escape the lion even in closed environments like a circle [7]. On the contrary, in
the considered discrete-time framework, it is known that a winning strategy for the lion always exists, if the lion starts on
the upper right side with respect to the man. An ingenious lion strategy which guarantees capture in finite time has been
proposed in [8]. Recently, an improved version has been presented in [9], whose upper bound on the capture time dominates
the one given in [8]. However, the lion strategy minimizing the capture time has not been devised yet. It is worth stressing
that reducing the capture time is important, because these basic pursuit algorithms are used as building blocks within more
complex strategies, such as multiple pursuer schemes [10] or pursuit with line-of-sight visibility [11].

In this paper, we present a new family of pursuit strategies for the lion and man problem. The approach is based on the
choice of a suitable functional which is minimized by the lion at each move. As a byproduct, the strictly convex level curves
of the functional iteratively limit the feasible space where the man can move without being captured. The possibility of
choosing among an entire family of admissible functionals,provides a remarkable degree of freedom which can be exploited
within complex pursuit schemes, depending on the objectiveor on the structure of the environment. Numerical simulations
show that the proposed method provides a significant reduction of the capture time with respect to the approaches in [8],
[9].

The paper is organized as follows. In Section II, the considered problem is formulated, while the proposed lion strategy
and its main properties are presented in Section III and IV, respectively. An algorithm implementing the lion strategy is
described in Section V. Numerical simulations are reportedin Section VI, while conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

The notation adopted in the paper is standard. LetR
n
+ denote then-dimensional Euclidean space of non-negative numbers.

A row vector with elementsv1, . . . , vn is denoted byV = [v1, . . . , vn], while V ′ is the transpose ofV . Denote byC(C, r)
the circle of centerC and radiusr. NotationV⊥W means that two vectorsV andW are orthogonal, whileV ≻ W denotes
the componentwise strict inequality.

In this paper, we consider the version of thelion and man problemformulated by David Gale [6]. Two players move
in the non-negative quadrant of the Cartesian plane. Time isassumed discrete, while space is continuous. At each round
(hereafter calledtime) both players are allowed to travel a distance less or equal to a given radiusr from their current
position (w.l.o.g.,r = 1 is assumed). The man moves first at each round. Let us denote byMt ∈ R

2
+ andLt ∈ R

2
+ the man

and lion position at timet, respectively. Hence,‖Mt+1 −Mt‖ ≤ 1, ‖Lt+1 − Lt‖ ≤ 1. The game ends (lion wins) if the
lion moves exactly to the man position.
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The man wins if he is able to escape indefinitely from the lion.It is assumed that the initial man coordinates are strictly
smaller than the corresponding lion coordinates, otherwise it is straightforward to observe that the man wins the game by
moving straight upwards or to the right.

The proposed lion strategy aims at minimizing a cost functional defined as follows.
Definition 1: A function f : R2

+ → R+ is called aclearing function (C-function)if it satisfies the following properties:
• f(P ) = 0 if and only if P = [0, 0]′;
• ∀P2 ≻ P1, one hasf(P2) > f(P1);
• f([x, 0]′) < ∞ andf([0, y]′) < ∞, ∀x, y ∈ R

2
+;

• let Fβ = {P ∈ R
2
+ : f(P ) = β} be theβ-level curve off ; for any fixedβ > 0, there exists a strictly convex function

gβ such that for anyP = [xP , yP ]
′ ∈ Fβ , yP = gβ(xP ) andcf (P ) =

d gβ
dx

∣∣∣∣
xP

≤ 0.

We recall that a functiong is strictly convex if it is twice differentiable and
d2g

dx2
> 0.

As it will become clear in the next section, the level curvesFβ separate the portion of the non-negative quadrant in
which the man can move (contaminated region) from thecleared region[5], which is the zone where the man cannot enter
(otherwise he is captured in the next move). Notice thatFβ collapses to the origin forβ = 0.

Due to the symmetry of the game w.r.t. the coordinate axis, a natural choice is to deal with clearing functions which are
symmetric w.r.t. the bisector of the non-negative quadrant. In the following, two examples of such functions are reported.

Example 1 (equilateral hyperbola)
Let

f([x, y]′) = c(x+ y) + xy = β , (1)

for c > 0 given. For fixedβ, Fβ is a branch of equilateral hyperbola centered in[−c, −c]′. In fact, f can be written as
f([x, y]′) = (x+ c)(y + c)− (β + c2) = 0. Moreover, one hasy = gβ(x) =

β−cx
x+c , with x ∈ [0, β/c].

Example 2 (quarter of circumference)
Let us consider

f([x, y]′) = x+ y +
√
2xy = β . (2)

For a givenβ, Fβ is the lower left quarter of the circumferenceC([β, β]′, β). In fact, from (x − β)2 + (y − β)2 = β2,
solving forβ one hasβ = x+ y±√

2xy. We are interested in the solutionβ = x+ y+
√
2xy. For givenβ, it follows that

y = gβ(x) = β −
√
2xβ − x2, with x ∈ [0, β].

III. C LEARING FUNCTION L ION STRATEGY

In this section, the proposed lion strategy, hereafter referred to asClearing Function Lion Strategy (CFLS), is described.
Such a strategy is based on the choice of a C-function and its successive minimization until capture occurs.

Definition 2: At any time t, let Rt denote the straight line whose points are equidistant toMt andLt, i.e.,

Rt = {P ∈ R
2
+ : ‖P −Mt‖ = ‖P − Lt‖} . (3)

Such a line is sometime calledline of controland it provides the Voronoi partition of the environment associated toMt

andLt [3]. Since both coordinates of the man must be strictly less than those of the lion (otherwise man escapes), the line
of control can be written as

Rt = {(x, y)′ ∈ R
2
+ : y = atx+ bt} (4)

with at < 0 and bt > 0. As a consequence, since the environment is restricted to the non-negative quadrant, the line of
control collapses to a segment and the Voronoi cell associated to the man is a triangle.

Let f denote the C-function chosen once and for all at the beginning of the game. At a given timet, let

βt = sup
P∈Rt

f(P ) (5)

and
Pt = arg sup

P∈Rt

f(P ) = Fβt
∩Rt . (6)

The uniqueness ofPt in (6) is guaranteed by the strict convexity ofgβt
.

Let Mt+1 andLt be given. The aim of the proposed strategy is to move the lion to a positionL∗
t+1 such thatβt+1 is

minimized, i.e.,

L∗
t+1 = arg inf

‖Lt+1−Lt‖≤1
βt+1

= arg inf
‖Lt+1−Lt‖≤1

sup
P∈Rt+1

f(P ) . (7)



Moreover, let us define
β∗
t+1 = inf

‖Lt+1−Lt‖≤1
βt+1 = inf

‖Lt+1−Lt‖≤1
sup

P∈Rt+1

f(P ) (8)

and
P ∗
t+1 = arg sup

P∈Rt+1

f(P ) = Fβ∗

t+1
∩Rt+1 . (9)

The rational behind this strategy is to push the currentβ-level curve as close as possible to the origin, in order to minimize
the contaminated region. In fact, if the man crossesFβ∗ , he also crosses the line of controlR and therefore the lion will
catch him in the next move.

For a given C-functionf , the computation ofL∗
t+1 in (7) is not straightforward, in general. In the next section, some

properties of the CFLS are reported in order to fully characterize the optimal lion move. Fig. 1 shows an example of an
optimal lion move, along with the involved level curves.
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Fig. 1. Example of an optimal lion move.

IV. PROPERTIES OF THECFLS

At a given timet, let Mt+1 andLt be given. We want to compute the optimal lion moveL∗
t+1 satisfying (7). Hereafter,

we assume‖Mt+1 − Lt‖ > 1, otherwise the lion catches the man in one step.
Let us define

C̃t =
Mt+1 + Lt

2
(10)

and, for a givenLt+1,

Ct+1 =
Mt+1 + Lt+1

2
(11)

as the midpoints betweenMt+1 andLt, andMt+1 andLt+1, respectively. Notice that, by (3) one hasCt+1 ∈ Rt+1 and
Rt+1⊥(Ct+1 −Mt+1). By (11), one gets

Lt+1 = 2Ct+1 −Mt+1. (12)

Notice that for anyLt+1 ∈ C(Lt, 1) there exists a uniqueCt+1 ∈ C(C̃t, 1/2) and viceversa, see Fig. 2. Therefore, solving
problem (7) is equivalent to solving the following problem

C∗
t+1 = arg inf

Ct+1∈C(C̃t, 1/2)
βt+1

= arg inf
Ct+1∈C(C̃t, 1/2)

sup
P∈Rt+1

f(P ) (13)
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Fig. 2. Definition ofC̃t.

and then according to (12), setL∗
t+1 = 2C∗

t+1 −Mt+1.
The next lemma provides some useful properties ofC∗

t+1.
Lemma 1:Let Mt+1 andLt be such that‖Mt+1 − Lt‖ > 1, andP ∗

t+1 andC∗
t+1 be given by (9) and (13). LetZ =

Mt+1+P∗

t+1

2 andr =
∥∥∥Mt+1−P∗

t+1

2

∥∥∥. Then, the following conditions hold:

i) ‖Z −Mt+1‖ = ‖Z − P ∗
t+1‖ = ‖Z − C∗

t+1‖ = r (14)

ii) C(Z, r) ∩ C(C̃t, 1/2) = C∗
t+1 . (15)

Proof: BeingP ∗
t+1, C

∗
t+1 ∈ Rt+1, (Mt+1−C∗

t+1) must be orthogonal to(P ∗
t+1−C∗

t+1). Hence, condition i) is a direct
consequence of Thales’ Theorem (see Fig. 3).
Let us now prove condition ii). First, let us prove thatC(Z, r) andC(C̃t, 1/2) do not coincide, i.e.,C(Z, r) 6= C(C̃t, 1/2).
By (10) one has thatZ = C̃t impliesP ∗

t+1 = Lt andr = 1/2 implies ‖Mt+1 − Lt‖ = 1, which contradicts the hypothesis
‖Mt+1 − Lt‖ > 1. SinceC∗

t+1 must belong both toC(Z, r) and toC(C̃t, 1/2), one hasC(Z, r) ∩ C(C̃t, 1/2) 6= ∅. So,
C(Z, r) andC(C̃t, 1/2) intersect in one or two points. By contradiction, let us assumeC(Z, r) andC(C̃t, 1/2) intersect in
two points. Letβ∗

t+1 = f(P ∗
t+1) andFβ∗

t+1
be the corresponding C-function level curve. By (9),P ∗

t+1 = Rt+1 ∩Fβ∗

t+1
. For

each candidateCt+1 ∈ C(C̃t, 1/2), let Rt+1 be the line of control passing throughCt+1, i.e., the line of control associated
to Mt+1 andLt+1 = 2Ct+1−Mt+1, according to (12). By simple geometric arguments, it can beobserved that it is always
possible to find aCt+1 ∈ C(C̃t, 1/2) such that‖Z−Ct+1‖ < r and the corresponding line of controlRt+1 does not intersect
Rt+1 in the first quadrant (an example is shown in Fig. 4). Therefore, due the strict convexity of the C-functions,Rt+1

does not intersect also the level curveFβ∗

t+1
. From the definition of C-function, this means thatsupP∈Rt+1

f(P ) < β∗
t+1,

which contradicts the definition ofC∗
t+1 in (13).

Notice that condition i) in Lemma 1 states thatMt+1, P ∗
t+1 andC∗

t+1 belong to the circleC(Z, r), while condition ii)
imposes that the circlesC(Z, r) andC(C̃t, 1/2) are tangent inC∗

t+1, see Fig. 3.
Theorem 1:Let Mt+1, Lt andP ∗

t+1 be given. Then, the optimal lion move at timet+ 1 is given by

L∗
t+1 = Lt + Vt (16)

where

Vt =
P ∗
t+1 − Lt

‖P ∗
t+1 − Lt‖

.

Proof: Let

Z =
Mt+1 + P ∗

t+1

2

and

Vt =
Z − C̃t

‖Z − C̃t‖
=

P ∗
t+1 − Lt

‖P ∗
t+1 − Lt‖

.

By item ii) in Lemma 1, one has

C∗
t+1 = C̃t +

Vt

2
.

By (12) and (10), one has
L∗
t+1 = 2C∗

t+1 −Mt+1 = 2 C̃t + Vt −Mt+1 = Lt + Vt.



Z

Mt+1

˜

Ct

P
∗
t+1

C
∗
t+1

r

r

r

1
2

1

Lt
L
∗
t+1

Rt+1

Fig. 3. Proof of Lemma 1: definition ofC∗

t+1.

From Theorem 1, it is apparent that the optimal lion moveL∗
t+1 relies on the computation ofP ∗

t+1 in (9). Hereafter, a
useful characterization of such a point is provided.

Lemma 2:Let Mt+1, Lt andP ∗
t+1 be given. Then,

‖P ∗
t+1 − Lt‖ − ‖P ∗

t+1 −Mt+1‖ = 1 . (17)
Proof: Let Z and r be defined as in Lemma 1. By item ii) of Lemma 1,C(Z, r) andC(C̃t, 1/2) are tangent. So,

‖Z − C̃t‖ = r + 1/2 and by item i) of Lemma 1 one has

‖Z − C̃t‖ = ‖Z −Mt+1‖+ 1/2 .

By substitutingZ and C̃t with their corresponding expressions, (17) holds.
Definition 3: Let Mt+1 andLt be given. Let us define

It+1 = {P ∈ R
2
+ : ‖P − Lt‖ − ‖P −Mt+1‖ = 1}

which, according to (17), contains the locus of pointsP ∗
t+1 for all possible choices of the C-functionf .

Notice thatIt+1 is the branch of the hyperbola (restricted to the first quadrant) closer toMt+1 with focal pointsMt+1

andLt and major axis equal to 1. Such a curve does not depend onf , but only onMt+1 andLt. The next result gives the
key property ofP ∗

t+1 which will be exploited for its computation.
Theorem 2:Let Mt+1 andLt be given. Letβ∗

t+1 andP ∗
t+1 be defined by (8) and (9), respectively. Then

P ∗
t+1 = It+1 ∩Rt+1 = It+1 ∩ Fβ∗

t+1
. (18)

Proof: Recall thatRt+1 is the line passing throughP ∗
t+1 andC∗

t+1. By (9) and by Lemma 2 one hasP ∗
t+1 ∈ Rt+1

andP ∗
t+1 ∈ It+1, respectively. By (16),P ∗

t+1, L∗
t+1 andLt lie on the same line, see Fig. 3. We want to prove thatP ∗

t+1

is the unique point inIt+1 ∩ Rt+1. Let P ∈ Rt+1, P 6= P ∗
t+1. SinceP , L∗

t+1 andLt are not aligned, by the triangle
inequality one has‖P − Lt‖ < ‖P − L∗

t+1‖ + 1. Moreover, by Definition 2, one has‖P − Mt+1‖ = ‖P − L∗
t+1‖ and

then‖P − Lt‖ − ‖P −Mt+1‖ < 1. Since (17) is not satisfied,P /∈ It+1. Therefore,P ∗
t+1 = It+1 ∩ Rt+1 holds. Hence,

Rt+1 is tangent toIt+1 in P ∗
t+1 and it is also tangent toFβ∗

t+1
in the same point, due to (9). SinceIt+1 is the branch

of hyperbola closer toMt+1, it is clear thatIt+1 andFβ∗

t+1
lie on opposite sides w.r.t.Rt+1 and therefore we have also

P ∗
t+1 = It+1 ∩ Fβ∗

t+1
.

The following result provides a sufficient condition for thetermination of the pursuit-evasion game.
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Fig. 4. Proof of Lemma 1. The line of controlRt+1 does not intersectFβ∗
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in the first quadrant, leading to a contradiction.

Proposition 1: GivenLt andMt, let Rx = [xR, 0]
′ andRy = [0, yR]

′ denote the intersections ofRt with the coordinate
axes. Ifl = max{xR, yR} ≤ 1√

2
, then the game ends in one move.

Proof: Let Rl be the segment with endpointsQx = [l, 0]′ andQy = [0, l]′. Let T be the triangle with verticesQx,
Qy and the origin, andS be the square with diagonalRl, see Fig. 5. If the man moves to a pointMt+1 aboveRt, the
lion catches him in one move. IfMt+1 lies belowRt, surelyMt+1 ∈ T . SinceMt is belowRt, by the definition of line
of control in (3), it follows thatLt ∈ S. Sincel ≤ 1√

2
, the length ofRl is ≤ 1 and for anyC ∈ S one hasC(C, 1) ⊇ T .

Therefore, the lion is able to catch the man in one move for anyMt+1 ∈ T .

V. COMPUTATION OF THE OPTIMAL LION MOVE

In this section, the properties of the CFLS presented in the previous section are exploited to devise an algorithm for
computing the lion move.

At a given timet, let Lt = [xl, yl]
′ andMt+1 = [xm, ym]′ be given. Theorem 1 states that the knowledge ofP ∗

t+1 is
sufficient to compute the optimal lion moveL∗

t+1. SinceIt+1 can be easily computed, the idea is to exploit the relation
P ∗
t+1 = It+1 ∩ Fβ∗

t+1
in (18) in order to computeP ∗

t+1.
Let cIt+1(P ) denote the angular coefficient of the line tangent toIt+1 in P ∈ It+1. Moreover, recall thatcf (P ) is the

angular coefficient of the tangent to the level curveFβ at P (remind that givenP , suchFβ is unique). Hence,P ∗
t+1 is the
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Fig. 5. Sketch of the proof of Proposition 1.

unique point such thatcIt+1(P ∗
t+1) = cf (P ∗

t+1). From the strict convexity of the C-function and the definition of It+1, it
can be shown thatcIt+1(P )− cf (P ) is a strictly decreasing function ofP andP ∗

t+1 is its unique zero. Hence,P ∗
t+1 can be

computed via a simple bisection search.
Let us describe the branch of hyperbolaIt+1 by the equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

with

A = 4− 4(xl − xm)2

B = −8(xl − xm)(yl − ym)

C = 4− 4(yl − ym)2

D = 4(xl − xm)(x2
l − x2

m + y2l − y2m)− 4(xl + xm)

E = 4(yl − ym)(x2
l − x2

m + y2l − y2m)− 4(yl + ym)

F = 4(x2
l + y2l )(x

2
m + y2m)− (x2

l + x2
m + y2l + y2m − 1)2 .

Let us define
c
It+1

min = inf
P∈It+1

cIt+1(P ) , cIt+1

max = sup
P∈It+1

cIt+1(P )

and let their negative components be defined as

cIt+1 =

{
c
It+1

min , if c
It+1

min ≤ 0

0 , if c
It+1

min > 0

cIt+1 =

{
c
It+1

max , if c
It+1

max ≤ 0

0 , if c
It+1

max > 0
.

(19)

Let Pi = [xPi
, yPi

]′, i = 1, 2 denote the intersection ofIt+1 with the coordinate axes. Notice thatP1 andP2 may lie on
the same axis. Now,cIt+1 andcIt+1 can be easily derived from the derivatives ofIt+1 in P1 andP2.



The pseudocode to computeL∗
t+1 given Lt and Mt+1 is reported in Algorithm 1. To avoid a bisection search in the

semi-infinite intervalc ∈ (−∞, 0], we exploit the increasing mappingw = h(c) = c
1−c , which leads to a bisection search

in w ∈ (−1, 0].

Data: Lt, Mt+1

Result: L∗
t+1

ComputecIt+1 , cIt+1 ;
w = h(cIt+1); w = h(cIt+1);
while (w − w) > tolerance do

ŵ = (w + w)/2;
ĉ = h−1(ŵ);
P = compute tangent point(Lt,Mt+1, ĉ);
cf = angular coefficient(P );
if cf < ĉ then

w = ŵ;
else

w = ŵ;
end

end
V = P−Lt

‖P−Lt‖ ;
L∗
t+1 = Lt + V ;

Algorithm 1: Algorithm for the computation of the optimal lion move.

Initially, cIt+1 andcIt+1 are computed according to (19). At each iteration, the candidate angular coefficient̂c is selected.
The functioncompute tangent point computesIt+1 for givenLt andMt+1, and then returns the pointP ∈ It+1 such
that cIt+1(P ) = ĉ. For the chosen C-functionf , the functionangular coefficient returnscf (P ). Then, a bisection
step is performed by comparingcf and ĉ. Once a predefined precision is reached,L∗

t+1 is computed by using (16).

VI. COMPARISON WITH OTHER STRATEGIES

In this section, the proposed lion strategy is compared withother strategies available in the literature. In particular, we
consider the lion strategy proposed in [8], hereafter referred to asLion Strategy 1 (LS1), and a variation of it denoted as
Lion Strategy 2 (LS2), presented in [9]. Concerning the CFLS, the chosen C-function is the quarter of circumference given
in (2).

For computational purposes, we assume that the lion wins thegame if, at a given timet, the distance between the two
players becomes less than a given capture radiusδ, i.e., ‖Lt − Mt‖ < δ. Notice that when dealing with pursuit-evasion
problems in real world applications, it is customary to set afinite capture radiusδ > 0.

In order to simulate the considered pursuit strategies, onehas to define also the evasion strategy adopted by the man. It
is worth remarking that the “best” man strategy (i.e., the worst-case man behaviour for the lion) has not been devised yet
for any of the considered approaches. Therefore, two alternative man strategies are used in the simulations, denoted byMS1
and MS2. At any time t, such strategies set the man positionMt+1 : ‖Mt+1 −Mt‖ = 1 for knownMt andLt. They are
derived as follows.

MS1: Mt+1 is set such that(Mt+1 − Mt) ⊥ (Lt − Mt). Between the two candidate points, the one with the greatest
product of the two coordinates is chosen. If the previous points are unfeasible, i.e., their distance fromLt is less than1+ δ,
then the man moves to a pointMt+1 such that‖Mt+1 − Lt‖ = 1 + δ + ε, whereε is a given tolerance. Loosely speaking,
the man aims at moving in a direction which is “as orthogonal as possible” to the line connecting the man and the lion at
time t. The choice of the orthogonal direction is motivated by a sort of trade-off between going towards the lion (which is
not a good choice!) and moving in the opposite direction, which results in approaching the region close to the origin, where
capture occurs (see Proposition 1).

MS2: This strategy has been explicitly designed to play against the CFLS. At any timet, the man moves to a point aimed
at maximizing the costβ. Firstly, the man moves towardsPt as long as‖Mt+1 − Lt‖ > 1 + δ; during these moves the
functional cost cannot decrease w.r.t. the initial valueβ0. When such moves are not feasible anymore, the man moves to a
“safe” point satisfying

Mt+1 = arg sup
‖Mt+1 −Mt‖ = 1

‖Mt+1 − Lt‖ ≥ 1 + δ + ε

f(Mt+1)

where the toleranceε is set as in MS1.



TABLE I

AVERAGE GAME LENGTH FOR DIFFERENT STRATEGIES

LS1 LS2 CFLS

MS1 151.2 98.8 51.3

MS2 24.9 24.1 30.6

TABLE II

AVERAGE GAME LENGTH IN WORST-CASE SENSE AND NORMALIZED RELATIVE REDUCTION

LS1 LS2 CFLS

Nwc 151.2 98.8 52.3

rwc 1 0.680 0.448

A simulation campaign consisting of 10000 games has been performed with the following data. LetM0 = [xm, ym]′ and
L0 = [xl, yl]

′ denote the man and lion initial positions, respectively. Such positions have been randomly generated with
uniform distribution such thatL0 ≻ M0; in particular, the initial positions have been generated to obtainxm, ym ∈ (0, 10)
and (xl − xm), (yl − ym) ∈ (0, 10). The capture radius is set toδ = 10−5, and the toleranceε = 10−6.

For a fixed lion strategy and for a given gamek, let us denote byNMS1(k) andNMS2(k) the number of moves needed
by the lion to catch the man for the two man strategies. LetNMS1 andNMS2 be the average values ofNMS1 andNMS2

over all the simulated games.
These figures are reported in Table I for the considered lion strategies. It is evident that the CFLS outperforms the other

two strategies when the man plays MS1. On the contrary, the CFLS exhibits a slightly worse performance when playing
against MS2. This fact is not surprising since MS2 was explicitly designed to compete against the CFLS. However,NMS1

is much greater thanNMS2 for all the lion strategies, showing that MS2 is in general a worse man strategy than MS1.
To provide a fair comparison, for a given lion strategy the worst-case game length is computed as

Nwc(k) = max{NMS2(k), NMS1(k)}, ∀k .

The relative reduction in terms of moves w.r.t. the strategyLS1 is defined as follows

rwc(k) =
Nwc(k)

NLS1
wc (k)

.

Let Nwc and rwc denote the average values ofNwc and rwc, respectively. BothNwc and rwc are shown in Table II for
the considered lion strategies. It can be observed that, on average, playing the CFLS allows the lion to catch the man in a
number of moves which is about45% of those needed by the LS1.

VII. C ONCLUSIONS

A new class of pursuit strategies has been introduced for theclassic lion and man problem. The approach is based on
the optimization of a suitable functional, which can be performed efficiently, irrespectively of the specific choice of the
functional itself. A formal proof that capture occurs in finite time for any choice of the clearing function will be presented
in a forthcoming work.

A main feature of the proposed approach is its flexibility: the choice of the C-function is a degree of freedom that can
be exploited within different pursuit-evasion settings, according to the specific problem objective. For example, onecan
imagine to adapt the function to the local shape of the environment portion to be cleared, or to the location of different
evaders in multi-agent games. The application of the proposed pursuit scheme to the above scenarios will be the subject of
future investigations.
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