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Università di Siena

Via Roma 56, 53100 Siena, Italy

Abstract

This paper addresses a discrete-time pursuit-evasion game, known as the lion and man problem. The pursuer is chasing the
evader within the positive quadrant of a two-dimensional environment and wins the game when it reaches the evader position.
A new family of pursuer strategies is proposed, which relies on the minimization of a user-defined function of the environment
coordinates. The approach guarantees capture in finite time, no matter which is the strategy adopted by the evader. The
degree of freedom associated to the choice of the function to be minimized enhances the flexibility of the pursuer strategy.
Moreover, numerical simulations show the superiority of the proposed solution with respect to the most common pursuit
strategies available in the literature.
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1 Introduction

Pursuit-evasion problems are extremely popular be-
cause they play a central role in a number of appli-
cations in several fields, including mobile robotics,
search-and-rescue, surveillance, tracking, harvesting
and many others. Although the topic has a rich his-
tory (see [18] for a beautiful overview), recent years
have witnessed a steadily growing interest, motivated
by the development of new technologies and the possi-
bility of applying pursuit-evasion paradigms to many
different contexts. The wide literature on the subject
can be classified according to the assumptions made
on the agents model, on the environment they move in
and on the information patterns available to them. The
interested reader is referred to the surveys [9,19] for
a taxonomy of the existing approaches, and to papers
[25,22,11,5,13,4,1,8,26,21,10] and references therein for
a more extensive review of recent contributions.
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Afirstmajor classification concernswhether to approach
the problem in continuous or discrete time. In the former
case, it is well known that an evader can indefinitely es-
cape a single pursuer, even within very simple bounded
environments like a circular arena [17]. A discrete-time
formulation is the one in which the agents move one at a
time, with a fixed bound on the distance they can travel
at each move. One of the most popular versions of this
game is the so called lion and man problem, originally
proposed by David Gale [12]: a pursuer (the lion) and an
evader (the man) are moving in the positive quadrant of
a two-dimensional environment. The lion wins the game
if it is able to reach the man in finite time. This basic
pursuit-evasion setting is important for several reasons.
First, it is known that there exist winning strategies for
the lion, provided that it starts on the upper right side
with respect to the man. This opens up the question
about which is the most efficient pursuit strategy. Even
more importantly, these lion’s moves are employed as
low-level procedures for addressing pursuit problems in
more complex settings, like polygonal bounded environ-
ments [14,2], topological spaces [3], or searches with vis-
ibility limitations [20].

A celebrated solution of the lion and man problem has
been proposed by Sgall [23]: the lion always keeps itself
on the segment connecting a fixed point (called center)
and the man’s position. In fact, this is the lion’s move
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commonly adopted in the above mentioned works. A
similar approach has been adopted in [16], for the case
of multiple pursuers in an n-dimensional environment.
In [6], it has been shown that the time required for cap-
ture can be significantly reduced by suitably moving the
center during the game. In all these approaches, capture
is guaranteed by the fact that each lion’s move increases
by a finite quantity the so-called cleared area, i.e., the
portion of the environment in which the man cannot en-
ter, otherwise he will be caught in the next move.

In this paper, a new family of lion strategies is intro-
duced. Themain idea is to exploit a user-defined function
of the environment coordinates, named clearing func-
tion, whose level curves are strictly decreasing towards
the origin of the plane, where capture is expected to oc-
cur. The lion’s move aims at minimizing the value of the
clearing function, which corresponds to maximizing the
cleared area. The shape of the level curves implicitly de-
fines that of the cleared area, thus providing a remark-
able degree of freedom in the pursuer strategy, which
can be exploited in more complex or time-varying sce-
narios. The main contribution of the paper is to show
that capture is guaranteed in finite time, irrespectively
of the choice of the clearing function to be minimized.
Moreover, the results of a campaign of numerical simu-
lations demonstrate that the proposed approach outper-
forms the lion strategies proposed in previous works, in
terms of time required by the lion to win the game.

The main advantage of the pursuer strategy based on
the clearing function, with respect to the approaches
adopted in [23,16,6], is that the lion’s move is not
dictated only by the local configuration of the game
(namely, the relative position between the lion and the
man). It is rather driven by a global view of the game,
which is expressed by the values taken by the clearing
function in each point of the environment. This not only
allows one to remarkably reduce the capture time, but
it also opens up the possibility to “pave” the environ-
ment with a clearing function whose level curves reflect
the relative importance of different areas.

The paper is organized as follows. The lion and man
problem is formulated in Section 2, while the new fam-
ily of lion strategies is presented in Section 3. Section 4
reports some general properties of the lion’s move which
are exploited to devise an efficient algorithm for its com-
putation. The main technical result is given in Section 5,
where it is shown that, by playing the proposed strate-
gies, the lion always wins the game, no matter which
strategy is chosen by the man. Numerical analysis and
comparisons with other lion strategies are reported in
Section 6. Finally, Section 7 contains concluding remarks
and mentions several future developments. A prelimi-
nary version of the approach proposed in the paper has
been presented in [7].

2 Problem formulation

The notation adopted in the paper is standard. Let
R

n
+ denote the n-dimensional Euclidean space of non-

negative numbers. A row vector with elements v1, . . . , vn
is denoted by V = [v1, . . . , vn], while V ′ is the trans-
pose of V . The phase of a vector V is denoted by ∠V .
Given two vectors V and W , notation V � W (V ≻ W )
denotes the componentwise (strict) inequality. Denote
by C(C, r) the circle (including its interior) of center
C and radius r, and by δC(C, r) the corresponding
circumference.

In this paper, we consider the version of the lion and
man problem formulated by David Gale [12]. Two play-
ers move in the non-negative quadrant of the Cartesian
plane. Time is assumed discrete, while space is continu-
ous. At each round (hereafter called time) both players
are allowed to travel a distance less or equal to a given
radius r from their current position (w.l.o.g., r = 1 is
assumed). Let us denote by Mt ∈ R

2
+ and Lt ∈ R

2
+

the man and lion position at time t, respectively. Hence,
‖Mt+1−Mt‖ ≤ 1, ‖Lt+1−Lt‖ ≤ 1. At the generic time
t, the man moves first from Mt to Mt+1. Then, the lion
observes the new position of the man and computes his
new position Lt+1 as a function of Lt and Mt+1. In this
respect, the information pattern is that of a Stackelberg
game, in which the man is the leader and the lion is the
follower [24,15].

The game ends (lion wins) if the lion moves exactly to
the man position. The man wins if he is able to escape
indefinitely from the lion. It is assumed that the ini-
tial man coordinates are strictly smaller than the corre-
sponding lion coordinates, i.e. L0 ≻ M0, otherwise it is
straightforward to observe that the man wins the game
by moving straight upwards or to the right.

The proposed lion strategy aims at minimizing a cost
function defined as follows.

Definition 1 A function f : R2
+ → R+ is called a clear-

ing function (C-function) if it satisfies the following prop-
erties:

i) f(0) = 0 and f(P ) < ∞, ∀P ∈ R
2
+;

ii) ∀P2 � P1, P2 6= P1, one has f(P2) > f(P1);
iii) let Fβ = {P ∈ R

2
+ : f(P ) = β} be the β-level curve

of f ; for any fixed β > 0, there exists a strictly convex
function gβ such that for any P = [x, y]′ ∈ Fβ , y =
gβ(x) and g′β(x) ≤ 0, g′′β(x) > 0, ∀x ≥ 0.

As it will become clear in the next section, the level
curvesFβ separate the portion of the non-negative quad-
rant in which the man can move (contaminated region)
from the cleared region [19], which is the zone where the
man cannot enter, otherwise he is captured in the next
move. Notice that Fβ collapses to the origin for β = 0.

2



Due to the symmetry of the game w.r.t. the coordi-
nate axis, a natural choice is to deal with clearing func-
tions which are symmetric w.r.t. the bisector of the non-
negative quadrant. In the following, two examples of
such functions are reported.

Quarter of circumference

Let us consider

f([x, y]′) = x+ y +
√
2xy . (1)

For a given β, Fβ is the lower left quarter of the cir-
cumference C([β, β]′, β). In fact, from (x − β)2 + (y −
β)2 = β2, solving for β one has β = x + y ± √

2xy.
From (1), we are interested in the level curve solution
β = x+ y+

√
2xy. The same level curve can be written

as y = gβ(x) = β−
√
2xβ − x2, with x ∈ [0, β], and it is

easy to check that gβ(x) is strictly convex for x ∈ [0, β].

Branch of hyperbola

Let

f([x, y]′) =
x+ y +

√
(x+ y)2 + 4mxy

2
(2)

with m > 0. It can be shown that, for fixed β, the
level curve Fβ is a branch of equilateral hyperbola cen-

tered in
[
− β

m , − β
m

]′
. In fact, the equation defining Fβ =

{[x, y]′ : f([x, y]′) = β} is

x+ y +
m

β
xy − β = 0 (3)

which can be rewritten as

(
x+

β

m

)(
y +

β

m

)
− β2

m

(
1 +

1

m

)
= 0 .

Moreover, the same level curve can be written as y =
gβ(x) =

β−x
1+m

β x , with x ∈ [0, β], which is strictly convex.

In Fig. 1, the level curves Fβ for different values of β
related to the two C-functions introduced above are re-
ported. For the branch of hyperbola C-function, the pa-
rameter m is equal to 2.

3 C-Function Lion Strategy

In this section, the proposed lion strategy, hereafter re-
ferred to as Clearing Function Lion Strategy (C-FLS), is
described. Such a strategy is based on the minimization
of the C-function β level until capture occurs.
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Fig. 1. Level curves Fβ for different C-functions and values
of β from 10 to 100 (with step 10).

Definition 2 At any time t, let Rt denote the locus of
points in the non-negative quadrant that are equidistant
to Mt and Lt, i.e.,

Rt = {P ∈ R
2
+ : ‖P −Mt‖ = ‖P − Lt‖} . (4)

The equality in (4) defines a portion of a line, known as
line of control, which provides the Voronoi partition of
the environment associated to Mt and Lt [13,26]. Let us
write Rt as

Rt = {[x, y]′ ∈ R
2
+ : y = atx+ bt} . (5)

Clearly, if Lt ≻ Mt, one has at < 0 and bt > 0. As a
consequence, since the environment is restricted to the
non-negative quadrant, the line of control is indeed a
closed segment and the Voronoi cell associated to the
man is a triangle. It is worth remarking that if the man
crosses the line of control and exits its Voronoi cell, the
lion will catch him in the next move.

Let f denote the C-function chosen once and for all at
the beginning of the game. At a given time t, let

βt = max
P∈Rt

f(P ) (6)

and
Pt = arg max

P∈Rt

f(P ) = Fβt ∩Rt . (7)

The uniqueness of Pt in (7) is guaranteed by the strict
convexity of gβt .

At a time t, let Lt+1 denote the set of feasible lion’s
moves, i.e.,

Lt+1 = {L : L ≻ Mt+1 and ‖L− Lt‖ ≤ 1} . (8)

Definition 3 (C-FLS) Let Mt+1 and Lt be given. The
Clearing Function Lion Strategy (C-FLS) selects the po-
sition of the lion Lt+1 ∈ Lt+1 in order to minimize βt+1,
i.e.,

Lt+1 = arg min
L∈Lt+1

max
P∈Rt+1

f(P ) . (9)
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Once Lt+1 has been chosen, Rt+1 is set according to (4)
and hence by (6) and (7) one has

βt+1 = min
L∈Lt+1

max
P∈Rt+1

f(P ) (10)

Pt+1 = arg max
P∈Rt+1

f(P ) = Fβt+1
∩Rt+1 . (11)

The rationale behind the C-FLS is to push the current
β-level curve as close as possible to the origin, in order
to minimize the contaminated region. In fact, if at a
given time t the man crosses Fβt , he also crosses the
line of control Rt and therefore the lion will catch him.
Therefore, the minimization of β at every time t aims at
maximizing the cleared region defined by the chosen C-
function. Hereafter, we refer to Lt+1 in (9) as the optimal
lion’s move at time t+1. Fig. 2 shows an example of an
optimal lion’s move, along with the involved level curves.

Remark 1 It is worth highlighting the difference be-
tween the approach proposed in this paper and that usu-
ally adopted in previous works like [23,16,6]. In those
papers, the proof of capture is based on invariants related
to the center of the game, guaranteeing that the cleared
region steadily increases by a finite quantity. In particu-
lar, in [23,16] the pursuer keeps increasing its distance
from the center (which is set at the beginning of the game
and remains fixed), while in [6] the center is steadily
pushed towards the origin in order to further reduce the
contaminated region. In this work, the considered invari-
ant is related to the maximum value of the C-function
along the line of control resulting from the lion’s move.
In fact, in Section 5 it will be shown that by minimizing
such a value, the lion will be able to force βt below a cer-
tain threshold, depending only on the chosen C-function,
under which capture occurs in the next move.

From here on, if not otherwise specified, we assume that
the lion plays the C-FLS. For a generic C-function f ,
the computation of Lt+1 in (9) is not straightforward.
In the next section, some properties of the C-FLS are
derived in order to fully characterize the optimal lion’s
move and an algorithm for its computation is provided.

4 Computation of the optimal lion’s move

4.1 Properties of the C-FLS

At a generic time t, let Mt+1 and Lt be given. The aim
is to compute the optimal lion’s move Lt+1 according
to Definition 3. Hereafter, we assume ‖Mt+1 − Lt‖ > 1,
otherwise the lion catches the man at time t+ 1.

Let A be the arc of circumference δC(Lt, 1) visible from
Mt+1, i.e.,

A = {P ∈ δC(Lt, 1): (Mt+1 − P )′(Lt − P ) ≤ 0} (12)

O

Lt

Mt

Lt+1

Mt+1

Fβt

Fβt+1

Rt
Rt+1

Pt

Pt+1

Fig. 2. Example of an optimal lion’s move. The grey region
denotes the cleared area at time t.

and let Q = {Q ∈ R
2
+ : Q � Mt+1} be the positive cone

with vertex at Mt+1. Define A+ = A ∩ Q and set the
interval Θ = [θ, θ] so that

A+ = {L ∈ Q : L = Lt + [cos θ, sin θ]′, θ ∈ Θ} . (13)

In other words Θ denotes the angular interval spanning
the arcA+ (Fig. 3 shows an example in which A+ = A).

The following lemma defines a necessary condition for
the lion’s move to be optimal.

Lemma 1 Let Lt and Mt+1 be given. The optimal lion’s
move at time t+ 1 is such that Lt+1 ∈ A+.

Proof: Firstly, notice that Lt+1 must belong to Q, oth-
erwise condition Lt+1 ∈ Lt+1 required by Definition 3
does not hold. We want to prove Lt+1 ∈ A. By con-

tradiction, let us consider L̂ : ‖L̂ − Lt‖ ≤ 1 such that

L̂ /∈ A. Choose L̃ ∈ A such that L̃ belongs to the seg-

ment with extremal pointsMt+1 and L̂. Notice that such
a point always exists by definition of A, see, e.g., Fig. 3.

Let R̂ and R̃ be the lines of control corresponding to L̂

and L̃, respectively. Since Mt+1, L̃ and L̂ are collinear,

then R̂ and R̃ are parallel. Because ‖Mt+1 − L̃‖ <

‖Mt+1 − L̂‖, then R̃ is closer to Mt+1 than R̂. Hence,

if P̃ = argmax
P∈R̃ f(P ), there exists P̂ ∈ R̂ such that

P̂ ≻ P̃ . Therefore, by exploiting (6) and item ii) of Def-
inition 1, one has

βt+1 = max
P∈R̂

f(P ) ≥ f(P̂ ) > f(P̃ ) = max
P∈R̃

f(P ) .

Thus, by (9) it follows that L̂ cannot be the optimal
lion’s move. ✷
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Lt

Mt+1

˜
L

̂
L

A

˜R

̂R

θ

θ

1

Fig. 3. Proof of Lemma 1. Being Mt+1, L̃ and L̂ collinear, L̂
cannot be optimal.

The following theorem will be used to devise a bisection
procedure for computing the optimal lion’s move.

Theorem 1 Let Lt, Mt+1 be given. Denote by Lt+1

the optimal lion’s move according to (9) and let θ∗ =

∠(Lt+1 − Lt). Let L̃ ∈ A+ and R̃ be the correspond-

ing line of control. Denote by θ̃ = ∠(L̃ − Lt), P̃ =

argmax
P∈R̃ f(P ) and ϕ̃ = ∠(P̃ − Lt). Then,

if ϕ̃ < θ̃ then θ∗ < θ̃ , (14a)

if ϕ̃ = θ̃ then θ∗ = θ̃ , (14b)

if ϕ̃ > θ̃ then θ∗ > θ̃ . (14c)

Proof: Consider the case ϕ̃ < θ̃. Notice that this implies

θ̃ > θ (in fact, if θ̃ = θ, one necessarily has ϕ̃ > θ̃,

being L̃ − Lt parallel to R̃). For any L̆ ∈ A+, let θ̆ =

∠(L̆ − Lt), R̆ be the associated line of control, P̆ =

argmaxP∈R̆ f(P ) and ϕ̆ = ∠(P̆ − Lt). Being R̆ and P̆

continuous functions of L̆, it is always possible to choose

L̆ ∈ A+ sufficiently close to L̃, so that

ϕ̆ < θ̆ < θ̃ (15)

where the first inequality follows from ϕ̃ < θ̃ and the
continuity argument (an example is shown in Fig. 4).

To prove (14a), it is sufficient to show that any L̂ such

that θ̂ = ∠(L̂ − Lt) > θ̆ cannot be the optimal lion’s

move. Let R̂ be the line of control associated to L̂ and
define Q = [xQ, yQ]

′ = R̆ ∩ R̂. Since ‖Q − Mt+1‖ =

‖Q− L̆‖ = ‖Q− L̂‖, Q is the center of a circumference

passing through Mt+1, L̆ and L̂. As L̆ and L̂ lie also on
δC(Lt, 1), the vector Q−Lt bisects the angle formed by

vectors L̆−Lt and L̂−Lt, i.e., ∠(Q−Lt) must be equal

to θQ = (θ̂+ θ̆)/2. Since θ̂ > θ̆, one has θQ > θ̆ and then

it is straightforward to conclude that Q lies on R̆ below
P̆ , i.e., if P̆ = [xP , yP ]

′ one has yQ < yP .

Now, let ă and â be the angular coefficients of R̆ and

Mt+1

P̆

R̆

F
β̆

L̆

Lt

̂L

̂
R

̂P

θQ

φ̆̂φ

ϕ̆

̂θ

˜θ

˜L

θ̆

Q

1

Fig. 4. Proof of Theorem 1. There exists P̂ ∈ R̂ such that

f(P̂ ) > f(P̆ ) = maxP∈R̆
f(P ), so L̂ is not optimal.

R̂, respectively. We want to show that â < ă. Define the

vectors V̆ = L̆ − Mt+1 and V̂ = L̂ − Mt+1 and let φ̆

and φ̂ their corresponding phases. Since L̂ � Mt+1 and

θ̂ > θ̆, one has φ̆ > φ̂ ≥ 0. Being R̆ and R̂ orthogonal to

V̆ and V̂ , respectively, â < ă immediately follows.

Since yQ < yP and â < ă, there exists P̂ ∈ R̂ such that

P̂ ≻ P̆ . By (6) and by item ii) in Definition 1, one has

max
P∈R̂

f(P ) ≥ f(P̂ ) > f(P̆ ) = max
P∈R̆

f(P )

and so L̂ cannot be optimal and then θ∗ ≤ θ̆ < θ̃, ac-
cording to (15). To prove (14b) and (14c), a similar rea-
soning can be applied. A sketch of the three different
cases is reported in Fig. 5.

✷

The next corollary gives a characterization of the opti-
mal lion’s move in terms of Pt+1.

Corollary 1 Let Lt and Mt+1 be given. Then, the opti-
mal lion’s move at time t+ 1 is such that

Lt+1 = Lt +
Pt+1 − Lt

‖Pt+1 − Lt‖
(16)

where Pt+1 is given by (11). Moreover,

‖Pt+1 − Lt+1‖ = ‖Pt+1 − Lt‖ − 1 (17)

and
‖Pt+1 − Lt‖ − ‖Pt+1 −Mt+1‖ = 1 . (18)
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Mt+1

F ˜β

Lt

˜
R

˜P

ϕ̃

˜L

1

˜θ

Mt+1

F ˜β

Lt

˜
R

˜P

˜L
1

˜θ = ϕ̃

Mt+1

F ˜β

Lt

˜
R

˜P

ϕ̃
˜L

1

˜θ

Fig. 5. Sketch of the three cases of Theorem 1. Top: ϕ̃ < θ̃.

Middle: ϕ̃ = θ̃. Bottom: ϕ̃ > θ̃.

Proof: By adopting the same continuity argument as in
Theorem 1, one can conclude that there always exists

one θ̃ such that ϕ̃ = θ̃ (notice that (14a) or (14c) cannot

hold for all θ̃ ∈ Θ). Hence, one has

θ∗ = ∠(Lt+1 − Lt) = ϕ̃ = ∠(Pt+1 − Lt) ,

i.e., Lt, Lt+1 and Pt+1 are collinear. Then, (16) follows
directly. By (16), one easily gets (17). Moreover, since
Pt+1 ∈ Rt+1, one has ‖Pt+1 − Lt+1‖ = ‖Pt+1 −Mt+1‖
and then (18) holds. ✷

Notice that, by Corollary 1 and by the uniqueness of
Pt+1, the optimal lion’s move Lt+1 turns out to be
unique.

4.2 C-FLS algorithm

A procedure for the computation of the optimal C-FLS
lion’s move is reported in Algorithm 1. In the procedure,

ε denotes a given tolerance, P̃ is the current candidate

for the solution of (11), and ϕ̃ is the phase of P̃ −Lt. By
exploiting Theorem 1, a bisection on the interval Θ =
[θ, θ] is performed. The main task is the computation

of P̃ = argmax
P∈R̃ f(P ), which is carried out by the

function compute tangent point. In fact, once the line

of control R̃ = {[x, y]′ ∈ R
2
+ : y = ax + b} has been

obtained, the computation of P̃ boils down to finding the

level curve of f(·) tangent to R̃. Clearly, this depends on
the specific C-function selected. However, an analytical

solution for P̃ is often available. If the C-function is the
quarter of circumference defined in (1), the point P̃ is
given by

P̃ =

[
(1 + a)β̃ − ab

a2 + 1
, a

(1 + a)β̃ − ab

a2 + 1
+ b

]′

where β̃ = max
P∈R̃

f(P ) =
b(a− 1−

√
1 + a2)

2a
. Similarly,

for the branch of hyperbola in (2), one has

P̃ =

[
−bm+ (a+ 1)β̃

2am
,
bm− (a+ 1)β̃

2m

]′

where β̃ is the largest root of β̃2
[
(1 + a)2 + 4am

]
+

β̃ [2mb(1− a)] + b2m2 = 0.

It is worth stressing that, once the C-function has been
chosen, a single iteration of the main loop of Algorithm 1
requires only few computations which can be easily ex-
pressed in analytic form. Therefore, the computational
complexity of the algorithm depends only on the num-
ber of iterations required to achieve the desired toler-
ance. Since by (13) one has θ − θ < π, the number of
iterations needed by the algorithm is upper bounded by
⌈log2(π/ε)⌉.

5 Finite-time capture result

In this section, it will be shown that the C-FLS guar-
antees that the lion is able to capture the man in finite
time, for every choice of the C-function satisfying Defi-
nition 1.

At a given time t, let Mt and Lt be given. Let us define

Q(Pt) = {[x, y]′ ∈ R
2
+ : y ≤ atx+ bt} (19)
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Algorithm 1 Algorithm for the computation of the op-
timal lion’s move.
1: Data: Lt, Mt+1

2: Result: Lt+1

3: Set θ, θ according to (13)
4: while (θ − θ) > ε do

5: θ̃ = (θ + θ)/2

6: L̃ = Lt + [cos θ̃, sin θ̃]′

7: R̃ = line of control(L̃,Mt+1)

8: P̃ = compute tangent point(R̃, f(·))
9: ϕ̃ = ∠(P̃ − Lt)

10: if ϕ̃ < θ̃ then

11: θ = θ̃
12: else
13: θ = θ̃
14: end if
15: end while
16: Lt+1 = L̃

where at and bt are the coefficients ofRt as in (5). Hence,
Q(Pt) is the triangle bounded by the line of control Rt

and the coordinate axes.

Before the derivation of the main result, let us introduce
two sufficient conditions for the lion to capture the man
in one move.

Proposition 1 Given Lt and Mt, let Rx = [xR, 0]
′ and

Ry = [0, yR]
′ denote the intersections of Rt with the

coordinate axes. Let l = max{xR, yR}. If l ≤ 1√
2
, then

the game ends in one move.

Proof: By the definition of Q(Pt) in (19), if the man
moves to a point Mt+1 /∈ Q(Pt), i.e., he crosses the line
of control, the lion catches him in one move. Let S be
the minimum square in R

2
+ containing Q(Pt), see, e.g.,

Fig. 6. Clearly, the side of S is equal to l = max{xR, yR}.
Since Mt ∈ Q(Pt), by the definition of line of control in
(4), one has Lt ∈ S. Since l ≤ 1√

2
, for any Lt ∈ S one

has C(Lt, 1) ⊇ Q(Pt). Therefore, the lion is able to catch
the man in one move for any Mt+1 ∈ Q(Pt). ✷

Proposition 2 Let

βmin = min{f([1/
√
2, 0]′), f([0, 1/

√
2]′)} . (20)

If, at some step t, βt ≤ βmin, then the game ends in one
move.

Proof: The proof is a direct consequence of Proposition 1
and of the properties of the C-functions. ✷

Let us now introduce a function which will be instru-
mental to prove that capture occurs in finite time. At a
given time t, let

Jt = f(Pt) + α‖Pt − Lt‖ = f(Pt) + α‖Pt −Mt‖ (21)

yR = l

Rt

O

S

xR

Q(Pt)

l

Fig. 6. Sketch of the proof of Proposition 1. If Mt ∈ Q(Pt)

and l ≤ 1/
√
2, then the game ends in one move.

for a fixed α > 0. The aim is to prove that, for a suitable
α, Jt goes to zero in a finite number of game moves. In
fact, this implies that also f(Pt) must go to zero, thus
guaranteeing that the lion captures the man, according
to Proposition 2. By (18) one has

‖Pt+1 −Mt+1‖ = ‖Pt+1 − Lt‖ − 1

≤ ‖Pt+1 − Pt‖+ ‖Pt − Lt‖ − 1

and then

Jt+1 = f(Pt+1) + α‖Pt+1 −Mt+1‖
≤ f(Pt+1) + α(‖Pt+1 − Pt‖+ ‖Pt − Lt‖ − 1) .(22)

Let us define ∆Jt = Jt − Jt+1. Then, by (21), (22) and
the definition of Pt, one has

∆Jt ≥ f(Pt)− f(Pt+1) + α(1− ‖Pt+1 − Pt‖) . (23)

In order to prove that Jt goes to zero in finite time, some
lemmas are introduced. The first one states that the
unique point P ∈ Q(Pt) such that f(P ) = βt is P = Pt.

Lemma 2 At a given time t, let Pt be given. Then,
f(P ) < f(Pt), ∀P ∈ Q(Pt) \ {Pt}.
Proof: For all P ∈ Rt, P 6= Pt, by (7) one has f(P ) <
f(Pt). Moreover, ∀P ∈ Q(Pt) \ Rt, there exists P ∈ Rt

such that P ≺ P and hence, by item ii) in Definition 1,
f(P ) < f(P ). Since, by (7), one has f(P ) ≤ f(Pt), the
result follows. ✷

The next lemma shows that, if the lion plays the C-FLS,
βt is a non-increasing function of t.

Lemma 3 Let Mt and Pt be given. Then, for any man’s
moveMt+1, one has Pt+1 ∈ Q(Pt). Moreover, f(Pt+1) ≤
f(Pt).

7



Rt

O

H(Pt, d)

Pt

d

Fig. 7. The grey region denotes the set H(Pt, d).

Proof:By contradiction, assumePt+1 /∈ Q(Pt) and hence
‖Pt+1 −Mt‖ > ‖Pt+1 − Lt‖. One has

‖Pt+1 −Mt+1‖ ≥ ‖Pt+1 −Mt‖ − ‖Mt+1 −Mt‖
≥ ‖Pt+1 −Mt‖ − 1 > ‖Pt+1 − Lt‖ − 1

= ‖Pt+1 − Lt+1‖

where the last equality is due to (17). Hence, Pt+1 is
not equidistant from Mt+1 and Lt+1, i.e., Pt+1 /∈ Rt+1

which leads to a contradiction. Being Pt+1 ∈ Q(Pt), by
Lemma 2, f(Pt+1) ≤ f(Pt) follows directly. ✷

For a given d > 0, let us define the following quantities
which are instrumental in the derivation of the main
result:

H(Pt, d) = {P ∈ Q(Pt) : ‖P − Pt‖ ≥ d} (24)

∆(Pt, d) = min
Pt+1∈H(Pt,d)

f(Pt)− f(Pt+1) (25)

∆d = min
Pt:βmin≤f(Pt)≤β0

∆(Pt, d) (26)

where βmin is defined as in (20) and β0 depends on the
game initial conditions, according to (6).

The setH(Pt, d) denotes the set of points inQ(Pt) whose
distance from Pt is greater or equal to d. An example
of H(Pt, d) is shown in Fig. 7. The value ∆(Pt, d) rep-
resents the minimum “gap” between βt = f(Pt) and
βt+1 = f(Pt+1) for Pt+1 ∈ H(Pt, d), i.e., when the dis-
tance between Pt+1 and Pt is at least d. Finally, ∆d is the
minimum value of ∆(Pt, d) for all the possible choices of
Pt such that βmin ≤ f(Pt) ≤ β0 (notice that, according
to Lemma 3 and Proposition 2, the interval [βmin, β0]
contains all the feasible values of βt from the beginning
of the game to its end).

Lemma 4 Let Pt and d > 0 be given such that
H(Pt, d) 6= ∅. Then,

i) ∆(Pt, d) > 0 and ∆d > 0;

ii) ∆(Pt, d̂) ≤ ∆(Pt, d) and ∆
d̂
≤ ∆d, ∀d̂ ∈ (0, d).

Proof: i) Let d > 0 be fixed. It follows that H(Pt, d) ⊆
Q(Pt) \ {Pt} and by Lemma 2, f(P ) < f(Pt) for all
P ∈ H(Pt, d). Since H(Pt, d) is a compact set, one has
∆(Pt, d) > 0. Moreover, ∆d > 0 holds because the min-
imum in (26) is evaluated on a compact set.

ii) From (24), one has H(Pt, d̂) ⊇ H(Pt, d). So, by (25),

one gets ∆(Pt, d̂) ≤ ∆(Pt, d) for all Pt and therefore
∆

d̂
≤ ∆d. ✷

Let

d = max





max
Pa,Pb∈R

2
+:

f(Pa),f(Pb)≤β0

‖Pa − Pb‖ , 1





. (27)

be the maximum distance between two points Pa and Pb

for which the corresponding β is not greater than β0. If
such a distance is less than 1, d is set to 1.

Notice that, by Lemma 3, f(Pt) ≥ f(Pt+1) and since Pt

and Pt+1 are such that f(Pt), f(Pt+1) ≤ β0, by (27) one
has

‖Pt+1 − Pt‖ ≤ d, ∀t . (28)

The next lemma states that the function Jt in (21)
strictly decreases at each move.

Lemma 5 Let α =
∆1/2

d− 1/2
. Then, ∆Jt ≥ α/2 > 0 for

all t.

Proof: By Lemma 4-i), ∆1/2 > 0 and since d ≥ 1 one
has α > 0. Let dt = ‖Pt+1 − Pt‖. We consider three
possible cases.
First, let us assume 0 ≤ dt ≤ 1/2. Since f(Pt) ≥
f(Pt+1), by (23) one has ∆Jt ≥ α(1 − ‖Pt+1 − Pt‖) ≥
α/2.
Now, let us consider 1/2 < dt ≤ 1. Since dt ≤ 1, by (23)
one gets

∆Jt ≥ f(Pt)− f(Pt+1) ≥ ∆(Pt, dt) ≥ ∆(Pt, 1/2)

≥ ∆1/2 = (d− 1/2)α ≥ α/2

where the second inequality is due to the fact thatPt+1 ∈
H(Pt, dt), the third inequality holds by Lemma 4-ii) and
the last inequality comes from d ≥ 1.
Finally, let us address the case dt > 1. By (28), we may

restrict our analysis to 1 < dt ≤ d. Hence,

∆Jt ≥ ∆(Pt, 1) + α(1− dt) ≥ ∆1 − α (d− 1)

≥ ∆1/2−α (d− 1) = (d− 1/2)α− α (d− 1)= α/2

where the third inequality holds by Lemma 4-ii). This
concludes the proof. ✷
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The role of the function Jt is clarified by the proof of
Lemma 5. In fact, there are moves in which the decrease
of f(Pt) may be negligible (or even null). However, in
such cases also ‖Pt+1 − Pt‖ must be small, and hence
(23) guarantees a significant decrease of Jt.

We are finally ready to state the main result of this sec-
tion, which guarantees finite time capture independently
on the strategy adopted by the man.

Theorem 2 Let L0 ≻ M0 and let the lion play the C-
FLS for a fixed C-function f . Then, there exists a finite
time t for which Lt = Mt.

Proof: Let us consider the function Jt in (21). By
Lemma 5, at each step such a function decreases at

least by a finite quantity α/2 = 1
2

∆1/2

d−1/2
> 0. So, there

exists a finite t such that Jt < βmin which implies
f(Pt) = βt < βmin. Then, by Proposition 2 the game
ends at the next move and the theorem is proved. ✷

The capture result in Theorem 2 is based on the exact
computation of the lion’s move in (9). Nevertheless, it
can be easily seen that the result still holds if the lion’s
move is computed according to the bisection procedure
in Algorithm 1. In fact, Jt in (21) is affected by an error
which depends continuously on the tolerance ε in Algo-
rithm 1. Hence, one can choose ε sufficiently small to
guarantee that ∆Jt is always larger than a fixed posi-
tive quantity, by following an argument similar to that
in the proof of Lemma 5. Then, the proof of Theorem 2
still holds.

6 Comparison with other strategies

In this section, the proposed lion strategy is compared to
other strategies available in the literature. In particular,
we consider the lion strategy proposed in [23], hereafter
referred to as Lion Strategy 1 (LS1), which is based on a
fixed center, and the one presented in [6], denoted asLion
Strategy 2 (LS2), in which the center is updated at each
move (see Remark 1). Concerning the C-FLS, the two C-
functions described in Section 2 have been adopted. The
strategy based on (1) is referred to as C−FLScirc, while
that using the C-function (2) is named C−FLShyper.

In order to simulate the considered pursuit strategies,
one has to define also the evasion strategy adopted by
the man. It is worth remarking that the optimal man
strategy (i.e., the worst-case man behaviour for the lion)
has not been devised yet for any of the considered ap-
proaches. Therefore, several alternative man strategies
are used in the simulations. At any time t, such strate-
gies set the man positionMt+1 so that ‖Mt+1−Mt‖ = 1.
They are defined as follows.

MS1: This man strategy has been proposed in [23]:
Mt+1 is set such that (Mt+1 − Mt) is orthogonal to

(Lt − Mt). Between the two candidate points, the one
with the greatest product of the two coordinates is cho-
sen. The choice of the orthogonal direction is motivated
by a trade-off between going towards the lion (which is
not a good choice!) and moving in the opposite direc-
tion, which results in approaching the region close to
the origin, where capture occurs (see Proposition 1). In
[23] it is also shown that this man strategy is optimal
for some specific initial lion and man positions.

MS2: This strategy works like MS1 with the only dif-
ference that among the two candidate man’s moves, the
one with smaller product of the coordinates is chosen.

MScirc: This strategy has been explicitly designed to
play against the C-FLS when the chosen C-function
is the quarter of circumference in (1). As long as
‖Mt − Pt‖ > 1, the man moves towards Pt, i.e.,
Mt+1 = Mt+(Pt−Mt)/‖Pt−Mt‖. When ‖Mt−Pt‖ ≤ 1,
the man moves to the point in Q(Pt) \ Rt which maxi-
mizes f(Mt+1). Notice that, whenever ‖Mt − Pt‖ > 1,
βt cannot decrease, irrespectively of the lion strategy. In
fact, if the lion plays C-FLS (with the same C-function)
one has βt+1 = βt = β0, while if the lion plays a differ-
ent strategy, βt may even increase.

MShyper: This is the same as MScirc, but choosing the
branch of hyperbola defined in (2) as C-function. By
performing several games and by comparing the result-
ing performance, the tuning parameter m has been set
to m = 2.

Example 1 First, in order to illustrate the different be-
haviors of the considered approaches, a single game has
been played with different man and lion strategies. The
initial conditions are set to M0 = [1, 4]′ and L0 = [2, 6]′.
For each lion algorithm, the best man strategy (i.e., the
strategy which allows the man to survive for the longer
number of moves) among the considered ones is adopted.
In Fig. 8, the paths traveled by the players for each lion
strategy are reported along with the game length. It is ap-
parent that the two lion strategies based on C-functions
outperform the approaches LS1 and LS2. Notice that,
as expected, the man strategies MScirc and MShyper are
those allowing the man to survive longer against the cor-
responding C-function lion strategies C−FLScirc and
C−FLShyper. When the distance between the two play-
ers becomes small, a chattering phenomenon may be ob-
served; the reason is due to the fact that, to delay cap-
ture as much as possible, the man moves back and forth
orthogonally to (Lt −Mt), causing the zigzag paths.

Example 2 A simulation campaign consisting of K =
10000 games has been performed with the following pa-
rameters. Let M0 = [xm, ym]′ and L0 = [xl, yl]

′ denote
the man and lion initial positions, respectively. Such po-
sitions have been randomly generated with uniform dis-
tribution such that L0 ≻ M0; in particular, the initial
positions have been generated so that xm, ym ∈ (0, 10)
and (xl − xm), (yl − ym) ∈ (0, 10).
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Fig. 8. Example 1. Paths traveled by the lion (solid black) and
by the man (dashed red) for different strategies. Dots denote
initial positions while circles denote the capture points.

In Table 1, the average game length over all the simulated
games are reported for each combination of lion and man
strategies. The maximum game length for each lion strat-
egy is emphasized in boldface. It is evident that the lion
algorithms based on C-functions require, on average, a
number of moves much smaller than that needed by LS1

and LS2. Regarding the man strategy, one has that the
methods MScirc and MShyper are those which allow the
man to survive longer. This suggest that also for the man
it is convenient to play a game based on the optimization
of a C-function.

Table 1
Example 2. Average game length for different strategies

Man Strategy

MS1 MS2 MScirc MShyper

L
io
n
S
tr
a
te
g
y

LS1 3558.49 3557.79 5043.60 5198.51

LS2 594.73 1058.61 1011.05 1865.07

C−FLScirc 255.31 42.78 660.55 145.96

C−FLShyper 253.14 133.68 763.93 693.66

For a given game k, let us denote by Na(k) the number
of moves needed by the lion to catch the man by using
strategy a, for the best man strategy among the considered
ones. Let us define the following performance indexes to
compare the proposed new lion strategies with LS1 and
LS2.

RLS1 =
1

K

K∑

k=1

Na(k)

NLS1(k)
,

RLS2 =
1

K

K∑

k=1

Na(k)

NLS2(k)
.

Table 2
Example 2. Indexes RLS1 and RLS2 for different lion strate-
gies

RLS1 RLS2

L
io
n
S
tr
a
te
g
y

LS1 1 3.467

LS2 0.324 1

C−FLScirc 0.201 0.638

C−FLShyper 0.211 0.676

In Table 2, numerical values of RLS1 and RLS2 are re-
ported. Notice that, C−FLScirc allows the lion to win the
game in a number of moves which is, on average, about
64% of those needed by LS2 and about 20% w.r.t. the
commonly used method proposed in [23].

It should be stressed that, considering the performance
Na(k) of the different lion strategies, among the 10000
played games, C−FLScirc took less moves than the other
strategies 7738 times, while C−FLShyper 796 times. In
the remaining 1466 games, the two strategies based on
C-functions required the same number of moves to win.
For all the played games, methods LS1 and LS2 always
needed a number of moves greater than the two strategies
based on the C-functions.

7 Conclusions

The new approach to the lion and man problem pre-
sented in this paper has two main advantages with re-
spect to the existing techniques. First, it provides a gen-
eral framework, within which the pursuer can choose
the preferred C-function, which corresponds to setting
the shape of the cleared region. The second main bene-
fit is the apparent superiority in terms of time required
to achieve capture, testified by the extensive simulation
campaign on randomly generated pursuit problems.

The contribution of the paper paves the way to a number
of subsequent developments. From a theoretical point
of view, the optimal strategy is still an open problem,
on both lion and man side. Understanding the man be-
haviour which guarantees a longer survival might be
beneficial to devise a meaningful criterion for choosing
the most appropriate C-function. Another objective is to
prove that the C-function approach can be successfully
applied to closed environments (e.g., convex/nonconvex
polygons), regions containing obstacles or specific zones
to be preserved. Moreover, it is possible to modify the
C-function during the game, to adapt it to changing con-
ditions. The application of the proposed lion strategies
to the more complex scenarios described above is the
subject of ongoing research.

10



References

[1] Saad A. Aleem, Cameron Nowzari, and George J. Pappas.
Self-triggered pursuit of a single evader. In 2015 54th IEEE
Conference on Decision and Control (CDC), pages 1433–
1440, 2015.

[2] Brendan Ames, Andrew Beveridge, Rosalie Carlson, Claire
Djang, Volkan Isler, Stephen Ragain, and Maxray Savage.
A leapfrog strategy for pursuit-evasion in a polygonal
environment. International Journal of Computational
Geometry & Applications, 25(02):77–100, 2015.

[3] Andrew Beveridge and Yiqing Cai. Pursuit-evasion in a
two-dimensional domain. Ars Mathematica Contemporanea,
13(1):187–206, 2017.

[4] Deepak Bhadauria, Kyle Klein, Volkan Isler, and Subhash
Suri. Capturing an evader in polygonal environments with
obstacles: The full visibility case. The International Journal
of Robotics Research, 31(10):1176–1189, 2012.

[5] Shaunak D. Bopardikar, Francesco Bullo, and Joao P.
Hespanha. On discrete-time pursuit-evasion games with
sensing limitations. IEEE Transactions on Robotics,
24(6):1429–1439, 2008.

[6] Marco Casini and Andrea Garulli. An improved lion strategy
for the lion and man problem. IEEE Control Systems Letters
(L-CSS), 1(1):38–43, 2017.

[7] Marco Casini and Andrea Garulli. A novel family of pursuit
strategies for the lion and man problem. In 56th IEEE
Conference on Decision and Control (CDC), pages 6436–
6441, Melbourne, December 2017.

[8] Jie Chen, Wenzhong Zha, Zhihong Peng, and Dongbing Gu.
Multi-player pursuit-evasion games with one superior evader.
Automatica, 71:24–32, 2016.

[9] Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler.
Search and pursuit-evasion in mobile robotics. Autonomous
robots, 31(4):299–316, 2011.

[10] Sheng-Li Du, Xi-Ming Sun, Ming Cao, and Wei Wang.
Pursuing an evader through cooperative relaying in multi-
agent surveillance networks. Automatica, 83:155–161, 2017.

[11] Brian P. Gerkey, Sebastian Thrun, and Geoff Gordon.
Visibility-based pursuit-evasion with limited field of view.
The International Journal of Robotics Research, 25(4):299–
315, 2006.

[12] Richard K. Guy. Unsolved problems in combinatorial games.
In Combinatorics Advances, pages 161–179. Springer, 1995.

[13] H. Huang, W. Zhang, J. Ding, D. M. Stipanović, and C. J.
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