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Abstract: Experimental validation is often crucial for establishing the effectiveness and
robustness of algorithms for mobile robots. Unfortunately, it is generally difficult to let students
use experimental setups, due to expensive hardware, complexity of usage and, not last, safety
aspects. Often, experiments require the supervision of a tutor, and have to be carried out
during the laboratory opening time. A possible way to overcome such limitations is to resort to
remote labs. In this paper, a remote lab for controlling a team of mobile robots is presented.
It is based on the Matlab environment and the mobile robots are built by using the LEGO
Mindstorms NXT technology. Despite its low cost, thanks to its open architecture the proposed
setup is versatile enough to be used in several kinds of experiments, ranging from single-robot
to multi-robot systems, from centralized to decentralized control schemes. Users may connect
to the remote lab and test their own algorithms in an easy way, by simply designing a Matlab
function, without spending time on hardware aspects. A user interface allows them to observe
the running experiment, and to download experimental data for offline analysis.
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1. INTRODUCTION

Nowadays, the usage of remote labs for distance learning
in the robotics and automation field is rapidly increasing
(e.g., see Dormido [2004]). Differently from virtual labs,
which provide software simulations of physical processes,
remote labs allow users to remotely interact with real
experiments, thus improving the realism and the appeal
of analyzing the performance of different control laws.
The importance of experimental testing is especially true
in the mobile robotics field, where the validation on
real data is crucial for assessing the effectiveness of a
control technique. Unfortunately, performing this kind
of experiments is often a difficult and expensive task,
particularly when dealing with algorithms designed for
teams of robots. This is confirmed also by the relatively
few experimental results on multi-agent algorithms that
can be found in the literature (Marshall et al. [2006], Ren
and Sorensen [2008], Mastellone et al. [2008]). Therefore,
allowing students to test multi-robot algorithms on real
vehicles, while being highly instructive, may become a
prohibitive task, especially in case of large classes.

This paper presents a remote lab for mobile robotics, based
on the Matlab environment and the LEGO Mindstorms
technology. By now, Matlab represents a standard tool in
control education (Poindexter and Heck [1999]), thanks to
its easy-to-learn and powerful language. The adoption of
Matlab as main software tool has several advantages. It
allows students to interact with the remote lab through a
friendly environment, and to use a programming language
they are likely familiar with. At the same time, this choice
makes the interaction with the lab independent of the

chosen robot technology and its low-level programming
language, which is often a barrier to the experiencing
from entry-level users. The mobile robots are built by
using the LEGO Mindstorms NXT technology (The LEGO
Group [2009]), which is widely used in control systems
and robotics education, for its low-cost and simplicity. For
instance, a LEGO-based experiment for teaching funda-
mental concepts of control and digital signal processing
is reported in Heck et al. [2004], while a set of control
experiences using LEGO are described in Gawthrop and
McGookin [2006]. Regarding mobile robots built with
LEGO, recent works can be found in Valera et al. [2008],
where a distributed network-based control of mobile robots
is described, and in Green et al. [2008], where a human can
collaborate in a natural manner with a mobile robot.

The proposed remote lab is in its early stage, and work
is still in progress. Although its main functionalities are
ready, currently the lab is not available online yet. Once
it is fully operative, the lab will be embedded into the
Automatic Control Telelab (ACT), a remote laboratory
developed at the University of Siena (Casini et al. [2004])
whose main goal is to allow students to put in practice
their theoretical knowledge of control theory in an easy
way and without restrictions due to laboratory opening
time and process availability. Following the philosophy of
the ACT, also the mobile robotics experiments will be
freely accessible by everyone at the following web address:
http://act.dii.unisi.it.

The paper is structured as follows. In Section 2 the pro-
posed remote lab, along with its architecture, is described
in detail. A typical user session is presented in Section 3. In



Section 4 possible experiments for teaching purposes are
outlined, while in Section 5 some conclusions are drawn.

2. SETUP OVERVIEW

A first experimental setup, based on Matlab and LEGO,
was developed at the University of Siena for the validation
of cooperative control strategies for multi-vehicle systems
(Benedettelli et al. [2009]). From that experience, it was
clear that, while this architecture can be effectively used
for ad-hoc teaching and research purposes, it needed sig-
nificant improvements for its application to more general
educational activities. In fact, the usage of this kind of
setup requires a good knowledge of the overall system, and
the presence of an instructor is often needed, thus limiting
the usability from large, inexpert classes. To overcome
these issues, it was planned to develop a remote lab to
provide students with an easy and powerful tool to put in
practice multi-robot control algorithms.

The chosen approach was to integrate the existing multi-
robot system into the Automatic Control Telelab. In this
way, by connecting to a server through a web page, a
student uploads a Matlab function containing the control
algorithm to be used during the experiment. A graphical
interface allows the user to monitor the experiment and
to download the recorded data for offline analysis. All
these steps can be done without any knowledge of low-level
hardware aspects. Moreover, the open architecture and
the extreme versatility of the developed setup, makes it
suitable for practicing with a number of different problems
related to mobile robots (see Section 4 for an overview of
possible teaching applications).

Besides the remote interaction, the setup described in this
paper differs from that previously developed in Benedet-
telli et al. [2009] in at least two aspects. First, the mobile
robots have been completely redesigned, in order to fully
exploit the improvements provided the new LEGO NXT
technology. Second, two wide-angle cameras are now used
to detect the robots. This results in a larger experimental
arena, at the price of more complex image processing.

In the following, the hardware and software architecture
of the proposed remote lab are described in detail.

2.1 Hardware architecture

In Fig. 1 a sketch of the hardware architecture is depicted.
Four main components can be identified: the team of
mobile robots, a desktop PC acting as main server, two
wide-angle cameras for robot detection, and a webcam
used for the video streaming.

NXT mobile robots. The mobile robots are built by using
the LEGO Mindstorms NXT technology. The vehicles are
identical, and have been designed to be as compact as pos-
sible. The core of each vehicle is a NXT brick, which hosts a
microprocessor providing computation capabilities, motor
actuation, and Bluetooth communication. The robots fea-
ture a differential-drive kinematics, with two servomotors
driving independently the right and left wheel. A steel
ball transfer unit acts as third support, and contributes
to lower the vehicle center of mass. This choice, together
with a robust mechanical design, prevents the vehicles
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Fig. 1. Hardware architecture.

from overturn in case of collisions. A triangular marker
(different in size for each robot) is placed on the top of
each vehicle to allow visual detection through cameras. No
sensors are present on the robots, except for incremental
encoders used to control the wheel speed. Currently, the
team is composed of three robots. A picture of a robot is
reported in Fig. 2.

Fig. 2. The LEGO NXT mobile robot.

PC server. A desktop PC represents the core of the
project, providing the necessary processing power and
communication capabilities. An instance of Matlab runs



in background to perform all computations. The PC is
connected to the Internet to accept connection to the
web server it hosts. Through a Bluetooth adapter the PC
communicates with the robots. Moreover, it is connected
to two wide-angle cameras for vehicle detection, and to
one webcam used for online video streaming.

Wide-angle cameras. Two USB wide-angle cameras are
placed on the lab ceiling, pointing downward. They are
used to detect the robots and to estimate their pose. These
cameras are low-cost webcams featuring a field of view of
about 71 degrees, and have been chosen to increase the
robot workspace, while still maintaining a good image
resolution. It is a fact that experimenting with multi-
vehicle algorithms needs in general larger workspace. In
the current configuration the experimental arena is about
3.5m × 4.5m.

Internet webcam. An additional webcam is connected
to the server to provide online streaming video of the
experiment. As in other remote labs, the online video, in
addition to experiment signals, helps increasing the sense
of presence inside the lab.

It is worth remarking that the remote lab has been devel-
oped having in mind, among other criteria, a good trade-
off between costs and performance. For this reason, it was
decided to use only standard hardware (a desktop PC,
USB webcams, LEGO), rather than more technologically
advanced and expensive solutions (like, e.g., professional
wide-angle cameras connected to the PC through a frame
grabber).

2.2 Software architecture

In this subsection, some details concerning the software
implementation are illustrated.

A web server, accepting incoming connections from users,
runs on the PC server. The PHP extension and a webcam
server are also installed to dynamically generate web
pages and to provide online video, respectively. A Matlab
script supervises all the following tasks, to coordinate and
monitor an experiment.

• High-level robot control. Due to the limited processing
capacity of NXT, it has been chosen to perform all the
computations regarding the algorithms to be tested
on the PC server. This solution has several advan-
tages. In fact, the usage of Matlab for implementing
control algorithms allows one to use a wide set of
powerful functions already provided in Matlab and its
toolboxes. Moreover, the high-level Matlab language
reduces the time needed for developing algorithms
with respect to other languages. The user-defined
Matlab function is used to compute the references of
robot linear and angular speed according to an easy
syntax (see Section 3 for details). The sample time
used for updating robot speed references has been set
to 0.5 seconds.

• Robot detection. By means of the two top cameras,
the server is able to detect the position and the
orientation of each robot. During the experiment,
the images of the cameras are captured through the
Matlab Image Acquisition Toolbox (The Mathworks,

Inc. [2009a]). Next, the images are filtered to extract
the triangular markers corresponding to each robot.
This step is accomplished by exploiting functions for
feature extraction provided by the Matlab Image Pro-
cessing Toolbox (The Mathworks, Inc. [2009b]). Since
the acquired images are affected by a significant bar-
rel distortion, the estimation of the robot pose may
be inaccurate. For this reason, an offline calibration
procedure has been previously performed, leading to
an estimate of the internal parameters of the cameras,
by means of the Matlab Camera Calibration Toolbox
(Bouguet [2008]). Finally, the robot poses extracted
from the two images are merged together through
a registration process, in order to transform local
coordinates into the global reference frame. To this
purpose, the homogeneous transformation relating
the frame of the two cameras has been previously
estimated offline (Hartley and Zisserman [2003]). In
Fig. 3, the result of the distortion correction and
image registration are shown. Figs. 3(a) and 3(b)
show the raw captured images, while in Fig. 3(c) the
final corrected and registered image is depicted.

• Robot communication. Through the wireless Blue-
tooth adapter the server can communicate with
NXTs. To this purpose the RWTH - Mindstorms
NXT Toolbox for Matlab has been used (Institute of
Imaging & Computer Vision - RWTH Aachen Univer-
sity [2009]). This connection is used for sending the
desired linear and angular speed to the vehicles, and
for receiving control signals like the battery levels of
each robot.

• Data exchange. Through a TCP connection, users can
send the start/stop experiment signals, while during
the experiment the server communicate to users the
vehicle positions.

• Safety system. To prevent robots from getting lost,
whenever a robot is about to going outside the
workspace, the experiment is stopped and vehicles
come back to their initial position.

The speed control of the vehicles is demanded to a program
running on the NXT brick of each robot.

• Low-level robot control. Speed control is in charge of a
program written in Not eXactly C (NXC) running on
the microprocessor of each vehicle (Hansen [2007]).
It is composed of two parallel tasks. The first one is
devoted to check whether there is an incoming mes-
sage from the Bluetooth connection. Once a message
is received, it is parsed and the linear and angular
speed references are passed to the second task. Such
a task implements the actual low-level control of
the right and left wheel speed. Although the NXT
is already equipped with a built-in PID control for
motor control, an ad-hoc incremental PI controller
has been implemented in order to obtain improved
performance.

The last component of the software architecture is a
remote client which is used by students to interact with
the lab.

• Client. A user connects to the remote lab by an Inter-
net browser. Web pages are HTML pages generated
by PHP scripts, while the graphical interface is a
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Fig. 3. Camera calibration and image registration: raw
images (a) and (b), and final image (c).

Java applet which ensures platform independence.
In Fig. 4, a snapshot of the user interface during
an experiment is reported. By means of the buttons
placed on the top-right side, users can start and stop

Fig. 4. The user interface.

the experiment. The workspace along with the robot
positions are shown in the left-hand pane and are
updated every second. Finally, the video streaming
is placed on the bottom-right side.

3. SESSION DESCRIPTION

This section illustrates an overview of a typical user
session.

After connecting to the ACT through a common web
browser, the user is offered a set of different physical
processes on which perform control and system identifi-
cation experiments. After selecting the “Team of mobile
robots” experiment, the user is requested to upload a
Matlab function which will be used during the experiment
to control the robot team. In fact, user interaction takes
place through this function, which returns the control
inputs for each vehicle, based on the current state of the
team. During the experiment, this function is invoked by
the supervisor script at each sampling time, in order to
update the speed reference signals to be sent to the NXTs
controlling the vehicles.

Before describing the input and output parameters of such
a function, it is worth recalling the kinematic model of the
built vehicles. Let pi(t) = [xi(t) yi(t) θi(t)]

′ be the position
and orientation of the i-th robot at time t (see Fig. 5), then
the robot pose evolves according to the unicycle model

ẋi(t) = vi(t) cos(θi(t))

ẏi(t) = vi(t) sin(θi(t)) i = 1, . . . , N

θ̇i(t) = ωi(t)

where vi(t) and ωi(t) denotes the linear and angular speed
of the vehicle and play the role of control inputs. The
user function must be designed according to the following
syntax

function [v, w] = Robot Control(t, P)



Concerning the input parameters, t is the elapsed time
since the beginning of the experiment (in seconds), and
P is a 3 × N matrix, whose i-th column contains the
current pose pi(t) of the i-th robot (in meters and radians).
The output parameters v and w must be 1 × N vectors
containing the desired linear and angular speed of each
robot (expressed in m/s and rad/s). Currently, the team
is composed of N = 3 robots, but work is in progress to
add further vehicles. In order to increase the versatility
of the whole setup, no collision avoidance is performed by
the supervisor script, rather, it is left to the user to check
and prevent any robot collision within the Robot Control

function. Anyway, as previously mentioned, thanks to
robust robot design, collisions are tolerated by the system.

Since the Robot Control function is provided by the user,
it may contain syntax errors or it may drive the robots
outside the workspace. In the former case, errors can be
easily detected by Matlab and consequently the exper-
iment is not performed. In the latter case, the experi-
ment is stopped whenever one robot is going outside the
workspace.

Once the Matlab function has been uploaded, the main
user interface shows up (see Fig. 4). From there, the user
can start and stop the experiment, as well as monitoring
the evolution of the team over time. At the end, it
is possible to download the data collected during the
experiment (as a MAT-file), for later analysis. At each
sampling time, the robot poses and the control inputs are
recorded.

The results of a simple experiment involving three robots
are summarized in Fig. 6. Here, Robot #1 must reach a
desired position while at the same time avoiding collisions
with Robots #2 and #3. The latter two vehicles move on
a square and a circle, respectively, at a constant linear
speed of 0.03 m/s, while Robot #1 is faster (0.06 m/s) to
improve its maneuverability.
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Fig. 5. Robot pose.

4. EDUCATIONAL APPLICATIONS

Once the project is online, it is planned to use it for
educational and research purposes. It can be effectively
used by students in robotics courses for experimenting
a number of control algorithms. At present, it is quite
difficult to let students apply theoretical knowledge of
mobile robotics on real testbeds, especially for courses
with several students. So, it is common to ask students
to perform simulations instead of testing algorithms on
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Fig. 6. Robot paths during an experiment: filled triangles
denote the initial robot poses, empty triangles denote
the final robot poses.

real devices. However, it is well known how important
is to validate such algorithms on an experimental setup.
By using this remote lab, it is possible to assign students
different tasks to be performed on real vehicles in an easy
way and from any computer connected to the Internet.

It is worth remarking the versatility of the chosen architec-
ture. Since at each time instant the state of the whole team
is available, it is possible to implement both centralized
and decentralized control schemes (e.g., using only a subset
of the available information in the computation of control
inputs). The mobile robots are not equipped with any kind
of exteroceptive sensors. Nonetheless, advanced users can
implement sort of virtual sensors, i.e. simulate via software
the presence of onboard sensors from the current state of
the team (e.g., range and bearing measurements among
vehicles). Different kinds of control laws can be compared.
For instance, it is pretty straightforward to implement
static feedback controllers, since the state of the system
is always available. At the same time, it is also possible to
test dynamic controllers, by exploiting persistent variables
provided by the Matlab environment.

In the following, a brief description of some experiments
which can be performed with this lab is reported.

• Single-robot experiments. A student can experiment
with single-robot control algorithms by simply setting
to zero the speeds of the other vehicles and ignoring
their poses. In this way, it is possible to test algo-
rithms on path planning, obstacle avoidance, robot
maneuvers, etc. Of course, it is up to the user to
define the needed objects inside the Robot Control



function. For instance, for an obstacle avoidance al-
gorithm, the shapes and locations of obstacles must
be defined in this function. Moreover, this function
has to compute distances from obstacles and check
collisions.

• Multi-robot experiments. Algorithms similar to that
reported in the previous point may be tested in a
multi-robot scenario. In this case, for instance, one
can design a controller to avoid robot collisions while
performing a given task.

• Cooperative control experiments. It is possible to use
the team of vehicles in a cooperative way to test
algorithms of formation control, motion coordination,
coverage problems, etc.

• Competitive control experiments. Robots may com-
pete each other in order to perform a given task. For
instance, a typical example of competitive experiment
consists in the pursuit-evader problem.

It is worth remarking that the task to be executed is chosen
by the user through the function Robot Control described
in Section 3. Such a function can be easily used to simu-
late the experiment behavior through a provided Matlab
simulator. So, students are encouraged to simulate their
algorithms before testing them on the actual experimental
setup, and comparing the obtained results.

5. CONCLUSIONS

In this paper, a remote lab for controlling a team of mobile
robots has been presented. Vehicles are built by using the
LEGO Mindstorms NXT technology. Through an Internet
connection, a user can upload a Matlab function imple-
menting the control law to be tested. A graphical inter-
face, along with a video streaming, shows the evolution
of the experiment, and allows the user to download the
experimental data for offline analysis. Thanks to the open
architecture of the lab, it is possible to test algorithms for
several mobile robotics problems. The proposed low-cost
setup features high versatility, and is suitable for practicing
with single-robot and multi-vehicle scenarios, as well as
with both centralized and decentralized control schemes.

To make the lab available 24 hours a day for remote
experiments, current work is being done for equipping
each robot with two metal plates for automatic battery
recharge inside a recharge box, similarly to what done
in Carusi et al. [2004]. The usage of the LEGO lithium
rechargeable battery will simplify this task. At the same
time, together with the enlargement of the experimental
area, it is expected to increase the number of robots, in
order to test algorithms involving larger team. In the
future, it is planned to enrich the user interface with
additional features, like the definition of virtual sensors
or virtual obstacles.
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