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Abstract— In this paper, an MPC solution is devised for linear
time-periodic optimal regulation problems requiring the mini-
mization of a sum of vector norms. Such type of problems arise
for instance in aerospace applications, in which it is desired to
trade-off fuel consumption and state regulation performance,
while limiting as much as possible the control activation time.
Closed-loop stability is guaranteed by embedding in the design a
terminal set and a terminal cost, both of which are periodically
time-varying. Differently from quadratic MPC, the termina l
cost is in the form of a weighted 2-norm. A systematic method
to construct such a function is presented. The proposed design
is demonstrated on a spacecraft rendezvous case study with
periodic dynamics.

I. I NTRODUCTION

Control systems with periodically time-varying dynamics
play a prominent role in many engineering problems. While
it is well known that periodic controllers can be usefully
applied to linear time-invariant (LTI) plants (see e.g., [1],
[2]), the motivation for resorting to periodic control usually
comes from the periodicity of the system model or in order
to enforce a periodic behavior. Examples can be found
in robot guidance [3], vibration suppression [4], aerospace
applications [5], [6], [7], and many other contexts.

Periodic systems have been extensively studied in the
control literature. Most of the classical stability results for
LTI systems have been extended to the linear time-periodic
(LTP) case (see [8] for a comprehensive overview). The ex-
tension typically involves an increased computational burden.
In order to cope with this issue, some studies have focused
on receding-horizon control of unconstrained LTP systems
[9], [10].

In recent years, the focus has shifted to constrained
LTP problems. In [11], a Model Predictive Control (MPC)
strategy is proposed for such problems. Closed-loop stability
is achieved by including an ellipsoidal terminal set and
quadratic terminal cost, both of which are periodically time-
varying, in the design. These are computed via the solution
of a linear matrix inequality (LMI) problem. A similar
approach is taken in [12], where the adopted terminal set is
polyhedral and the LMI condition is replaced by the solution
of a periodic Riccati equation. The stability proof for these
methods follows the same line as in most MPC schemes [13].
It boils down to showing that the terminal set is positively
invariant and that the optimal cost decreases monotonically
over time. A less conservative stability condition, which
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requires the optimal cost to decrease periodically rather than
monotonically, is investigated in [14].

A common trait of the aforementioned MPC strategies is
that the cost function to be optimized is quadratic. This is
indeed a standard setting in the MPC literature. However,
despite its widespread adoption, a quadratic cost does not
always represent the actual performance objective for the
controlled process. In space applications, for instance, it is
often more appropriate to cast the performance requirements
in terms of a sum of vector norms [15]. Furthermore, such
formulation usually yields optimal solutions involving a
sparse control activation.

While the optimization of a nonquadratic convex cost does
not raise particular challenges within the MPC framework,
the closed-loop stability analysis is typically more involved.
In particular, for vector-norm-based formulations, enforc-
ing the cost decrease condition requires to find a suitably
weighted vector norm, to be used as a Lyapunov function
[15], [16], [17].

Motivated by the relevance of periodic models in space
applications, this paper develops a sum-of-norms MPC strat-
egy for constrained LTP systems. A sum of 2-norms cost
function is considered, which allows one to trade off state
regulation performance and fuel consumption in a thrust-
vectoring propulsion scenario. Closed-loop stability is guar-
anteed by extending the results in [15] to the periodic case.
In particular, a periodically weighted 2-norm of the system
state is employed as a terminal cost. A systematic method
to construct such weights from the solution of a periodic
Lyapunov equation, is presented.

The proposed MPC scheme is validated on a case study
of a spacecraft rendezvous mission (see, e.g., [18], [19]).
The considered model takes into account periodic effects
due to the second zonal harmonic of the geopotential and to
solar eclipses. Simulations show that the controller achieves
finite time convergence and control sparsity, which are two
desirable properties in this application. Moreover, it is ob-
served that incorporating eclipse constraints in the design
provides a far better performance compared to neglecting
this possibility.

The rest of the paper is organized as follows. The sum-of-
norms MPC problem is described in Section II. Sufficient
conditions for closed-loop stability are put forth in Sec-
tion III. The rendezvous case study is discussed in Section IV
and conclusions are drawn in Section V.



Notation and preliminaries

For a real vectorx ∈ R
n, ‖x‖ denotes its2−norm, while

for a matrix P ∈ R
n×n, ‖P‖ denotes the induced matrix

2-norm. For a symmetric real matrixP , λm(P ) indicates
its minimum eigenvalue, andP > 0 (P ≥ 0) denotes
(semi)positive definiteness. The setN = {0, 1, . . .} is the set
of nonnegative integers. The following definitions are alsoin
order.

Definition 1: For givenN ∈ N, a matrix sequenceMk,
k ∈ N, is termedN−periodic if it satisfies

Mk = Mk+N ∀k ∈ N. (1)
Definition 2: GivenN−periodic matrix sequencesAk and

symmetricRk ≥ 0, a symmetric matrix sequencePk > 0 is
said to be a solution of theN−periodic Lyapunov equation

AT
k Pk+1Ak − Pk +Rk = 0 (2)

if (2) holds for all k ∈ N. Clearly, if symmetric positive
definite matricesP0, . . . PN with PN = P0 satisfy (2) for
k = 0, . . .N − 1, then the sequencePk such thatPk =
P(k mod N) is a solution of (2) for allk ∈ N.

II. PROBLEM FORMULATION

This paper deals with periodic discrete-time linear systems
of the form

x(k + 1) = Ak x(k) +Bk u(k), (3)

wherek ∈ N, x(k) ∈ R
n is the system state,u(k) ∈ R

m

is the control input, and system matricesAk ∈ R
n×n and

Bk ∈ R
n×m areN−periodic for a given periodN .

The control problem addressed in this paper is to asymp-
totically stabilize the origin of system (3) via an MPC control
scheme in which a sum-of-norms objective function and
2−norm control bounds are employed. Such a choice is
particularly suited to spacecraft maneuvering applications,
where system (3) describes the linearized orbital dynamics
(see, e.g., [20]). In such applications, a trade-off between
fuel consumption and state regulation performance must be
achieved. Furthermore, actuator limitations have to be taken
into account. In particular, we consider the thrust vectoring
scenario, where constraints on maximum deliverable thrust
can be expressed as‖u(k)‖ ≤ 1, ∀k ∈ N, and fuel
consumption over a given time intervalI ⊆ N is proportional
to

∑

k∈I
‖u(k)‖ (see [15] for details).

The above considerations naturally lead to an MPC design
framework based on the solution, at each time instantk ∈ N,
of the following trajectory optimization problem

min
Ûk

Jk(Ûk)

s.t. x̂k(0) = x(k)

x̂k(j + 1) = Ak+j x̂k(j) +Bk+j ûk(j)

‖ûk(j)‖ ≤ 1 j = 0 . . .H − 1

‖Sk+H x̂k(H)‖ ≤ 1,

(4)

whereH is a given time horizon length,̂xk(j) denotes the
predicted statej steps ahead ofk, and the decision variables
are the elements of the control sequence

Ûk = {ûk(0), . . . , ûk(H − 1)}. (5)

The objective functionJ(Ûk) is chosen as

Jk(Ûk) =
H−1
∑

j=0

{

‖Q x̂k(j)‖+ ‖ûk(j)‖
}

+ ‖Wk+H x̂k(H)‖.

(6)
In (4),(6),Q is a full-rank matrix, whileWk+H andSk+H are
full-rank matrices belonging toN−periodic sequencesWk

andSk, respectively. Notice that (6) differs from the widely
used quadratic cost in the fact that it employs 2-norms. In the
spacecraft maneuvering context, the component

∑

j ‖ûk(j)‖
accounts for fuel consumption, while matrixQ establishes
a trade-off between the latter requirement and tracking
performance. The matrix sequenceWk defines the terminal
cost in (6), whileSk characterizes the terminal constraint in
(4). These are instrumental to stability assessment for the
proposed MPC scheme.

Problem (4) is a convex second order cone program
(SOCP) which is solved at each discrete-time stepk. Then,
in the standard receding horizon fashion, the first element of
the optimal solution

Û∗
k = {û∗

k(0), . . . , û
∗
k(H − 1)} (7)

is applied to the system, i.e.,

u(k) = û∗
k(0). (8)

Furthermore, letVk(x(k)) denote the optimal cost of problem
(4), i.e.,

Vk(x(k)) = Jk(Û
∗
k ). (9)

Asymptotic stability of the closed-loop system (3) with
the control law (8) can be assessed along the lines of [13]
by ensuring that problem (4) is recursively feasible and that
its optimal costVk(x(k)) is strictly decreasing along the
closed-loop system trajectories. This can be accomplished
by suitably designing theN−periodic matrix sequencesSk

andWk which define the terminal constraint and the terminal
cost, respectively, as detailed in the next section.

III. STABILITY RESULT

Assume that system (3) is stabilizable viaN−periodic
linear feedback [8], and consider an auxiliary fictitious
asymptotically stabilizing control law

u(k) = −Kkx(k), (10)

whereKk ∈ R
m×n is a givenN−periodic matrix sequence.

The stabilizing periodic feedbackKk can be computed,
for instance, by solving a periodic Riccati equation or an
equivalent set of linear matrix inequalities, see, e.g., [8], [11].
The resulting closed-loop system is given by

x(k + 1) = (Ak −BkKk)x(k) = Acl
k x(k), (11)



which is clearlyN−periodic. The control law (10) is ex-
ploited in the sequel to design the sought matrix sequences
Sk andWk.

The following result characterizes a possible choice ofSk

ensuring that problem (4) is recursively feasible.
Proposition 1: Let ZT

k Zk be a solution of the periodic
Lyapunov equation

(Acl
k )

TZT
k+1Zk+1A

cl
k − ZT

k Zk + Ck = 0, (12)

whereCk is a given symmetric positive definiteN−periodic
matrix sequence. In (4), letSk be defined as

Sk =

(

max
i∈{0,...,N−1}

‖KiZ
−1
i ‖

)

· Zk. (13)

Suppose problem (4) is feasible at timek0. Then, it is also
feasible for allk > k0 along the trajectories of system (3)
under the MPC control law (8).

Proof: Let us define the periodically time-varying
region

Ck = {x ∈ R
n : ‖Kkx‖ ≤ 1} , (14)

i.e., the set of statesx(k) for which the control law (10)
satisfies the constraint‖u(k)‖ ≤ 1. From (12), and positive
definiteness ofCk it follows that ‖Zkx‖ ≤ 1 implies
‖Zk+1A

cl
k x‖ ≤ 1. This property is preserved under a con-

stant scaling, hence, defining the periodically time-varying
region

Xk = {x ∈ R
n : ‖Skx‖ ≤ 1} , (15)

we get thatx ∈ Xk implies Acl
k x ∈ Xk+1. Thus,x(k) ∈

Xk implies x(k + 1) ∈ Xk+1 under the control law
(10). Moreover, the largest sublevel set of‖Zkx‖ ≤ 1
in which the constraint‖Kkx‖ ≤ 1 holds, is given by
(

‖KkZ
−1
k ‖

)

‖Zkx‖ ≤ 1. Hence, definingSk as in (13), we
get that‖Skx‖ ≤ 1 implies ‖Kkx‖ ≤ 1, i.e., Xk ⊆ Ck for
all k ∈ N. Therefore, ifx(k0) ∈ Xk0

⊆ Ck0
, then the control

law (10) ensures‖u(k)‖ ≤ 1 for all k ≥ k0.
By assumption, (4) is feasible at timek0. Now, suppose (4)
is feasible at timek and letx̂∗

k(j) be the value of̂xk(j) at the
optimum. Then,̂x∗

k(H) ∈ Xk+H impliying x̂∗
k(H) ∈ Ck+H .

From the above arguments, it follows that

Ūk+1 = {û∗
k(1), . . . , û

∗
k(H − 1),−Kk+H x̂∗

k(H)} (16)

is a feasible solution of (4) at timek+ 1. By induction, the
result is proved.

The following proposition, which is an extension to the
periodic case of a result in [15] for LTI systems, characterizes
a possible choice ofWk guaranteeing that the cost decrease
condition is met.

Proposition 2: Let Y T
k Yk be a solution to the periodic

Lyapunov equation

(Acl
k )

TY T
k+1Yk+1A

cl
k −Y T

k Yk+(‖Q‖+‖Kk‖)Dk = 0, (17)

whereDk is a givenN−periodic positive definite symmetric
matrix sequence. Define

Wk =

(

min
i∈{0,...,N−1}

λm(Di)

‖Yi+1Acl
i ‖+ ‖Yi‖

)−1

· Yk (18)

Then, the sequence of optimal objectivesVk(x(k)) of prob-
lem (4), (13), (18) satisfies

Vk+1(x(k + 1))− Vk(x(k)) ≤ −‖Qx(k)‖ (19)

along the the trajectories of system (3) with the control law
(8).

Proof: The fact thatY T
k Yk solves (17) implies

xTAcl
k

T
Y T
k+1Yk+1A

cl
k x− xTY T

k Ykx

+ xT (‖Q‖+ ‖Kk‖)Dk x = 0 ∀k ∈ N, ∀x ∈ R
n,

(20)

which in turn can be rewritten as

‖Yk+1A
cl
k x‖−‖Ykx‖=

−xT (‖Q‖+‖Kk‖)Dkx

‖Yk+1Acl
k x‖+ ‖Ykx‖

. (21)

Using a standard upper bound for the expression on the right
hand side of (21), one gets

‖Yk+1A
cl
k x‖−‖Ykx‖≤

−λm(Dk)(‖Q‖+‖Kk‖)

‖Yk+1Acl
k ‖+ ‖Yk‖

‖x‖. (22)

Taking into account (18), it follows from (22) that

‖Wk+1A
cl
k x‖ − ‖Wkx‖ ≤ −(‖Q‖+ ‖Kk‖)‖x‖ (23)

which, being(‖Q‖+ ‖Kk‖)‖x‖ ≥ ‖Qx‖+ ‖Kkx‖, implies

‖Wk+1A
cl
k x‖ − ‖Wkx‖ ≤ −‖Qx‖ − ‖Kkx‖ (24)

for all x ∈ R
n andk ∈ N.

Consider the feasible solution̄Uk+1 in (16) at timek + 1.
One has that

Jk+1(Ūk+1)− Vk(x(k)) = −‖Qx(k)‖ − ‖u∗
k(0)‖

+‖Qx̂∗
k(H)‖+ ‖Kk+H x̂∗

k(H)‖

+‖Wk+H+1A
cl
k+H x̂∗

k(H)‖ − ‖Wk+H x̂∗
k(H)‖.

(25)

By combining (25) with (24) evaluated at timek +H with
x = x̂∗

k(H), it follows that

Jk+1(Ūk+1)− Vk(x(k)) ≤ −‖Qx(k)‖ − ‖u∗
k(0)‖

≤ −‖Qx(k)‖.
(26)

Finally, sinceŪk+1 is in general suboptimal at timek + 1,
from (9) and (26) we have

Vk+1(x(k + 1))− Vk(x(k)) ≤ −‖Qx(k)‖, (27)

which proves the result.
Notice thatCk in (12) andDk in (17) can be chosen

independently. The next result states the stability property of
the proposed MPC scheme.

Theorem 1:The MPC design (4)-(6) withSk and Wk

as in Propositions 1-2 renders the equilibrium pointx =
0 of the closed-loop system (3) under (8) asymptotically
stable. Furthermore, for all initial conditionsx(k0) such that
problem (4) is feasible,x(k) converges to zero exponentially.

Proof: The result can be proven by observing that the
optimal costVk(x(k)) in (9) is a Lyapunov function. Clearly,
Vk(x(k)) is positive definite. By (6),(9), it follows that

c1‖x(k)‖ ≤ Vk(x(k)) ≤ c2‖x(k)‖, (28)



wherec1 =
√

λm(QTQ), andc2 can be obtained according
to Proposition 2.38 in [21]. Moreover, (27) implies

Vk+1(x(k + 1))− Vk(x(k)) ≤ −c1‖x(k)‖, (29)

and, from (28)-(29),

Vk+1(x(k + 1)) ≤ c3Vk(x(k)),

with c3 = 1− c1/c2. Note that0 < c3 < 1. Therefore,

‖x(k)‖ ≤
1

c1
Vk(x(k)) ≤

1

c1
ck−k0

3 Vk0
(x(k0))

≤
c2
c1
ck−k0

3 ‖x(k0)‖,

which, together with recursive feasibility established in
Proposition 1, proves the result.

IV. A PPLICATION TO SPACECRAFTRENDEZVOUS

In this section, the proposed MPC design is demonstrated
on a space rendezvous problem in Earth orbit, in which
a controlled spacecraft equipped with a propulsion system
operating in thrust vectoring mode is required to intercept
an uncontrolled target. Earth’s oblateness and solar eclipse
effects are also considered.

A. System model

The adopted model of the orbital motion, which is taken
from [22], is briefly summarized hereafter. We refer to
the controlled and the target spacecraft by satellite2 and
satellite 1, respectively. Let therelative line of nodesbe
defined as the intersection of the orbital planes of the two
satellites. The angle between these planes is denoted byγ.
Moreover, letλj andθj be the angles formed respectively by
the periapsis of orbitj and the position vector of satellitej
with respect to the relative line of nodes. The relative motion
between the two satellites is parameterized by the state vector
x = [x1, . . . , x6]

T , given by

x1 = θ2 − θ1

x2 = (n2 − n1)/n1

x3 = e2 cos(θ2 − λ2)− e1 cos(θ2 − λ1)

x4 = e2 sin(θ2 − λ2)− e1 sin(θ2 − λ1)

x5 = tan(γ/2) cos θ2

x6 = tan(γ/2) sin θ2,

(30)

wherenj , ej are the mean motion and the eccentricity of
satellitej, respectively. In terms of the parameters (30), the
rendezvous condition isx = 0.

We restrict our attention to short-range rendezvous ma-
neuvers and satellites in near-circular orbits (e1 ≈ 0). The
Earth is modeled as an oblate spheroid. Within this setting,
the linearized continuous-time dynamics of the state vector
(30) are given by

ẋ = A(t)x+B u, (31)

whereu, is the control acceleration delivered by satellite2,
expressed in the local-vertical-local-horizontal frame.The
state matrixA(t) in (31) takes on the form

A(t) = AKep +AJ2(t),

whereAKep models the contribution of spherical gravity,
andAJ2(t) describes the secular effects of the second zonal
harmonicJ2 of the geopotential. The matrixAKep reads

AKep = n1

















0 1 2 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

















.

The matrixAJ2(t) turns out to be

AJ2(t) = κ

















0 14c/3 2c 0 a15(t) a16(t)
0 0 0 0 0 0
0 0 0 −c 0 0
0 0 c 0 0 0
0 a52(t) 0 0 a55(t) a56(t)
0 a62(t) 0 0 a65(t) a66(t)

















,

wherec = 3 cos2 i1 − 1, i1 is the inclination of satellite1,
κ = 3 J2R

2
e n

7/3
1 /(4µ2/3) is a constant proportional toJ2,

Re is the Earth radius,µ is the gravitational parameter, and

a15(t) = −14 sin(2i1) cosϕ(t)

a16(t) = −14 sin(2i1) sinϕ(t)

a52(t) = −7 sin(2i1) sinϕ(t)/6

a55(t) = sin2 i1 sin(2ϕ(t))

a56(t) = 2 sin2 i1[sin
2 ϕ(t) + 4]− 6

a62(t) = 7 sin(2i1) cosϕ(t)/6

a65(t) = 2 sin2 i1[sin
2 ϕ(t)− 5] + 6

a66(t) = − sin2 i1 sin(2ϕ(t)).

The angleϕ(t) is the argument of latitude of satellite1. It
is T -periodic in t, whereT = 2π/[n1 + 2κ(4 cos2 i1 − 1)]
is the satellite1 nodal period. The inputB matrix in (31) is
given by

B =
1

(µn1)1/3

















0 0 0
0 −3 0
0 2 0
1 0 0
0 0 1/2
0 0 0

















.

For the purpose of digital control design, system (31)
is discretized with a sampling intervalts (chosen as a
suitable submultiple ofT ), yielding a periodic discrete-time
model of the form (3). Moreover, the dimensional unit of
the state vectorx(k) of system (3) is normalized by the
constant (multiplicative) factorm2/Fmax, whereFmax is the
maximum deliverable thrust andm2 is the mass of satellite2.
In this setting, the input vectoru(k) is related to the actual
thrust F (k) by the identity u(k) = F (k)/Fmax. Hence,
thrust constraints are expressed as‖u(k)‖ ≤ 1. Then, the
rendezvous control problem is formulated as in Section II.

Besides capturingJ2, the considered LTP framework
can be used to account for power limitations affecting the
spacecraft. In particular, for low-thrust propelled spacecraft,



the power available on board is typically not sufficient to
operate the engine whenever the spacecraft is shadowed from
the Sun, i.e., during solar eclipses [23]. In this regard, it
should be noticed that solar eclipses occur almost period-
ically. Indeed, within the rendezvous maneuver time scale
(usually less than few days), the occurrence of eclipses has
approximately the same period of system (3). Then, the effect
of engine cut-offs the system dynamics can be adequately
modeled by enforcing

Bk = 0 ∀ k : k (modN) ∈ E , (32)

whereE is the set of time indexes in which satellite2 is
shadowed from the Sun, within the discrete-time periodN =
T/ts. Following this approach, one obtains a periodic model
of the form (3), in which some of the input matricesBk =
Bk+N are zero. Hereafter, simulation results are reported for
such description.

B. Simulation results

The considered rendezvous scenario is as follows. The
target spacecraft lies on a circular orbit with a semi-major
axis equal to 7387.1 km and an inclination of 81 deg.
At the beginning of the rendezvous process, the controlled
spacecraft is located 1 km below the target, out-of-phase
by -0.155 deg. The initial inclination difference between
the two spacecraft amounts to -0.001 deg. These parameters
correspond to an initial inter-satellite separation of approx-
imately 20 km. The controlled spacecraft has the following
specifications: maximum deliverable thrustFmax = 15 mN
and wet massm2 = 100 kg.

The periodic system (3),(32) turns out to be controllable
according the results in [8]. The rendezvous control problem
is tackled by using the MPC scheme (4). The gain matrix
Kk in (10) is set as the periodic LQR state feedback matrix

Kk =
(

BT
k Ψk+1Bk + I

)−1
BT

k Ψk+1Ak, (33)

whereΨk is the solution to the periodic discrete-time ARE

AT
k Ψk+1Ak −AT

k ΨkBk(I +BT
k ΨkBk)

−1BT
k ΨkAk

−Ψk +QTQ = 0.

According to (32)-(33), the auxiliary control policy (10) is
such thatu(k) = 0 during eclipses. The matrixSk+H in (4)
is chosen as in Proposition 1 withCk = QTQ+KT

k Kk. The
terminal weightWk+H in (4) is set as in Proposition 2, where
for simplicity the matrixDk in taken as the identity matrix
for all k. A systematic method for exploiting the degrees
of freedom provided byDk for performance optimization is
currently under investigation.

The sampling interval for the discretization of model (31)
is taken asts = T/32 (corresponding to about 3 minutes),
while the prediction horizon of the controller is set toH =
48. Such a long horizon is adopted to effectively deal with the
limited control authority provided by the actuation system,
which in this study consists of a low-thrust engine. The
MPC problem is solved by using the package CVX and
the commercial solver Gurobi. On a standard laptop, the
solver time amounts on average to 0.7 s, i.e., a negligible
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Fig. 1. Magnitude of the system state trajectories.
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Fig. 2. Magnitude, azimuth and elevation of the control input provided by
the MPC scheme.

fraction of the sampling time. The rendezvous maneuver is
simulated on a nonlinear truth model accounting for Earth
asphericity, atmospheric drag, luni-solar gravity, and solar
radiation pressure perturbations. Figure 1 shows the evolution
of the 2-norm of the relative states resulting from the
simulation. It can be seen that the controller achieves finite
time convergence. This is in line with what has been observed
in [15] for the LTI case. The spherical coordinate components
(magnitude, azimuth, elevation) of the control inputu(k) are
reported in Figure 2 (the azimuth and elevation signals are
held constant wheneveru(k) = 0). It can be seen that the
input constraint‖u(k)‖ ≤ 1 is always satisfied. Moreover,
the command is idle during eclipse phases (highlighted in
red). The control policy displays a sparse engine activation
pattern, which is a desirable feature in order to limit the
engine wear.

The above results have been compared to those obtained
by neglecting (32) in the MPC problem and enforcing engine
cut-offs (i.e.,u(k) = 0 within eclipse phases) a posteriori.
Such heuristic is representative of a scenario in which the
eclipse location is not known/estimated in advance. Figure3
depicts the resulting spacecraft trajectories, expressedin the
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Fig. 3. Simulated trajectories in the local-vertical-local-horizontal frame:
radial versus along-track displacement (top) and cross-track vs along-track
displacement (bottom).

local-vertical-local-horizonal frame centered at the target.
Observe that the trajectory generated by the heuristic still
converges to the set-point, which indicates some degree of
robustness of the controller against plant-model mismatch.
Nevertheless, it is apparent that the inclusion of eclipse
effects in the MPC design greatly improves the regulation
performance.

V. CONCLUSIONS

An MPC strategy has been derived for linear time-periodic
systems with norm-bounded inputs. The proposed design
allows one to trade off fuel consumption and tracking per-
formance through the minimization of a sum-of-norms cost
function. Closed-loop exponential stability is established by
adopting a suitable definition of the terminal set and of the
terminal penalty term. The control scheme has been applied
to a spacecraft rendezvous problem, exploiting the flexibility
provided by the LTP framework. Simulation results show
that the rendezvous objective is achieved satisfactorily,in
spite of engine cut-offs due to eclipsing. Future research
will focus on the optimization of the tuning parameters
of the controller and on the development of results for
more complex scenarios accounting for additional control
specifications such as trajectory constraints.
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