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Abstract— In this paper, an MPC solution is devised for linear  requires the optimal cost to decrease periodically ratinen t

time-periodic optimal regulation problems requiring the mini-  monotonically, is investigated in [14].
mization of a sum of vector norms. Such type of problems arise

for instance in aerospace applications, in Whi_ch it is deséed to A common trait of the aforementioned MPC strategies is
trade-off fuel consumption and state regulation performarce,  that the cost function to be optimized is quadratic. This is

while limiting as much as possible the control activation tne. . L .
Closed-loop stability is guaranteed by embedding in the dégn a indeed a standard setting in the MPC literature. However,

terminal set and a terminal cost, both of which are periodicdly ~ despite its widespread adoption, a quadratic cost does not
time-varying. Differently from quadratic MPC, the termina| always represent the actual performance objective for the
cost is in the form of a weighted 2-norm. A systematic method controlled process. In space applications, for instartcks, i

to construct such a function is presented. The proposed d&si  ften more appropriate to cast the performance requiresnent
'Seggé?g gst;it;?cs n a spacecraft rendezvous case study With ;i yarms of a sum of vector norms [15]. Furthermore, such

P Y ' formulation usually yields optimal solutions involving a

|. INTRODUCTION sparse control activation.

Control systems with periodically time-varying dynamics While the optimization of a nonquadratic convex cost does

play a prominent role in many engineering problems. Whil@ot raise particular challenges within the MPC framework,

it is well known that periodic controllers can be usefullyth€ closed-loop stability analysis is typically more inved.

applied to linear time-invariant (LTI) plants (see e.g.],[1 /" Particular, for vector-norm-based formulations, eafor
[2]), the motivation for resorting to periodic control usiya N9 the cost decrease condition requires to find a swta_bly
comes from the periodicity of the system model or in ordef/€ighted vector norm, to be used as a Lyapunov function

to enforce a periodic behavior. Examples can be found>l [16], [17].

in robot guidance [3], vibration suppression [4], aero€pac \jotivated by the relevance of periodic models in space
applications [3], [6], [7], and many other contexts. applications, this paper develops a sum-of-norms MPC-strat
Periodic systems have been extensively studied in thgy for constrained LTP systems. A sum of 2-norms cost
control literature. Most of the classical stability resufor  fynction is considered, which allows one to trade off state
LTI systems have been extended to the linear time-periodiggulation performance and fuel consumption in a thrust-
(LTP) case (see [8] for a comprehensive overview). The eXrectoring propulsion scenario. Closed-loop stability igg
tension typically involves an increased computationatlear  anteed by extending the results in [15] to the periodic case.
In order to cope with this issue, some studies have focusgdl particular, a periodically weighted 2-norm of the system
on receding-horizon control of unconstrained LTP systemgate is employed as a terminal cost. A systematic method

(9], [10]. to construct such weights from the solution of a periodic
In recent years, the focus has shifted to constrainq_q/apunov equation, is presented.

LTP problems. In [11], a Model Predictive Control (MPC) _ .

strategy is proposed for such problems. Closed-loop #tabil The proposed MPC scheme is validated on a case study
is achieved by including an ellipsoidal terminal set an®f @ spacecraft rendezvous mission (see, e.g., [18], [19]).
quadratic terminal cost, both of which are periodicallygim The considered model takes into account periodic effects
varying, in the design. These are computed via the solutigh!€ to the second zonal harmonic of the geopotential and to
of a linear matrix inequality (LMI) problem. A similar s_o!ar gchpses. Simulations show that the pontrol_ler acise
approach is taken in [12], where the adopted terminal set fiite time convergence and control sparsity, which are two
polyhedral and the LMI condition is replaced by the solutiorflésirable properties in this application. Moreover, it 5 o

of a periodic Riccati equation. The stability proof for tees Served that incorporating eclipse constraints in the aesig
methods follows the same line as in most MPC schemes [13jfovides a far better performance compared to neglecting
It boils down to showing that the terminal set is positivelythis possibility.

invariant and that the optimall cost de_greases r_nlonotoyi_call The rest of the paper is organized as follows. The sum-of-
over time. A less conservative stability condition, Wh|chnorms MPC problem is described in Section II. Sufficient

. - . , , conditions for closed-loop stability are put forth in Sec-
The authors are with the Dipartimento di Ingegneria deitmazione . L .
e Scienze Matematiche, Universita di Siena, Siena, Itdimail: tion lll. The r_endezvous Case. StUdy !S discussed in Section |
{leomanni,giannibi,garulli,quartull@diism.unisi.it and conclusions are drawn in Section V.



Notation and preliminaries where H is a given time horizon lengthi;(j) denotes the
predicted statg steps ahead df, and the decision variables

For a real vector: € R", ||«|| denotes it2—norm, while
are the elements of the control sequence

for a matrix P € R™*", ||P|| denotes the induced matrix
2-norm. For a symmetric real matrik, Am(P) indicates Uy, = {a,(0), ..., au(H — 1)} (5)
its minimum eigenvalue, and® > 0 (P > 0) denotes R

(semi)positive definiteness. The $&t= {0,1,...} is the set The objective function/(i4;,) is chosen as

of nonnegative integers. The following definitions are aitso

H-1
order. y (s e .
Definition 1: For given N € N, a matrix sequenc@/y, I(t) jgo {”QIk(])” + ”uk(j)H} Wt n 2 ()]
k € N, is termedN —periodic if it satisfies (6)
In (4),(6),Q is a full-rank matrix, whileW, . and Sy are
My = Myn  Vk €N (D) full-rank matrices belonging tdvV—periodic sequencel’y

Definition 2: Given N —periodic matrix sequence$; and  and 5, respectively. Notice that (6) differs from the widely
symmetricR;, > 0, a symmetric matrix sequend& > 01s  ysed quadratic cost in the fact that it employs 2-norms. én th
said to be a solution of thé/—periodic Lyapunov equation gpacecraft maneuvering context, the compodent| i () |

accounts for fuel consumption, while matri} establishes
AL P Ak = P+ R = 0 @ 2 trade-off between the latter requirement and tracking
if (2) holds for all k € N. Clearly, if symmetric positive Performance. The matrix sequentig, defines the terminal
definite matricesPy, ... Py with Py = P, satisfy (2) for cost in (6), WhllgSk characterizes thg .termlnal constraint in
k = 0,...N — 1, then the sequencé, such thatP, — (4). These are instrumental to stability assessment for the
proposed MPC scheme.

Problem (4) is a convex second order cone program

Il. PROBLEM EORMULATION (SOCP) which is solved at each discrete-time steffhen,

in the standard receding horizon fashion, the first elemént o
This paper deals with periodic discrete-time linear systenmhe optimal solution

of the form

P mod n) is @ solution of (2) for allk € N.

Uy = {a;(0),..., @i (H - 1)} (7)
x(k+1) = Ap (k) + Bru(k), 3) ) )
is applied to the system, i.e.,
wherek € N, z(k) € R™ is the system statey(k) € R™

is the control input, and system matricdg € R™*" and u(k) = 4(0)- (8)

By, € R are N —periodic for a given periodV. Furthermore, leV;, (z(k)) denote the optimal cost of problem
The control problem addressed in this paper is to asympyy, j.e.,

totically stabilize the origin of system (3) via an MPC canttr Vi(z(k)) = Ji (a;). )

scheme in which a sum-of-norms objective function and

2—norm control bounds are employed. Such a choice is Asymptotic stability of the closed-loop system (3) with
particularly suited to spacecraft maneuvering applicetjo the control law (8) can be assessed along the lines of [13]
where system (3) describes the linearized orbital dynamigs ensuring that problem (4) is recursively feasible and tha
(see, e.g., [20]). In such applications, a trade-off betweeits optimal costVy(x(k)) is strictly decreasing along the
fuel consumption and state regulation performance must ktosed-loop system trajectories. This can be accomplished
achieved. Furthermore, actuator limitations have to bertak by suitably designing théV —periodic matrix sequences

into account. In particular, we consider the thrust vea®ri andi¥; which define the terminal constraint and the terminal
scenario, where constraints on maximum deliverable thrusbst, respectively, as detailed in the next section.

can be expressed dru(k)|| < 1, Vk € N, and fuel

consumption over a given time intendal_ N is proportional [Il. STABILITY RESULT

to > 4er lulk)] (see [15] for details). Assume that system (3) is stabilizable \¥—periodic

The above considerations naturally lead to an MPC desigihear feedback [8], and consider an auxiliary fictitious
framework based on the solution, at each time insta®tN,  asymptotically stabilizing control law

of the following trajectory optimization problem

. u(k) = —Kyz(k), (10)
min Jk(uk)
Uy, where K, € R™*™ is a givenN —periodic matrix sequence.
st #4(0) = 2(k) The stabilizing periodic feedback’, can be computed,

o o o ) for instance, by solving a periodic Riccati equation or an
Tk(J + 1) = Appj 85(J) + Brj @ (7) equivalent set of linear matrix inequalities, see, e.d,,[j8.].
lae()| <1 j=0...H—1 The resulting closed-loop system is given by

1Sk mr Ex(H)|| <1, a(k +1) = (A — BrKi) x(k) = Af'z(k),  (11)



which is clearly N—periodic. The control law (10) is ex- Then, the sequence of optimal objectiiégx(k)) of prob-
ploited in the sequel to design the sought matrix sequencksn (4), (13), (18) satisfies

S and W,.
The following result characterizes a possible choic&pf
ensuring that problem (4) is recursively feasible.

Virr(z(k +1)) = Va(z(k)) < —[lQz(k)[  (19)

along the the trajectories of system (3) with the control law

Proposition 1: Let Z]'Z;, be a solution of the periodic (8).

Lyapunov equation
(ANTZL  Zi AS — ZF Z+ C =0, (12)

where(, is a given symmetric positive definit¥ —periodic
matrix sequence. In (4), lef; be defined as

Sy = ( max |KiZi1|> .
i€{0,...,N—1}

Suppose problem (4) is feasible at tithg Then, it is also

(13)

feasible for allk > ko along the trajectories of system (3)

under the MPC control law (8).
Proof:
region

Cr ={z eR" : [|Kyal| <1}, (14)

i.e., the set of states(k) for which the control law (10)
satisfies the constrainitu(k)|| < 1. From (12), and positive
definiteness ofCj, it follows that ||Zyz|| < 1 implies

| Zr+1Aglz|| < 1. This property is preserved under a con-

stant scaling, hence, defining the periodically time-vagyi
region

Xy ={z e R" : [|Ska]| <1}, (15)

we get thatr € X}, implies Af'x € Xyiq1. Thus,z(k) €
Xk implies z(k + 1) € Ajkq1 under the control law
(10). Moreover, the largest sublevel set pZ,z|| < 1
in which the constraint| K;z|| < 1 holds, is given by
(1K Z; M) | Zk|| < 1. Hence, definings), as in (13), we
get that||Sxz|| < 1 implies || Kyx| < 1, i.e., &, C Cy, for
all k € N. Therefore, ifx(ko) € X, < Ck,, then the control
law (10) ensure§u(k)|| < 1 for all k > ko.

By assumption, (4) is feasible at tinkg. Now, suppose (4)
is feasible at timé: and letz; (j) be the value ok (j) at the
optimum. Thenz;(H) € X4 impliying &} (H) € Cyi .
From the above arguments, it follows that

Let us define the periodically time-varying |

Proof: The fact thaty}?'Y} solves (17) implies

T
zT A Y,ZHY;CHAﬂx — 2TV Y

(20)
+2"(|Qll + | Kx)Drz =0 Vk €N, Vo € R,
which in turn can be rewritten as
c _ZCT Q + Kk Dkx

[Veri Al + [ Yiall

Using a standard upper bound for the expression on the right

hand side of (21), one gets

(D) (1Q+ | Kl
Vi1 Al x| — || Yaz| <
T [ Vi1 A + [ V]

Taking into account (18), it follows from (22) that
IWar1Af'z]| = [Waall < —(1QI + | KxlDllll  (23)

which, being([|Q| + [ Kx|)llz]l > Q| + | Kiz|, implies

IWir1Af'z]| = [Waall < ~[|Qx]| — |Kpzl  (24)

for all x € R™ andk € N. B
Consider the feasible solutiddy,, in (16) at timek + 1.
One has that

o1 Unr1) — Vi(x(k)) = —[|Qu (k)| — [luz(0)]]
HQzL(H)|| + [ Kyt my (H) ||
Wit a1 A gien (H)|| = Wy i (H)|-

By combining (25) with (24) evaluated at timie+ H with
x = &} (H), it follows that

o1 Unt1) — Vi(z(k)) <

]l (22)

(25)

A

—[Qz(®)| — lluz ()]
—llQz (k)|
(26)

Finally, sinceld,, is in general suboptimal at time + 1,
from (9) and (26) we have

IN

U1 = {ai(1), .. 4y (H = 1), =Ky mdy (H)} - (16)
is a feasible solution of (4) at time+ 1. By induction, the Vi (z(k +1)) = Vi(z(k)) < —[Qz(®)[,  (27)
result is proved. ®  which proves the result. ]

The following proposition, which is an extension to the Notice thatC), in (12) and Dy, in (17) can be chosen

periodic case of a resultin [15] for LTI systems, charaztsi

independently. The next result states the stability priypafr

a possible choice off;, guaranteeing that the cost decreasghe proposed MPC scheme.

condition is met.

Theorem 1:The MPC design (4)-(6) withS, and Wy

Proposition 2: Let Y,V be a solution to the periodic a5 in Propositions 1-2 renders the equilibrium paint=
Lyapunov equation 0 of the closed-loop system (3) under (8) asymptotically
cNTy T cl T _ stable. Furthermore, for all initial conditiongkg) such that
(AE) Ve Y A =Yy Vit (1Q1+ 1K D Dy = 0, (37) problem (4) is feasibley(k) converges to zreafo eZ(ponentiaIIy.

Proof: The result can be proven by observing that the
optimal costV;, (z(k)) in (9) is a Lyapunov function. Clearly,
Vi(z(k)) is positive definite. By (6),(9), it follows that

cillz(R)|| < Vi(a(k)) < collz(R)]l; (28)

whereD;, is a givenN —periodic positive definite symmetric
matrix sequence. Define
Am (D
Wy = ( min E )
i€{0, N=1} [[Yi 1 AT| + [|Yi]]

1
) Y, (8)



wherec; = /A, (QTQ), andc, can be obtained according where Ak, models the contribution of spherical gravity,
to Proposition 2.38 in [21]. Moreover, (27) implies and A ;. (t) describes the secular effects of the second zonal
harmonicJ; of the geopotential. The matrid g, reads
Vit (@(k + 1) = Vi(a(k) < —allz(®)ll,  (29) 2 geop Kep

and, from (28)-(29), 8 (1) g 8 8 8
Vg1 (@(k + 1)) < esVi(z(k)), Ao —p |00 0 =1 0 0
- _ Kee =110 01 0 0 0
with ¢3 = 1 — ¢1/co. Note that0 < ¢35 < 1. Therefore, 000 0 0 )
1 1,
(B < —Vi(a(k) < ™0V, (alk) 000 0 10
Co The matrix A ;2 (t) turns out to be
< 2 (ko)) 720
. b . . . . 0 14¢/3 2¢ 0 ais(t) aie(?)
which, together with recursive feasibility established in 0 0 0 0 0 0
Proposition 1, proves the result. | N 0 0 0 —c 0 0
t) =k ,
IV. APPLICATION TO SPACECRAFTRENDEZVOUS 72(t) 0 0 c 0 0 0
In this section, the proposed MPC design is demonstrated 8 a52(? 8 8 a55(? a56(?
on a space rendezvous problem in Earth orbit, in which ac2() acs(t)  aco(t)

a controlled spacecraft equipped with a propulsion syste@herec = 3cos?i; — 1, 4; is the inclination of satellite,
operating in thrust vectoring mode is required to intercept — 3 j, R? nz/3/(4ﬂ2/3) is a constant proportional td,,

an uncontrolled target. Earth’s oblateness and solarslipr_ s the Earth radiusy is the gravitational parameter, and
effects are also considered.

A. System model a15(t) = —14sin(2i1) coso(t)

The adopted model of the orbital motion, which is taken @160 B 14.bm(?ll).bmw(t)
from [22], is briefly summarized hereafter. We refer to asa(t) = —Tsin(2i1)sinp(t)/6
the controlled and the target spacecraft by sateflitand as5(t) = sin®i1sin(2¢(t))
satellite 1, respectively. Let theelative line of nodesbe ase(t) = 2sin?iy[sin® o(t) +4] — 6
defingd as the intersection of the orbital plqnes of the two ag2(t) = Tsin(2iy)cosp(t)/6
satellites. The angle between these planes is denoted by _ 9. 1. 9
Moreover, let\; andd; be the angles formed respectively by ags(t) = 2sin”ir[sin” p(t) — 5] +6
the periapsis of orbij and the position vector of satellite ags(t) = —sin® iy sin(20p(t)).

with respect to the relative line of nodes. The relative omti |}, anglep(t)
between the two satellites is parameterized by the statevec
x = [z1,...,26]7, given by

is the argument of latitude of satellite It
is T-periodic int, whereT = 27/[n; + 2r(4 cos?i; — 1)]
is the satellitel nodal period. The inpuB matrix in (31) is
r1 = bO—0, given by

Ty = (n2—mn1)/m 0 0 0
x3 = egcos(fa — Na) —eqcos(fz — A1) 0 -3 0
. . (30) . oo
x4 = egsin(fz — A2) —egsin(fy — Aq) B—
1/3
x5 = tan(y/2)cosbs (umnp)t/ (1) 8 1(/)2
x¢ = tan(y/2)sinbs, 0 0 0 |

wheren;, e; are the mean motion and the eccentricity of

o . For the purpose of digital control design, system (31)
satellite, respect_n_/ely._ In terms of the parameters (30), th% discretized with a sampling intervdl, (chosen as a
rendezvous condition is = 0.

: : suitable submultiple of"), yielding a periodic discrete-time
We restrict our attention to short-range rendezvous ma- . . .
o . . model of the form (3). Moreover, the dimensional unit of
neuvers and satellites in near-circular orbits £ 0). The

Earth is modeled as an oblate spheroid. Within this settint%he state vect.on.:(k)- of system (3) is normallzed.by the
. . . . . bnstant (multiplicative) factots / Fyyaz, WhereF,, ., is the
the linearized continuous-time dynamics of the state vecto _ . . . .
(30) are given b maximum deliverable thrust and, is the mass of satellit2.
9 y In this setting, the input vectar(k) is related to the actual
&= A(t)x + Bu, (31) thrust F(k) by the identityu(k) = F(k)/Fn.. Hence,
thrust constraints are expressed |agk)|| < 1. Then, the
rendezvous control problem is formulated as in Section II.
Besides capturing/,, the considered LTP framework
can be used to account for power limitations affecting the

A(t) = Akep + Asa(t), spacecraft. In particular, for low-thrust propelled spaeé,

whereu, is the control acceleration delivered by sateliite
expressed in the local-vertical-local-horizontal franiée
state matrixA(¢) in (31) takes on the form



the power available on board is typically not sufficient to 20

operate the engine whenever the spacecraft is shadowed from
the Sun, i.e., during solar eclipses [23]. In this regard, it

should be noticed that solar eclipses occur almost period-f 10l
ically. Indeed, within the rendezvous maneuver time scale—
(usually less than few days), the occurrence of eclipses has
approximately the same period of system (3). Then, theteffec

of engine cut-offs the system dynamics can be adequately 0 ‘ ‘ ‘ ‘ ‘ ‘

modeled by enforcing 0 05 i5 2 25 3 35 4
Time [hours]
B,=0 Vk:k(modN) €&, (32)

—_

where € is the set of time indexes in which satellifeis Fig. 1. Magnitude of the system state trajectories.

shadowed from the Sun, within the discrete-time perog-

T/ts. Following this approach, one obtains a periodic model 1t 1
of the form (3), in which some of the input matricés, = 051 ﬂ |
By.1 v are zero. Hereafter, simulation results are reported for—

such description. 0

B. Simulation results 0 05 1 15 2 25 3 35 4

The considered rendezvous scenario is as follows. The 290
target spacecraft lies on a circular orbit with a semi- majorw
axis equal to 7387.1 km and an inclination of 81 degg 0
At the beginning of the rendezvous process, the controlled:
spacecraft is located 1 km below the target, out-of-phase _ogg ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
by -0.155 deg. The initial inclination difference between o o5 1 15 2 25 3 35 4
the two spacecraft amounts to -0.001 deg. These parameters

correspond to an initial inter-satellite separation of ragp ® 207 |
imately 20 km. The controlled spacecraft has the following =, 0 —IE_‘/_—I\,H—[H’—LL

[l

specifications: maximum deliverable thrust,,., = 15 mN &)

and wet massny = 100 kg. 201 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
The periodic system (3),(32) turns out to be controllable 0 05 1 15 2 25 3 35 4

according the results in [8]. The rendezvous control pnoble Time [hours]

is tackled by using the MPC scheme (4). The gain matrix

K, in (10) is set as the perIOdIC LQR state feedback matr|§|g '\iPCMa%mtude azimuth and elevation of the control inprovided by
he scheme

K = (Bk V1B + I) Bk \I/k+1Ak, (33)
fraction of the sampling time. The rendezvous maneuver is
simulated on a nonlinear truth model accounting for Earth
AT 1 Ay — AT U BL(I + BY U By) ' BI U, Ay, asphericity, atmospheric drag, luni-solar gravity, antaiso
0+ QT = radiation pressure perturbations. Figure 1 shows the twalu
of the 2-norm of the relative states resulting from the
According to (32)-(33), the auxiliary control policy (10§ i simulation. It can be seen that the controller achievesefinit
such thatu(k) = 0 during eclipses. The matri%; y in (4) time convergence. This is in line with what has been observed
is chosen as in Proposition 1 witt, = Q7 Q+ K K. The in[15] for the LTI case. The spherical coordinate composent
terminal weightiV,, ;7 in (4) is set as in Proposition 2, where (magnitude, azimuth, elevation) of the control inpuk) are
for simplicity the matrixD;, in taken as the identity matrix reported in Figure 2 (the azimuth and elevation signals are
for all k. A systematic method for exploiting the degreeseld constant whenever(k) = 0). It can be seen that the
of freedom provided byD;, for performance optimization is input constraint|u(k)|| < 1 is always satisfied. Moreover,
currently under investigation. the command is idle during eclipse phases (highlighted in
The sampling interval for the discretization of model (31yed). The control policy displays a sparse engine actimatio
is taken ast, = T'/32 (corresponding to about 3 minutes),pattern, which is a desirable feature in order to limit the
while the prediction horizon of the controller is setkb=  engine wear.
48. Such a long horizon is adopted to effectively deal with the The above results have been compared to those obtained
limited control authority provided by the actuation systemby neglecting (32) in the MPC problem and enforcing engine
which in this study consists of a low-thrust engine. Theut-offs (i.e.,u(k) = 0 within eclipse phases) a posteriori.
MPC problem is solved by using the package CVX anduch heuristic is representative of a scenario in which the
the commercial solver Gurobi. On a standard laptop, theclipse location is not known/estimated in advance. Figure
solver time amounts on average to 0.7 s, i.e., a negligibtiepicts the resulting spacecraft trajectories, expresséte

where W, is the solution to the periodic discrete-time ARE



Fig.
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3. Simulated trajectories in the local-vertical-Ibbarizontal frame:

displacement (bottom).

local-vertical-local-horizonal frame centered at thegédr
Observe that the trajectory generated by the heuristic stil
converges to the set-point, which indicates some degree of

robustness of the controller against plant-model mismatc
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to a spacecraft rendezvous problem, exploiting the flesgbil

provided by the LTP framework. Simulation results show

that the rendezvous objective is achieved satisfactaiily,

spite of engine cut-offs due to eclipsing. Future researdh’!
will focus on the optimization of the tuning parameters
of the controller and on the development of results for
more complex scenarios accounting for additional contrdf?
specifications such as trajectory constraints.

(1]
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