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Abstract. Let νd : Pr → PN , N :=
(
r+d
r

)
− 1, denote the degree d

Veronese embedding of Pr. For any P ∈ PN , the symmetric tensor rank
sr(P ) is the minimal cardinality of a set S ⊂ νd(Pr) spanning P . Let
S(P ) be the set of all A ⊂ Pr such that νd(A) computes sr(P ). Here we
classify all P ∈ Pn such that sr(P ) < 3d/2 and sr(P ) is computed by
at least two subsets of νd(Pr). For such tensors P ∈ PN , we prove that
S(P ) has no isolated points.
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1. Introduction

Let νd : Pr → PN , N :=
(
r+d
r

)
− 1, denote the degree d Veronese embedding

of Pr. Set Xr,d := νd(Pr). For any P ∈ PN , the symmetric rank or symmetric
tensor rank or, just, the rank sr(P ) of P is the minimal cardinality of a finite
set S ⊂ Xr,d such that P ∈ 〈S〉, where 〈 〉 denote the linear span.

For any P ∈ PN , let S(P ) denote the set of all finite subsets A ⊂ Pr such
that νd(A) computes sr(P ), i.e. the set of all A ⊂ Pr such that P ∈ 〈νd(A)〉
and ](A) = sr(P ). Notice that if A ∈ S(P ), then P /∈ 〈νd(A′)〉 for any
A′ ( A.

The study of the sets S(P ) has a natural role in the theory of symmetric
tensors. Indeed, if we interpret points P ∈ Pn as symmetric tensors, then
S(P ) is the set of all the representations of P as a sum of rank 1 tensors. For
many applications, it is crucial to have some information about the structure
of S(P ). We do not recall the impressive literature on the subject (but see [15],
for a good references’ repository). The interest in the theory is growing, since
applications of tensors are actually increasing in Algebraic Statistics, and
then in Biology, Chemistry and also Linguistics (see e.g. [15] and [16]). Let
us mention one relevant aspect, from our point of view. If we are looking for
one specific decomposition of P as a sum of tensors of rank 1, and we find some
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decomposition, how to ensure that the found decomposition is the expected
one? Of course, if S(P ) is a singleton, the answer is obvious. In a recent paper
([8]) Buczyński, Ginensky and Landsberg proved that ](S(P )) = 1 when the
rank is small, i.e. sr(P ) ≤ (d + 1)/2. This important uniqueness theorem
(which holds more generally for 0-dimensional schemes, see [7] Proposition
2.3) turns out to be sharp, even if r = 1. For larger values of the rank, one can
determine the uniqueness of the decomposition, when an element A ∈ S(P )
satisfies some geometric properties (e.g. when no 3 points of A are collinear,
see [2], Theorem 2 or when A is in general uniform position, see [4]).

In this paper, we describe more closely the set S(P ), for tensors whose
rank sits in the range sr(P ) < 3/2.

In particular, we show that for each P with ](S(P )) > 1, the set S(P )
has no isolated points.

This result has a consequence. Assume we are given Q ∈ Pn with
sr(Q) < 3d/2, and we find A ∈ S(Q) which is isolated in S(Q). Then we
can conclude that A is the unique element of S(Q) (in other words, Q is
identifiable). This means that, in the specified range, given one decomposi-
tion A ∈ S(P ), one can conclude that A is unique, just by performing an
analysis S(P ) in a neighbourhood of A. This sounds to be much easier than
looking for other points of S(P ) in the whole space.

Our precise statement is:

Theorem 1. Assume r ≥ 2. Fix a positive integer t < 3d/2. Fix P ∈ PN

such that sr(P ) = t and the symmetric rank of P is computed by at least
two different sets A,B ⊂ Pr. Then sr(P ) is computed by an infinite family
of subsets of Pr, and this family has no isolated points.

We notice that the notion of “isolated points” requires an algebraic
structure of the set S(P ). As well-known (and checked in Section 2), the set
S(P ) is constructible in the sense of Algebraic Geometry ([14], Ex. II.3.18
and Ex. II.3.19). This makes more precise the expression “no isolated point”
above (see Remark 2 in Section 2 for the details).

We also prove that the bound t < 3d/2, in the statement of Theorem 1,
is sharp. Indeed, Example 1 provides one tensor P with sr(P ) = 3d/2 (so d
is even), and ](S(P )) = 2.

In the proof, it is not difficult to see that if there are at least two elements
in ](S(P )) = 2, when sr(P ) < 3d/2, then the shape of the Hilbert functions
of A and B shows that both sets have a large intersection with either a line,
or a conic of Pr (we will refer to [2] and [13], for this part of the theory).
Then, we perform a (maybe tedious, but necessary) analysis of the behaviour
of sets of points, with a big intersection with either a line or a conic.

We also provide a deeper description of S(P ), still in the range sr(P ) <
3/2 and assuming that S(P ) is not a singleton (hence it is infinite). Indeed,
we have the following:

Theorem 2. Assume r ≥ 2 and d ≥ 3. Fix a positive integer t < 3d/2. Fix
P ∈ PN such that sr(P ) = t. Then, the set S(P ) is not a single point if and
only if P may be described in one of the following way:
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(a) for any A ∈ S(P ), there is a line D ⊂ Pr such that ](A ∩D) ≥ d(d +
2)/2e; set F := A \ A ∩ D; the set 〈νd(A ∩ D)〉 ∩ 〈{P} ∪ νd(F )〉, is
formed by a unique point PD and S(PD) is infinite; for each E ∈ S(PD)
we have E ∩ F = ∅ and E ∪ F ∈ S(P ).

(b) for any A ∈ S(P ), there is a smooth conic T ⊂ Pm such that ](A∩T ) ≥
d+1; set F := A \A∩ T ; the set 〈νd(A∩ T )〉 ∩ 〈{P} ∪F 〉, is formed by
a unique point PT and S(PT ) is infinite; for each E ∈ S(PT ) we have
E∩F = ∅; every element of S(P ) is of the form E′∪F for some E′ ⊂ T
computing S(PT ) with respect to the rational normal curve νd(T ).

(c) d is odd; for any A ∈ S(P ), there is a reducible conic T = L1∪L2 ⊂ Pm,
L1 6= L2, such that ](A∩L1) = ](A∩L2) = (d+1)/2 and L1 ∩L2 /∈ A.

Let us mention that if L is a linear subspace of dimension m in Pr, then
the Veronese embedding νd, restricted to L, can be identified with a d-th
Veronese embedding of Pm. Thus, if Q is a point of the linear span 〈νd(L)〉,
then we can consider the rank of Q, either with respect to Xr,d, or with
respect to Xm,d. Fortunately, in our cases where this ambiguity could arise,
by a result contained in [16] (which corresponds essentially to the symmetric
case of [9], Proposition 2.2) the two ranks are equal, and every decomposition
A ∈ S(Q), with respect to Xr,d, is contained in Xm,d. Indeed, we have:

Remark 1. Take PD (resp. PT ) as in case (a) (resp. (b)) of Theorem 2. By
[18], Proposition 3.1, or [17], subsection 3.2, sr(PD) (resp. sr(PT )) is equal
to its symmetric rank with respect to the rational normal curve νd(D) (resp.
νd(T )). By [16], Exercise 3.2.2.2, each element of S(PD) (resp. S(PT )) is
contained in D (resp. T ).

Several algorithms are available, to get an element of S(PD) or S(PT )
([11], [17], [5]).

Finally, we wish to thank J. Landsberg, who pointed out to us the
importance of studying the existence of isolated points A ∈ S(P ), when
S(P ) is not a singleton. We also thank the anonymous referee, for several
useful suggestions on a preliminary version of the paper.

2. Preliminaries

We work over an algebraically closed field K such that char(K) = 0.

Recall, from the introduction, than νd : Pr → PN , N :=
(
r+d
r

)
− 1

denotes the degree d Veronese embedding of Pr. Call Xr,d the image of this
map.

For any closed subschemeW ⊆ Pr, let 〈W 〉 denote the linear span ofW .
If W sits in some hyperplane, 〈W 〉 is the intersection of all the hyperplanes
of Pr containing W .

For any integer m > 0 and any integral, positive-dimensional subvariety
T ⊂ Pr, we let Σm(T ) denote the embedded m-th secant variety of X, i.e. the
closure in Pr of the union of all (m−1)-dimensional linear subspaces spanned
by m points of T . We take the closure with respect to the Zariski topology.
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Notice that, over the complex number field, the closure in the euclidean
topology gives the same set.

For any integer k > 0, let Hilbk(Pr)0 denote the set of all finite (0–

dimensional) reduced subsets of Pr, with cardinality k. Hilbk(Pr)0 is a smooth
and quasi-projective variety of dimension rk.

Remark 2. We observe that the set S(P ), defined in the introduction, is
always constructible.

Indeed, let G := G(k − 1, r) denote the Grassmannian of all (k − 1)-
dimensional linear subspaces of Pr. For any point P ∈ Pr, setG(k−1, r)(P ) :=
{V ∈ G(k− 1, r) : P ∈ V } and G(k− 1, r)(P )+ := {V ∈ G(k− 1, r)(P ) : P is
spanned by k points of V ∩X. Notice that, by definition, G(k−1, r)(P )+ = ∅
for all k < sr(P ) and G(sr(P ) − 1, r)(P )+ 6= ∅. Now, put J := {(S, V ) ∈
Hilbsr(P )(Pr)0 × G(sr(P ) − 1, k)(P )+ : P ∈ 〈νd(S)〉}. This set J is locally
closed. If π1 denotes the projection onto the first factor, then S(P ) is exactly
the image π1(J ). Hence, a theorem of Chevalley guarantees that S(P ) is a
constructible set ([14], Ex. II.3.18 and Ex. II.3.19).

We are interested in isolated points of S(P ). Notice that Z is an isolated
point for S(P ) when Z is an irreducible component of the closure of S(P ).
Thus, the notion of isolated points for S(P ) are equal both if we use the
Zariski or the Euclidean topology on S(P ).

Remark 3. Let X be any projective scheme and D any effective Cartier
divisor of X. For any closed subscheme Z of X, we denote with ResD(Z)
the residual scheme of Z with respect to D. i.e. the closed subscheme of X
with ideal sheaf IZ : ID (where IZ , ID are the ideal sheaves of Z and D,
respectively).

We have deg(Z) = deg(Z ∩D) + deg(ResD(Z)). If Z is a finite reduced
set, then ResD(Z) = Z \ Z ∩ D. For every L ∈ Pic(X) we have the exact
sequence

0 → IResD(Z) ⊗ L(−D) → IZ ⊗ L→ IZ∩D,D ⊗ (L|D) → 0 (1)

From (1) we get

hi(X, IZ ⊗ L) ≤ hi(X, IResD(Z) ⊗ L(−D)) + hi(D, IZ∩D,D ⊗ (L|D))

for every integer i ≥ 0.

3. The proofs

We will make an extensive use of the following two results.

Lemma 1. Let A,B ∈ Pr be two zero-dimensional schemes such that A 6= B.
Assume the existence of P ∈ 〈νd(A)〉 ∩ 〈νd(B)〉 such that P /∈ 〈νd(A′)〉 for
any A′ ( A and P /∈ 〈νd(B′)〉 for any B′ ( B. Then h1(Pr, IA∪B(d)) > 0.

Proof. See [2], Lemma 1. �
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The following lemma was proved (with D a hyperplane) in [3], Lemma
8. The same proof works for an arbitrary hypersurface D of Pr.

Lemma 2. Fix positive integers r, d, t such that t ≤ d and finite sets A,B ⊂
Pr. Assume the existence of a hypersurface D ⊂ Pr of degree t, such that
h1(I(A∪B)\(A∪B)∩D(d− t)) = 0. Set F := A ∩B \ (D ∩A ∩B).

Then νd(F ) is linearly independent. Moreover 〈νd(A)〉 ∩ 〈νd(B)〉 is the
linear span of the two supplementary subspaces 〈νd(F )〉 and 〈νd(A)〉∩〈νd(B)〉.

Assume there is P ∈ 〈νd(A)〉 ∩ 〈νd(B)〉 such that P /∈ 〈νd(A′)〉 for
any A′ ( A, and P /∈ 〈νd(B′)〉 for any B′ ( B. Then A = (A ∩ D) t F ,
B = (B ∩D) t F , which implies that A \A ∩D = B \B ∩D, and these sets
are equal to F .

Next, we need to point out first the case of the Veronese embeddings
X1,d of P1. This (already non–trivial) case anticipates some features of the
behaviour of the sets S(P ), in higher dimension.

Lemma 3. Assume r = 1 and hence N = d. Fix P ∈ Pd such that sr(P ) is
computed by at least two different subsets of X1,d. Then dim(S(P )) > 0 and
S(P ) has no isolated points.

Proof. Let t be the border rank of P , i.e. the minimal integer such that
P sits in the secant variety Σt(X1,d). The dimension of secant varieties of
irreducible curve is well known ([1], Remark 1.6), and it turns out that t ≤
b(d + 2)/2c. Take A,B computing sr(P ) and such that A 6= B. Lemma 1
gives h1(IA∪B(d)) > 0. Since any set of at most d+ 1 points is separated by
divisors of degree d, we see that ](A ∪ B) ≥ d + 2. Hence ](A) = ](B) ≥ t
and equality holds only if t = (d+ 2)/2 and A ∩B = ∅.

(i) First assume t = (d + 2)/2, so that, as we observed above, t
is also the symmetric rank of P . In this case, by [1], Remark 1.6, a stan-
dard dimensional count proves that Σt(X1,d) = Pd. Moreover, (S(Q)) can
be described as the fiber of a natural proper map of varieties. Namely, let
G(t− 1, d) denotes the Grassmannian of (t− 1)-dimensional linear subspaces
of Pd. Let I := {(O, V ) ∈ Pd × G(t − 1, d) : O ∈ V } denote the incidence
correspondence, and π1, π2 denote the morphisms induced from the projec-
tions to the two factors. Since X1,d is a rational normal curve, of degree d,

notice that dim(〈W 〉) = t − 1 for every W ∈ Hilbt(X1,d). Thus, the map

Z 7→ 〈Z〉 defines a proper morphism φ : Hilbt(X1,d) → G(t − 1, d). Set

Φ := π−1
2 (φ(Hilbt(X1,d))). By construction, S(P ) corresponds to the fiber of

the map π1|Φ : Φ → Pd over P . Φ (the abstract secant variety) is an integral
variety of dimension dim(Φ) = d+1 ([1]). Since ψ is proper and Φ is integral,
every fiber of π1|Φ has dimension at least 1 and no isolated points ([14], Ex.
II.3.22 (d)). Thus, the claim holds, in this case.

(ii) Now assume d ≥ 2t− 1. Hence t < sr(P ). A theorem of Sylvester
(see [11], or [17], Theorem 4.1) proves that, in this case, sr(P ) = d + 2 − t.
Moreover, by [17] §4, there is a unique zero-dimensional scheme Z ⊂ P1 such
that deg(Z) = t and P ∈ 〈νd(Z)〉. As t < sr(P ), this subscheme Z cannot be
reduced.
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Fix any A ∈ S(P ). Since h1(IA∪Z(d)) > 0 (Lemma 1) and deg(A) +
deg(Z) = d+2, we have Z∩A = ∅. Fix any E ⊂ A such that d−](E) = 2t−2.
Let YE ⊂ P2t−2 be the image of X1,d under the projection πE from the linear
subspace 〈νd(E)〉. Notice that YE is again a rational normal curve, of degree
2t− 2, so that it coincides, up to a projectivity, with X1,2t−2.

We have Z ∩ E = ∅. Moreover deg(Z) + ](E) ≤ d + 1, so that, by the
properties of the rational normal curve mentioned above, the set νd(Z)∪νd(E)
is linearly independent. It follows 〈νd(Z)〉 ∩ 〈νd(E)〉 = ∅. Hence πE is a
morphism at each point of 〈νd(Z)〉 and maps it isomorphically onto a (t−1)-
dimensional linear subspace of P2t−2. As deg(A) ≤ d+1, for the same reason
we also have 〈νd(A \ E)〉 ∩ 〈νd(E)〉 = ∅. It follows that the symmetric rank
of πE(P ) (with respect to YE) is exactly t, and πE(νd(A \ E)) is one of the
elements of the set S(πE(P )). Moreover, for any U ∈ S(πE(P )) the set U ∪E
computes sr(P ). We saw above that πE(νd(A\E)) is not an isolated element
of S(πE(P )). Thus A is not an isolated element of S(P ). �

Now, we are ready to prove our first main result.

Proof of Theorem 1. Since A 6= B, Lemma 1 gives h1(IA∪B(d)) > 0.
Then, since ](A ∪ B) ≤ 2t < 3d, one of the following cases occurs ([13], Th.
3.8):

(i) there is a line D ⊂ Pr such that ](D ∩ (A ∪B)) ≥ d+ 2;
(ii) there is a conic T ⊂ Pr such that ](T ∩ (A ∪B)) ≥ 2d+ 2.

We will proof the statement, by showing that Lemma 3 implies that we can
move the points of A∩D (in case (i)), or A∩T (in case (ii)), in a continuous
family, whose elements, together with A \ (A ∩ D), determine a non trivial
family of sets in S(P ), which generalizes A.

(a) In this step, we assume the existence of a line D ⊂ Pr such that
](D ∩ (A ∪B)) ≥ d+ 2.

Set F := A\(A∩D). Let H ⊂ Pr be a general hyperplane containing D.
Since A∪B is finite and H is general, we have have (A∪B)∩H = (A∪B)∩D.

First assume h1(I(A∪B)\(A∪B)∩D(d − 1)) = 0. Lemma 2 gives A \ (A ∩
D) = B\(B∩D). Hence ](A∩D) = ](B∩D) and A∩D 6= B∩D, since A 6= B.
The Grassmann’s formula shows that 〈νd(A)〉 ∩ 〈νd(B)〉 is the linear span of
its (supplementary) subspaces 〈νd(A\(A∩D))〉 and 〈νd(A∩D)〉∩〈νd(B∩D)〉.
This means that one can find a point PD ∈ 〈νd(A ∩D)〉 ∩ 〈νd(B ∩D)〉 such
that P ∈ 〈{PD}∪νd(A\A∩D)〉 = 〈{PD}∪νd(F )〉. We notice that νd(A∩D)
and νd(B ∩D) are two different subsets of the rational normal curve νd(D),
and they computes the rank of PD, with respect to νd(D) = X (which can be
identified with X1,d, see the Introduction). Indeed, if PD belongs to the span
of a subset Z of νd(D), with cardinality smaller than A ∩D, then P would
belong to the span of the subset νd(F )∪Z, of cardinality smaller than sr(P ),
a contradiction. By Lemma 3, A ∩D is not an isolated point of S(PD).

Claim 1: Fix any E ∈ S(PD). Then sr(P ) = ](F ) + sr(PD) and
E ∪ F ∈ S(P ).
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Proof of Claim 1: By [16], Exercise 3.2.2.2, (see also Remark 1), every
element of S(PD) is contained in D and in particular it is disjoint from F .
Since PD ∈ 〈νd(E)〉 and P ∈ 〈{PD}∪νd(F )〉, we have P ∈ 〈νd(E∪F )〉. Hence,
to prove Claim 1 it is sufficient to prove ](E ∪F ) ≤ sr(P ). Since F ∩D = ∅,
we have ](E ∪F ) = sr(P ) + sr(PD)− ](A∩D). Since PD ∈ 〈νd(A∩D)〉, we
have ](A∩D) ≥ sr(PD) by the definition of sr(PD), concluding the proof of
Claim 1.

Claim 1 implies that A is not an isolated point of S(P ). Namely, let ∆
be an integral affine curve and o ∈ ∆ such that there is {αλ}λ∈∆ ⊆ S(PD)
with αo = A∩D and αλ ⊂ D for all λ ∈ ∆ (Lemma 3). By Claim 1, we have
F ∪ αλ ∈ S(P ) for all λ ∈ ∆.

Now assume h1(I(A∪B)\(A∪B)∩D(d−1)) > 0. Since ]((A∪B)\ (A∪B)∩
D) ≤ 2d − 2 ≤ 2d − 1, again there is a line L ⊂ Pm such that ](L ∩ ((A ∪
B) \ (A ∪B) ∩D)) ≥ d+ 1. Let H2 ⊂ Pm be a general quadric hypersurface
containing D ∪ L (it exists, because if L ∩D = ∅, then r ≥ 3). Since L ∪D
is the base locus of the linear system |IL∪D(2)|, A ∪ B is finite and H2 is
general in |IL∪D(2)|, we have H2 ∩ (A∪B) = (L∪D)∩ (A∪B). By Lemma
2, A \ (A ∩ (D ∪L)) = B \ (B ∩ (D ∪L)). Since ]((A ∪B) \ (A ∪B) ∩H2) ≤
3d − 2d − 3 ≤ d − 1, we have h1(I(A∪B)\(A∪B)∩H2

(d − 2)) = 0. Lemma 3
gives A \ (A ∩ (D ∪ L)) = B \ (B ∩ (D ∪ L)). Notice that either ](A ∩ L) ≥
(d+ 2)/2, or ](B ∩ L) ≥ (d+ 2)/2, since ]((A ∪B) ∩ (D ∪ L)) ≥ 2d+ 3 and
](A ∩ (D ∪ L)) = ](B ∩ (D ∪ L)).

Assume x := ](A∩L) ≥ (d+2)/2. Since P ∈ 〈νd(A)〉 and P /∈ 〈νd(A′)〉
for any A′ ( A, the set 〈{P} ∪ νd(A \A∩L)〉 ∩ 〈νd(A∩L)〉 is a single point.
Call PL,A this point. Since A computes sr(P ), we see that A ∩ L computes
the rank of PL,A, with respect to the rational normal curve νd(L). Since
2x + 1 > d, as explained in the proof of Lemma 3, A ∩ L is not an isolated
point of S(PL,A) (w.r.t. νd(L)). On the other hand, as in Claim 1, adding
A\(A∩L) to a sets in S(PL,A) we obtain sets in S(P ). As above, this implies
that A is not an isolated point of S(P ).

In the same way we conclude if ](B ∩D) ≥ (d+ 2)/2.

(b) Here we assume the non-existence of a line D ⊂ Pm such that
](D∩(A∪B)) ≥ d+2. Hence there is a conic T ⊂ Pm such that ](T∩(A∪B)) ≥
2d+ 2.

Since A computes sr(P ), the set 〈{P} ∪ νd(A \ A ∩ T )〉 ∩ 〈νd(A ∩ T )〉
is a single point. Call this point PT . Let H2 be a general element of |IT (2)|.
Since IT (2) is spanned outside T and A∪B is finite, we have H2∩ (A∪B) =
T ∩ (A ∪ B). Since ](A ∪ B) − ]((A ∪ B) ∩ T ) ≤ d − 2 ≤ d − 1, we have
h1(IA∪B\(A∪B)∩H2

(d− 2)) = 0. Lemma 3 gives A \A ∩ T = B \B ∩ T .
First assume that T is a smooth conic. Hence νd(T ) is a rational normal

curve of degree 2d. In this case, the conclusion follows by repeating the proof
of the case h1(I(A∪B)\(A∪B)∩D(d − 1)) = 0 of step (a), including Claim 1,
with νd(T ) instead of νd(D), and applying Lemma 3 for the integer 2d.

Now assume that T is singular. Since A ∪B is reduced, we may find T
as above which is not a double line, say T = L1 ∪ L2 with L1 6= L2. Since
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]((A∪B)∩T ) ≥ 2d+2 and ]((A∪B)∩R) ≤ d+1 for every line R, we have
]((A ∪ B) ∩ L1) = ]((A ∪ B) ∩ L2) = d+ 1 and L1 ∩ L2 /∈ (A ∪ B). If either
](A ∩ Li) =≥ (d + 2)/2 or ](B ∩ Li) ≥ (d + 1)/2 for some i, we may repeat
the proof of the case h1(I(A∪B)\(A∪B)∩D(d− 1)) > 0 taking L1 ∪ L2 instead
of L ∪D.

Thus, it remains to consider the case where d is odd and ](A ∩ Li) =
](B∩Li) = (d+1)/2 for all i. Set {O} := L1∩L2. Since 〈νd(L1)〉∩〈νd(L2)〉 =
{νd(O)} and P /∈ 〈νd(Li)〉, i = 1, 2, the linear space 〈νd(Li)〉 ∩ 〈{νd(PT )} ∪
νd(L2−i)〉 is a line Di ⊂ 〈νd(Li)〉 passing through νd(O). The set 〈νd(A ∩
Li)〉 ∩ Di is a point PA,i ∈ Di \ {νd(O)}. Notice that 〈D1 ∪ D2〉 is a plane
and PT ∈ 〈D1 ∪ D2〉 \ (D1 ∪ D2). Hence for each U1 ∈ D1 \ {νd(O)} there
is a unique U2 ∈ D2 \ {O} such that PT ∈ 〈{U1, U2}〉. By construction,
PLi,A has symmetric tensor rank srLi(PLi,A) = (d + 1)/2 with respect to
the rational normal curve νd(Li) ([17], Theorem 4.1 or [5], §3) (we also have
sr(P ) = (d + 1)/2, by [18], Proposition 3.1). The non-empty open subset
〈νd(Li)〉 \ Σ(d−1)/2(νd(Li)) of 〈νd(Li)〉 is the set of all Q ∈ 〈νd(Li)〉 whose
symmetric rank with respect to vd(Li) is exactly srLi(Q) = (d+ 1)/2. Since
h1(P1, IE(d)) = 0 for every set E ⊂ P1 such that ](E) ≤ d + 1, for every
Q ∈ 〈νd(Li)〉\Σ(d−1)/2(νd(Li)) there is a unique Ai,Q ⊂ Li such that νd(Ai,Q)
computes srLi(P ). Set Ui := 〈νd(Li)〉 \Σ(d−1)/2(νd(Li))∩Di. For each Q1 ∈
D1 ∩ νd(Li)〉 \Σ(d−1)/2(νd(Li), call Q2 the only point of D2 \ {O} such that
P ∈ 〈{Q1, Q2}〉. By moving Q1 ∈ D1, we find an integral one-dimensional
variety ∆ := {F ∪AL1,Q1 ∪AL2,Q2} ⊆ S(P ) with A ∈ ∆. Hence A is not an
isolated point of S(P ). �

The following example shows that the bound sr(P ) < 3d/2 in the state-
ment of Theorem 1 is sharp, for large d.

Example 1. Fix an even integer d ≥ 6. Assume m ≥ 2. Here we construct
P ∈ Pn such that sr(P ) = 3d/2 and its symmetric rank is computed by
exactly two subsets of Xm,d

Fix a 2-dimensional linear subspace M ⊆ Pr and a smooth plane cubic
C ⊂M . Since h1(M, IC(d)) = h1(M,OM (d− 3)) = 0, we have deg(νd(C)) =
3d, dim(〈νd(C)〉) = 3d − 1 and νd(C) is a linearly normal elliptic curve of
〈νd(C)〉. Since no non-degenerate curve is defective ([1], Remark 1.6), we
have Σ3d/2(νd(C)) = 〈νd(C)〉 and Σ3d/2(νd(C)) \ Σ(3d−2)/2(νd(C)) is a non-
empty open subset of the secant variety Σ3d/2(νd(C)). Fix a general P ∈
Σ3d/2(νd(C)). Since νd(C) is not a rational normal curve, by [10], Theorem
3.1 and [10], Proposition 5.2, there are exactly 2 (reduced) subsets of νd(C), of
cardinality 3d/2, which compute the symmetric rank of P . Thus, to settle the
example, it is sufficient to prove that any B ⊂ Pm such that νd(B) computes
sr(P ), is a subset of C. Obviously ](B) ≤ 3d/2.

Assume B * C. Let H3 be a general cubic hypersurface containing C
(hence H3 = C if r = 2). Set B′ := B \ B ∩ C. Since B is finite and H3 is
general, we have B ∩ H3 = B ∩ C. Since A ⊂ C, we have B′ = (A ∪ B) \
(A ∪ B) ∩ C. Lemma 1 gives h1(IA∪B(d)) > 0. Hence h1(M, IA∪B(d)) > 0.
Remark 3 gives that either h1(C, I(A∪B)∩C(d)) > 0 or h1(IB′(d− 3)) > 0.
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(a) First assume h1(IB′(d− 3)) > 0. Since d ≥ 3 and ](B′) ≤ 2d− 1,
there is a line D ⊂ M such that ](D ∩ B′) ≥ d − 1 (see [5], Lemma 34, or
[13], Th. 3.8). Since νd(B) is linearly independent, we have ](D∩B) ≤ d+1.

Assume ](D∩(A∪B)) ≤ d+1. Hence h1(D, I(A∪B)∩D(d)) = 0. Remark

3 gives h1(M, I(A∪B)\(A∪B)∩D(d− 1)) > 0. Set F := (A∪B) \ ((A∪B)∩D).
We easily compute ](F ) < 3(d− 1). By [13], Theorem 3.8, we get that either
there is a line D1 such that ](F ∩ D1) ≥ d + 1 or there is a conic D2 such
that ](D2 ∩ F ) ≥ 2d. As P ∈ Σ3d/2(νd(C)) is general, then also A is general
in C (hence reduced). Thus, no 3 of its points are collinear and no 6 of its
points are contained in a conic. Hence if D1 exists, we get ](B) ≥ 2d − 2,
while if D2 exists, we get ](B) ≥ d − 1 + (2d − 5) = 3d − 6; both lead to a
contradiction, because d ≥ 6 and ](B) = 3d/2.

Now assume ](D∩(A∪B)) ≥ d+2. Let H ⊂ Pm be a general hyperplane
containing D. Since A ∪ B is finite and H is general, we have H ∩ (A ∪
B) = D ∩ (A ∪ B). If h1(I(A∪B)\(A∪B)∩H(d − 1)) = 0, then Lemma 2 gives
B \ B ∩ D = A \ A ∩ D. Hence ](A ∩ D) = ](B ∩ D). Since ](A ∩ D) ≤ 2,
we get d ≤ 2, a contradiction. Now assume h1(I(A∪B)\(A∪B)∩H(d − 1)) > 0.
Since ]((A ∪ B) \ (A ∪ B) ∩H) ≤ 2d − 2, there is a line L ⊂ Pm such that
](L ∩ (A ∪ B) \ ((A ∪ B) ∩D)) ≥ d + 1. Let H2 ⊂ Pm be a general quadric
hypersurface containing L∪D. As usual, since A∪B is finite, L∪D is the base
locus of the linear system |IL∪D(2)| and H2 is general in |IL∪D(2)|, we have
H2∩(A∪B) = (L∪D)∩(A∪B). Since ]((A∪B)\(A∪B)∩H2) ≤ d−3, we have
h1(I(A∪B)\(A∪B)∩H2

(d−2)) = 0. Hence Lemma 2 gives A\A∩H = B\B∩H.
Hence ]((A∩ (L∪D)) = ](B ∩ (L∪D)). This is absurd, because d ≥ 4 while,
by generality, no 6 points of A are on a conic.

(b) Assume h1(C, I(A∪B)∩C(d)) > 0 and h1(IB′(d− 3)) = 0. Since C
is a smooth elliptic curve and deg(OC(d)) = 3d, either deg((A ∪ B) ∩ C) ≥
3d + 1 or deg((A ∪ B) ∩ C) = 3d and OC((A ∪ B) ∩ C) ∼= OC(d). Hence
](B ∩ C) ≥ (3d− 1)/2. Therefore ](B′) ≤ 2. Taking D := C in Lemma 2 we
get B′ = ∅, because A ⊂ C.

Next, we prove Theorem 2, a more precise description of the positive
dimensional components of S(P ), when sr(P ) < 3d/2.

Proof of Theorem 2. Fix A ∈ S(P ). and assume the existence of
B ∈ S(P ) such that B 6= A. At the beginning of the proof of Theorem 1 we
showed that either:

(i) there is a line D ⊂ Pr such that ](D ∩ (A ∪B)) ≥ d+ 2;
(ii) there is a conic T ⊂ Pr such that ](T ∩ (A ∪B)) ≥ 2d+ 2.

(i) Here we assume the existence of a lineD ⊂ Pr such that ]((A∪B)∩
D) ≥ d+2. We proved in step (a) of the proof of Theorem 1 that ](A∩D) =
](B∩D). Hence ](A∩D) ≥ d(d+2)/2e. Set F := A\A∩D. Since P ∈ 〈νd(A)〉
and P /∈ 〈νd(A′)〉 for any A′ ( A, the set 〈νd(A ∩D)〉 ∩ 〈{P} ∪ νd(F )〉 is a
single point. Let PD denote this point. Lemma 3 and [16], Exercise 3.2.2.2,
give that S(PD) is infinite and each element of it is contained in D. Thus, to
prove that we are in case (a) of the statement, it is sufficient to prove that
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E ∪F ∈ S(P ) for any E ∈ S(PD). This assertion is just Claim 1 of the proof
of Theorem 1.

(ii) Now assume the non-existence of a line D as above. Then, there
is a (reduced) conic T ⊂ Pr such that ](T ∩(A∪B)) ≥ 2d+2 and A\A∩T =
B \ B ∩ T . Hence ](A ∩ T ) = ](B ∩ T ) ≥ d + 1. We consider separately the
cases in which T is smooth or T is singular.

(ii.1) Assume T is smooth. Set F := A \ A ∩ T . As in step (i), we
see that 〈νd(A ∩D)〉 ∩ 〈{P} ∪ νd(F )〉 is a single point, PT . Moreover, we see
that ](A∩T ) = sr(PT ) and S(PT ) is infinite, since {F ∪E}E∈S(PT ) ⊆ S(P ).
To conclude that we are in case (b), we need to prove that every element of
S(P ) is of the form F ∪E, E ∈ S(PT ). Fix any B ∈ S(P ) such that B 6= A.
Since ](A ∪ B) < 3d and h1(IA∪B(d)) > 0, either there is a line D1 such
that ]((A ∪ B) ∩D1) ≥ d + 2, or there is a reduced conic T2 6= T such that
]((A ∪B) ∩ T2) ≥ 2d+ 2 ([13], Theorem 3.8).

Assume the existence of the lineD1. If h
1(I(A∪B)\((A∪B)∩D1)(d−1)) = 0,

then Lemma 2 gives A\A∩D1 = B \B∩D1. Since ](A) = sr(P ) = ](B), we
get ](A∩D1) = ](B∩D1) ≥ (d+2)/2, which contradicts the fact that we are
not in case (i). Therefore h1(I(A∪B)\(A∪B)∩D1

(d − 1)) > 0. Hence there is a
line D2 such that ](D2∩((A∪B)\(A∪B)∩D1)) ≥ d+1. Let H2 be a general
quadric hypersurface containing D1 ∪D2 (it exists, because if D1 ∩D2 = ∅,
then m ≥ 3). Since ]((A∪B) \ (A∪B)∩H2) ≤ (3d− 1)− 2d− 3 ≤ d− 1, we
have h1(I(A∪B)\(A∪B)∩H2

(d− 2)) = 0. Hence Lemma 2 implies A \A∩H2 =
B \B ∩H2. Since H2 be a general quadric hypersurface containing D1 ∪D2,
we have A ∩ H2 = A ∩ (D1 ∪ D2) and B ∩ H2 = B ∩ (D1 ∪ D2). Since
T ∩ (D1∪D2) ≤ 4, we get 2d+3 ≤ ]((A∪B)∩ (D1∪D2)) ≤ 8, contradicting
the assumption d ≥ 3.

Assume the existence of the conic T2 and assume T 6= T2. In step (ii)
of the proof of Theorem 1, we proved that A \ T2 ∩ A = B \ T2 ∩ B. Since
](A) = sr(P ) = ](B), we get ](A ∩ T2) = ](B ∩ T2). Since ](T ∩ T2) ≤ 4 and
](A \A ∩ T ) ≤ (3d− 1)/2− d− 1, we have ](A ∩ T2) ≤ (3d− 1)/2− d+ 3 =
(d+5)/2. Hence ](A∩T2) = ](B∩T2) ≥ 2d+2−(d+5)/2 = (3d−1)/2. Since
](A ∩ T2) + ](B ∩ T2) ≥ ]((A ∪ B) ∩ T2) ≥ 2d + 2 we get d = 3 and A ⊂ T .
Hence ](B ∩ T2) ≥ 4 so that B ⊂ T2. Thus A ⊂ T and B ⊂ T2 and moreover
A \A ∩ T2 = B \B ∩ T2 = ∅. It follows that A = T ∩ T2. Since A ⊂ T and T
is a smooth conic, we have P ∈ 〈ν3(T )〉 and the symmetric rank of P , with
respect to the rational normal curve ν3(T ) ⊂ P6, is 4. It follows that S(P )
is infinite. By [16], Exercise 3.2.2.2, we have B ⊂ ν3(T ) for all B ∈ S(P ).
Hence (b) holds, in this case.

Finally, assume that T2 exists and T = T2. I.e. assume ](T ∩ (A∪B)) ≥
2d + 2. In step (ii) of the proof of Theorem 1, we proved that A \ T ∩ A =
B \ T ∩B and that B ∩ T computes sr(PT ). Hence B ∈ {F ∪ E}E∈S(PT ).

(ii.2) Here we assume the existence of a reducible conic T such that
](A∩T ) ≥ d+1. Write T = L1∪L2 with ](A∩L1) ≥ ](A∩L2). If ](A∩L1) ≥
(d+2)/2, then, by step (i), we are in case (a). If ](A∩L1) < (d+2)/2, then
we get ](A∩L1) = ](A∩L2) = (d+ 1)/2 and L1 ∩L2 /∈ A. We also get that
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d is odd. It remains simply prove that S(P ) 6= {A}. Indeed, we proved that
S(P ) is infinite in the second part of step (ii) of the proof of Theorem 1.

The proof of the statement is completed. �
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[1] B. Ådlandsvik, Joins and higher secant varieties. Math. Scand. 61 (1987), 213–
222.

[2] E. Ballico and A. Bernardi, Decomposition of homogeneous polynomials with
low rank, arXiv:1003.5157v2 [math.AG] (to appear on Math. Z.).

[3] E. Ballico and A. Bernardi, A partial stratification of secant varieties of
Veronese varieties via curvilinear subschemes, arXiv:1010.3546v2 [math.AG].

[4] E. Ballico and L. Chiantini, A criterion for detecting the identifiability of sym-
metric tensors of size three, arXiv:1202.1741 [math.AG].

[5] A. Bernardi, A., Gimigliano and M. Idà, Computing symmetric rank for sym-
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