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Abstract. Rank 2 arithmetically Cohen-Macaulay vector bundles on
a general quintic hypersurface of the three-dimensional projective space
are classified.

1. Introduction

Let Y ⊂ Pm be a smooth n-dimensional projective variety, embedded by
OY (1), with n > 0. Assume that the coordinate ring RY is Cohen-Macaulay,
and take a vector bundle E on Y . Then the bundle E is called arithmetically
Cohen-Macaulay (ACM) if it has no intermediate cohomology, i.e. if:

Hp(Y, E(t)) = 0, for p ̸= 0, n and for all t ∈ Z.

It is natural to ask whether it is possible to classify ACM bundles on a
fixed variety Y . By the results of Horrocks [Hor64] and Knörrer in [Knö87]
the answer is affirmative when Y is a projective space or a smooth quadric
hypersurface. On the other hand, very few varieties are of finite Cohen-
Macaulay type. Namely, by the result of [BGS87] and [EH88], the set of
isomorphism classes of ACM indecomposable bundles over Y is infinite (up
to twist by OY (t)) unless Y is: a rational normal curve, a projective space,
a smooth quadric, a Veronese surface in P4, or a the rational normal scroll
S(1, 2) in P4.

Considerable efforts have thus been driven toward a classification of ACM
bundles, at least of low rank (say of rank 2), on some special classes of
varieties. Several techniques are available to approach the problem. To
mention a few: derived categories (see for instance the paper [AO91]); quiv-
ers and matrix factorization (see [Eis80], [Knö87], [Yos90]); liaison theory
(see [CH04], [CDH05]); computer-aided algebra (e.g. Schreyer’s appendix to
[Bea00], see also [Fae07]). One relevant instance of available classifications
is the case of prime Fano threefolds, taken up in [Mad02], [AC00], [AF06],
[Fae05], [BF08].
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Even more attention has been paid to the case of hypersurfaces in Pm of
degree d, which we denote by Yd. Particularly pertinent to our study are
the papers [Mad00], [CM00], [CM04], [CM05], [MKRR07a], [MKRR07b]. If
we summarize the results obtained in the literature, we get that no rank 2
ACM indecomposable bundle exists on the general Yd for m ≥ 5, d ≥ 3, and
for m = 4, d ≥ 6. Moreover, the geometry of these bundles has been studied
in great detail in case m = 4, d ≤ 4, see for instance the papers [Dru00],
[IM00a], [IM00b].

Let us now consider the question for surfaces in P3 of degree d. For
d = 1, 2, we have seen that the issue is settled by Horrocks and Knörrer.
For d = 3, 4 the classification follows from [Mad00], [Fae08]. However, the
problems remains wide open for d ≥ 5, except the specific case of bundles
admitting a resolution by linear forms, and even this case can be managed
only with the aid of the computer, see [Bea00].

This paper is devoted to the classification of ACM bundles of rank 2 on a
general quintic surface X. After choosing an initial twist for the bundle E ,
we completely classify the pairs of integers which are the Chern classes of
an indecomposable rank 2 ACM bundle over a general quintic surface. More
precisely, fix a twist the bundle E so that H0(X, E(−1)) = 0, H0(X, E) ̸= 0
(then E is called initialized). Our main result is the following:

Theorem. On the general quintic surface X ⊂ P3 there exist initialized
indecomposable ACM bundles E of rank 2 with the following invariants:

(1.1)
c1(E) −2 −1 0 0 0 1 1 1 2 2 2 2 3 4

c2(E) 1 2 3 4 5 6 8 10 11 12 13 14 20 30

Moreover, these are the only possible Chern classes for such E. The bun-
dle E is stable for c1(E) > 0 and the moduli space of semistable sheaves
MX(2; c1(E), c2(E)) is smooth of the expected dimension at a general point.

Observe that these are also the possible Chern classes of initialized inde-
composable rank 2 ACM bundles on a general quintic threefold in P4. We do
not know however, for general threefold hypersurfaces of degree 5, if bundles
with all the listed Chern classes actually exist. See [CM05] for a discussion.

Our first method is to degenerate the surface Yd to a reducible surface
Yd−1 ∪ H, where H ⊂ P3 is a plane. This allows to take care of the cases
with c1 ≤ 2 in (1.1) by an inductive argument. Since this fails for higher
c1(E), we introduce a second degeneration. The idea is to prove the existence
on a quintic surface X of the bundles with the desired property (i.e. with
H1(X, E(t)) = 0 for all t ∈ Z) by deforming a rank 2 bundle F with some
nonvanishing intermediate cohomology. More precisely, we take a general
deformation of a bundle F whose cohomology is as close as possible to the
ACM condition, namely only h1(X,F) = 2 (for c1(F) = 3) or h1(X,F) =
h1(X,F(−1)) = 1 (for c1(F) = 4).

In the next section we fix some notation and review some basic results.
In Section 3 we introduce our inductive method. In Section 4 we write down
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some general bounds for ci(E). Section 5 summarizes the classification of
ACM bundle of rank 2 on surfaces of degree ≤ 4, while Section 6 contains
the proof of our result in the case c1(E) ≥ 3.

2. Notation and basic results

We will work on an algebraically closed field k of characteristic zero. The
letter R will denote the coordinate ring of P3, i.e. the polynomial ring in 4
variables, and R(t) will be its graded piece of degree t. Given a subscheme
Z ⊂ P3, IZ will denote the ideal of Z in R. We will write RZ for the
coordinate k-algebra R/IZ , and RZ(t) for its homogeneous degree t piece.

A subscheme Z ⊂ P3 is called arithmetically Gorenstein (aG) if RZ is
a Gorenstein ring. If the subscheme Z is a complete intersection (ci), of
hypersurfaces of degree d1, d2, d3, then its type will be the triple of integers
(d1, d2, d3). We will consider the difference Hilbert function attached to Z:

∆h(RZ , t) = dimkRZ(t)− dimkRZ(t− 1).

We will consider mainly aG subschemes of codimension three. A descrip-
tion of the resolution of their ideals follows from the Buchsbaum–Eisenbud
structure theorem (see [BE77]).

As a matter of terminology, any claim about the general element of a given
family will mean that there exists a Zariski closed subset of the relevant
parameter space such that the claim holds in the complement of this set.
The parameter space will often be implicit, for example we will choose the
general hypersurface of degree d in P3 in an open subset of |OP3(d)|.

Let Yd be a surface of degree d in P3, given by a homogeneous polynomial
Fd in R(d) = H0(P3,OP3(d)). We will assume that Yd general enough, to
be smooth, and for d ≥ 4, to have Picard number one. The canonical
line bundle of Yd is then ωYd

≃ OYd
(d − 4). We will identify Pic(Yd) with

Z = ⟨H⟩, where H is the restriction to Yd of the hyperplane class c1(OP3(1)).
For any sheaf E on Yd, the first Chern class c1(E) can then be identified with
an integer. The second Chern class c2(E) of E will be a multiple of the class
of a point in Yd - and thus it will also be denoted by an integer. We write
E(t) for E ⊗OYd

(1)⊗ t.
Given a subscheme Z ⊂ Yd ⊂ P3, the symbol IZ,Yd

, sometimes simplified
to IZ , will denote the ideal sheaf of Z in Yd. We have the exact sequence:

(2.1) 0 → IZ → OYd
→ OZ → 0.

Given a coherent sheaf F on a projective variety Y , we will write hk(Y,F)
for the dimension of the cohomology group Hk(Y,F). We will often omit the

dependence on Y . The Euler characteristic χ(F) is defined as
∑

k=0,...,dim(Y )(−1)k hk(Y,F).

We will denote the moduli space of semistable sheaves on Y of rank r, with
Chern classes c1, c2 by MY (r; c1, c2). We refer to [HL97] for an account on
this notion.
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Definition 2.1. For a sheaf E on the surface Yd, define the initial twist as
the integer n such that H0(Yd, E(n)) ̸= 0 and H0(Yd, E(n − 1)) = 0. The
sheaf E is called initialized if its initial twist is zero, i.e. if h0(Yd, E) >
h0(Yd, E(−1)) = 0.

In some paper on the same subject (e.g. [Mad98]), bundles satisfying
the previous property are called normalized. We prefer to switch to a new
terminology, for in some classical paper on bundles (e.g. [Har77]), the word
normalized has been used with a different meaning.

Remark 2.2. If E is a bundle on Yd, of rank r, by Riemann-Roch we have:

c1(E(t)) = c1(E) + r t,(2.2)

c2(E(t)) = c2(E) + c1(E) (rk(E)− 1) d t+

(
r

2

)
d t2,(2.3)

χ(E) = −c2(E) +
d

6
(3 c1(E) (c1(E) + 4− d) + r (11− 6 d+ d2)).(2.4)

The following theorem summarizes well-known results about the Serre
correspondence between (aG) zero-dimensional locally complete intersection
(lci for short) subschemes Z ⊂ Yd and (ACM) rank 2 bundles on Yd. We
refer to [HL97, Theorem 5.1.1] for a proof.

Theorem 2.3. Let Z ⊂ Yd be a zero-dimensional lci subscheme of Yd, and
let c be an integer. Then the following are equivalent:

i) There exist a rank 2 vector bundle E with c1(E) = c and an extension:

(2.5) 0 → OYd
(−c) → E∗ → IZ → 0.

ii) The pair (OYd
(d + c − 4), Z) has the Cayley-Bacharach property i.e.

for any section s ∈ H0(Yd,OYd
(d + c − 4)), and for any Z ′ ⊂ Z with

len(Z ′) = len(Z)− 1, we have s|Z = 0 ⇔ s|Z′ = 0.

Remark 2.4. The exact sequence (2.5) amounts to the Koszul complex
associated to the section sZ ∈ H0(Yd, E) vanishing along Z. We say that E
is associated to Z. So, a general global section of E vanishes on a subscheme
of length len(Z). Notice that dualizing (2.5) we obtain the exact sequence:

(2.6) 0 → OYd

s−→ E → IZ(c) → 0.

In particular, when E is initialized, we have:

(2.7) h0(Yd, IZ(c− t)) = 0 ∀t > 0.

Equivalently, E is initialized if and only if Z lies in no surfaces of degree
e for e ≤ c.

The following theorem is essentially well-known, so we only sketch a bit
of the proof. For general reference on aG subschemes and difference Hilbert
functions we refer to the book [IK99].

Theorem 2.5. In the previous setting, the following statements are equiv-
alent:
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a) The scheme Z is aG;
b) For all t, we have dimkRZ(t) + dimkRZ(c1(E) + d− 4− t) = len(Z);
c) For all t, we have ∆h(RZ , t) = ∆h(RZ , c1(E) + d− 3− t);
d) The bundle E is ACM.

Proof. The equivalence of (a) and (b) is proved in [DGO85]. To see (b) ⇔
(c), just notice that:

∆h(RZ , t)−∆h(RZ , s− t) =dimkRZ(t) + dimkRZ(s− 1− t)−
−(dimkRZ(t− 1) + dimkRZ(s− t)),

so, setting s = c1(E)+d−4, we get that (c) holds if and only if dimkRZ(t)+
dimkRZ(c1(E) + d− 4− t) is constant in t. But this constant equals len(Z)
for dimkRZ(t) = len(Z), for big enough t. To see (b) ⇔ (d), we twist by
OYd

(t) the sequence (2.5) and take global sections. The cokernel of the trans-
pose of the induced map H2(Yd, IZ(t)) ≃ H2(Yd,OYd

(t)) → H2(Yd, E∗(t))
agrees, by Serre duality, with H0(Yd, IZ(d+ c1(E)− 4− t)). Then we com-
pute h1(Yd, E∗(t)) = h1(Yd, IZ(t)) − dimkRZ(d + c1(E) − 4 − t). But since
h1(Yd, IZ(t)) = len(Z)− dimkRZ(t), we see that h1(Yd, E∗(t)) is zero for all
t if and only if condition (b) is satisfied. �

Remark 2.6. Of course we have H0(Yd,OZ(t)) = RZ(t) = 0 for all negative
t, so by Theorem 2.5, part (c) we get the following equalities:

∆h(RZ , t) = 0, for t < 0 and for t > c1(E) + d− 3;(2.8)

dimkRZ(t) = len(Z), for t ≥ c1(E) + d− 3.

Similarly one obtains ∆h(RZ , c1(E) + d − 3) = ∆h(RZ , 0) = 1. In turn,
this implies dimkRZ(c1(E) + d− 4) = d− 1. We get:

(2.9) h1(Yd, IZ(c1(E) + d− 4)) = 1.

Furthermore, we have:

(2.10) len(Z) =

c1+d−3∑
t=0

∆h(RZ , t).

Following [Bea00, page 18], given an aG subscheme Z of P3, we will call
index of Z the integer iZ such that ∆h(RZ , t) = ∆h(RZ , iZ + 1− t), for all
t. It is the largest integer j such that dimkRZ(j) < len(Z). If Z is the zero
locus of a global section of a bundle E on Yd with c1(E) = c, we have:

iZ = c+ d− 4.

Remark 2.7. The bundle E∗ provides an element of the extension group
Ext1(IZ ,OYd

(−c1)). By Serre duality we have:

(2.11) Ext1(IZ ,OYd
(−c1))

∗ ≃ H1(Yd, IZ(d+ c1(E)− 4)).

Hence by (2.9) the group Ext1(IZ ,OYd
(−c1)) has dimension 1. Then, to

the aG subscheme Z ⊂ X we associate a pair [EZ , sZ ], where EZ fits in the
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extension (2.5) and is uniquely determined, and sZ is a global section of EZ
(determined up to a nonzero scalar), and Z = {sZ = 0}.

Remark 2.8. A rank 2 bundle E on Yd is decomposable into a direct sum
of line bundles if and only if, for some integer a, there is a global section
s ∈ H0(Yd, E(a)) such that the cokernel of the induced map s : OYd

→ E(a)
is isomorphic to OYd

(c1(E(a))), i.e. the 0-locus is empty. From the point of
view of subschemes, Z ⊂ Yd is a complete intersection of Yd and two more
surfaces if and only if its associated rank 2 bundle decomposes.

Note that, if an aG subscheme Z is contained in a plane H, it determines
an rank 2 ACM bundle E defined on H, so E splits by Horrocks’ criterion
and Z is complete intersection in P3.

The following result was proved by Beauville in [Bea00], and is analogous
to Buchsbaum-Eisenbud structure theorem. It allows to relate rank 2 ACM
bundles over the hypersurface Yd to skew-symmetric matrices whose determi-
nant has degree 2 d defined on P3. Recall that, to a skew-symmetric matrix f
it is associated a polynomial Pf(f), the Pfaffian of f , with det(f) = Pf(f)2.

Theorem 2.9. Let Yd ⊂ P3 be a smooth surface defined by the homogeneous
form Fd, E be a rank 2 ACM bundle on Yd with c1(E) = c1H. Let ι : Yd ↪→ P3

be the inclusion. Then the sheafified minimal graded free resolution of the
sheaf ι∗(E) takes the form:

0 → P(E)∗(c1 − d)
f(E)−−→ P(E) p(E)−−→ ι∗(E) → 0,

where P(E) =
⊕r

i=1OP3(ai), f(E) is skew-symmetric, and Pf(f(E)) = Fd.
Conversely, given P =

⊕r
i=1OP3(ai) and a general skew-symmetric ma-

trix f : P∗(c1 − d) → P, with Pf(f) = Fd, the sheaf E = coker(f) is a rank 2
ACM bundle, defined on the surface Yd given by Fd, with c1(E) = c1H.

3. A degeneration lemma

For any variety Y , we denote with Hilbm(Y ) the Hilbert scheme parametriz-
ing closed subschemes of Y of finite length m. Recall that the Hilbert
scheme parametrizing closed subschemes of length m of any smooth surface,
is a smooth irreducible projective variety of dimension 2m (see for instance
[HL97, pag. 104]).

Denote by G(m, i) the subset of the Hilbert schemes Hilbm(P3) parametriz-
ing length m subschemes of P3 consisting of aG schemes of index i. These
varieties are well understood in view of Buchsbaum-Eisenbud’s structure
theorem [BE77]. In particular, the number and the dimension of the ir-
reducible components of this locally closed subset of Hilbm(P3), are well-
known, see [Die96] and [IK99]. In particular a component of G(m, i) is given
once we fix the Hilbert function h of RZ . We denote such a component by
Gh(m, i). Write G(m, i, d) for the incidence variety consisting of pairs (Z, Y ),
with Y ∈ |OP3(d)|, Z ∈ G(m, i) and Z ⊂ Y .
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Remark 3.1. For any triple of integers (m, i, d), we have the incidence
diagram:

(3.1) G(m, i, d)
qd

xxppp
ppp

p pm,i,d

''OO
OOO

OO

G(m, i) |OP3(d)|.

The fibre p−1
m,i,d(Yd) consists of the family of aG subschemes Z ⊂ Yd, of

length m and index i, while q−1
d (Z) is isomorphic to P(H0(P3, IZ,P3(d))). In

view of Theorem 2.5, we conclude that the ACM bundle E having Chern
classes c1 = c1(E) and c2 = c2(E) is defined on the general hypersurface of
degree d if, setting m = c2, i = c1 + d − 4, the map pm,i,d in the diagram
(3.1) is dominant. Computing dimensions in the same diagram, we get that
p = pm,i,d is dominant if and only if, for some Hilbert function h, p−1(Yd)
has a component F where the following holds:(

d+ 3

3

)
+ dim(F ) = dim(Gh(m, i)) + h0(Yd, IZ,Yd

(d)).

Summing up we have the criterion:

the map p = pm,i,d

is dominant
⇐⇒ there exists Yd ∈ |OP3(d)| such that p−1(Yd) has a

component of dimension dim(Gh(m, i))− dimkRZ(d)

The following lemma introduces an inductive method on the degree d,
to prove that the map pm,i,d is dominant. Unfortunately the numerical
assumption c1 ≤ 3 limits its range of applicability.

Lemma 3.2. Fix integers d,m and fix c1 ≤ 3. Set i = c1 + d− 4. Suppose
that the map p = pm,i,d of diagram (3.1) is dominant for general subschemes
Z ⊂ P3 contained in general fibres of p. Then p′ = pm,i,d+1 is also dominant.

Proof. We would like to provide a surface of degree d + 1 satisfying the
criterion introduced above. We start by taking a general surface Yd of degree
d, which we may assume to lie in the image of p by the hypothesis.

In view of the criterion of Remark (3.1), we are allowed to choose a
component G of the quasi-projective scheme G(m, i), and a component F of
p−1(Yd) such that:

dim(F ) = dim(G)− dimkRZ(d).

Now, take the reducible hypersurface Y d+1 defined as the union of the
general hypersurface Yd given above and a general plane in P3. The condition
c1 ≤ 3 entails dimkRZ(d) = dimkRZ(d+1), indeed dimkRZ(t) = len(Z) =
m for any t ≥ c1 + d− 3.

Notice that, up to restriction to an open dense subset of the domain,
the map qd+1 is equivalent to a Pk-bundle onto the given component G,
where k = h0(IZ(d + 1)) − 1, for a general element Z ∈ G. Indeed, the
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Hilbert function is constant on the components of G(m, i). Therefore the
total space q−1

d+1(G) is irreducible, and we consider the restriction of p′ to
this space. Observe also that the component F can be seen as a component
of (p′)−1(Y d+1) as well, since a general plane H will not meet the subscheme
Z, so that a subscheme in the neighborhood of Z lies in Yd if and only if it
lies in Y d+1.

Then we are in position to apply [Har77, 3.22.b page 95]. This yields, for
a general fibre of p′ around Y d+1:

dim(p′)−1(Yd+1) ≤ dim p−1(Yd) =

= dim(G(m, i))− dimkRZ(d) =

= dim(G(m, i))− dimkRZ(d+ 1).

(3.2)

We conclude that the dimension of the image of p′ equals at least the
dimension of |OP3(d+1)|. Then equality must hold and p′ is dominant. �

4. General bounds for Chern classes of rank 2 ACM bundle

In the following proposition, we determine the range of c1(E), for an
indecomposable rank 2 ACM bundle E on a degree d surface Yd ⊂ P3. The
value of c2(E) is uniquely determined only in the two maximal and minimal
alternatives for c1(E). Otherwise, c2(E) can be bounded form above and
from below, see Proposition 4.2.

Proposition 4.1. Let Yd as above, d ≥ 4 and let E be a initialized inde-
composable rank 2 ACM bundle over Yd. Then any nonzero section of E
vanishes over a zero-dimensional, locally complete intersection subscheme
Z ⊂ Yd with len(Z) = c2(E) and we have:

(4.1) 3− d ≤ c1(E) ≤ d− 1.

Moreover, we have the implications:

c1(E) = 3− d ⇐⇒ c2(E) = 1,(4.2)

c1(E) = 4− d ⇐⇒ c2(E) = 2,(4.3)

c1(E) = d− 2 =⇒ c2(E) =
d (d− 1) (d− 2)

3
,(4.4)

c1(E) = d− 1 =⇒ c2(E) =
d (d− 1) (2 d− 1)

6
.(4.5)

Proof. The inequalities (4.1) are similar of the main theorem of [Mad98],
where the same bounds are proved for hypersurfaces with Picard group Z.

Fix a global section s ∈ H0(Yd, E). We have Im(s) ̸= OYd
by Remark 2.8.

i.e. Z is not empty. If Z contains a divisor A ∈ |OYd
(a)|, with a ≥ 1, then

IZ ⊂ OYd
(−a), so that h0(Yd, E(−a)) ̸= 0, contradicting the hypothesis that

E is initialized. Thus s vanishes in codimension 2, so len(Z) = c2(E) ≥ 1.
Since dimkRZ(t) = 0 for t ≤ −1, applying property (b) of Theorem 2.5

to E , with t = −1, one gets dimkRZ(c1(E) + d − 3) = len(Z) > 0, hence
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c1(E) ≥ 3−d. Furthermore, when c1(E) = 3−d (resp. c1(E) = 4−d), again
by property (b) of Theorem 2.5 for t = 0, we get len(Z) = dimkRZ(0) = 1
(resp. len(Z) = 2 dimkRZ(0) = 2). So (4.2) and (4.3) follow. On the other
hand, if c1(E) ≥ d− 1, we have:

h2(Yd, E(−2)) = h0(Yd, E∗⊗ωYd
) = h0(Yd, E(d− c1(E)− 2)) = 0,

for E is initialized. Since E is ACM, and by duality h2(Yd, E(−1)) ≤ h2(Yd, E(−2)),
this implies that:

χ(E(−2)) = χ(E(−1)) = 0.

Solving the above equations in c1(E) and c2(E), using Formula (2.4) one
easily obtains (4.5) and (4.4). �

In Proposition 4.1, (4.5) and (4.4) are called, respectively, the maximal
and submaximal cases.

Proposition 4.2. Let Yd and E be as above, d ≥ 4, set c1 = c1(E) and
c2 = c2(E). Then we have the following bounds on c2.

Lower bound: We distinguish the two cases:

c1 ≤ 0 =⇒ c2 ≥ c1 + d− 2,(4.6)

c1 ≥ 1 =⇒ c2 ≥
c1
6
(c1 + 1) (3 d− c1 − 2).(4.7)

Upper bound: According to the parity of c1 + d− 3 we have:

c1 + d− 3 = 2 ℓ =⇒ c2 ≤
(ℓ+ 1) (ℓ+ 2)

6
(2 ℓ+ 3),(4.8)

c1 + d− 3 = 2 ℓ− 1 =⇒
{

c2 ≤ (ℓ+1) (ℓ+2)
3 ℓ,

c2 is even.
(4.9)

Proof. Take a nonzero global section of E and consider its vanishing locus Z.
We have len(Z) = c2. Recall that the difference Hilbert function ∆h(RZ , t)
is concave and symmetric by Theorem 2.5, part (c).

In case c1 ≤ 0, the lower bound (4.6) amounts to ∆h(RZ , t) being greater
or equal than 1 for all t between 0 and iZ+1 = c1+d−3. Equality is achieved
for ∆h(RZ , t) constantly equal to 1, for 0 ≤ t ≤ c1+d−3. Such a subscheme
has length c1 + d− 2 and is contained in a line, for dimkRZ(1) = 2, hence
H0(IZ(1)) = 2 by sequence (2.1).

Now, if c1 ≥ 1, by [IK99, Theorem 5.25], we can divide the summation
interval 0 ≤ t ≤ c1 + d− 3 into three subintervals:

i) increasing: t ∈ I1 := [0, c1 − 1];
ii) concave: t ∈ I2 := [c1, d− 3];
iii) decreasing: t ∈ I3 := [d− 2, c1 + d− 3];

Notice that:

t ∈ I1 ⇐⇒ c1 + d− 3− t ∈ I3.
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So, using property (c) of Theorem 2.5, we obtain:∑
t∈I1

∆h(RZ , t) =
∑
t∈I3

∆h(RZ , t).

Putting this into (2.10), we get len(Z) = 2
∑

t∈I1 ∆h(RZ , t)+
∑

t∈I2 ∆h(RZ , t).

Formula (2.7) shows that h0(Yd, IZ(c1−1−t)) = 0, for all t ≥ 0, so ∆h(RZ , t)

agrees with ∆h(R, t) =
(
t+2
2

)
for all t in I1 and

∑
t∈I1 =

(
c1+2
3

)
.

In the interval I2, see (ii), the function ∆h(RZ , t) takes value at least(
c1+1
2

)
since ∆h(RZ) is concave (see [IK99]). So

∑
t∈I2 ∆h(RZ , t) is bounded

below by this value, multiplied by the length of the interval (i.e. c1+d− 2).
Summing this to the above value for the intervals I1 and I3 we obtain:

(4.10) c2(E) = len(Z) = 2
∑
t∈I1

∆h(RZ , t) +
∑
t∈I2

∆h(RZ , t) ≥

≥ c1
3
(c1 +1) (c1 +2)+

c1
2
(c1 +1) (d− c1 − 2) =

c1
6
(c1 +1) (3 d− c1 − 2).

Now let us prove the upper bounds. For (4.8), observe that ∆h(RZ , t) is

bounded above by
(
t+2
2

)
. Using again the symmetry of the difference Hilbert

function and formula (2.10) we get:

(4.11)

c2(E) = len(Z) = ∆h(RZ , ℓ) +
( ℓ−1∑
t=0

∆h(RZ , t) +

2 ℓ∑
t=ℓ+1

∆h(RZ , t)
)
=

= ∆h(RZ , ℓ)+2

ℓ−1∑
t=0

∆h(RZ , t) ≤
(
ℓ+ 2

2

)
+2

(
ℓ+ 2

3

)
=

(ℓ+ 1) (ℓ+ 2)

6
(2 ℓ+3).

The case (4.9) is proved analogously; one just needs to observe that the
summation interval for ∆h is symmetric, so len(Z) is even. �

Remark 4.3. On any Yd, d ≥ 2 there exist initialized indecomposable rank
2 ACM bundles with minimal first Chern class c1(E) = 3 − d, c2(E) = 1.
Namely, let ι : Yd ↪→ P3 be the inclusion, take a point y ∈ Yd and observe
that Z = {y} is an aG subscheme of Yd, and the pair (OYd

(−1), Z) has the
Cayley-Bacharach property. We obtain a bundle Ey (indecomposable for y
is not ci), and the exact sequences:

0 → OYd
(d− 3) → E∗

y → Iy → 0,(4.12)

0 →
OP3(3− 2 d)

⊕
OP3(1− d)3

→
OP3

⊕
OP3(2− d)3

→ ι∗(Ey) → 0.(4.13)

Similarly, a length-2 subscheme Z2 ⊂ Yd, Z2 is aG and the pair (OYd
, Z2)

has the Cayley-Bacharach property. So, on Yd it is defined an rank 2 ACM
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bundle EZ2 with c1(EZ2) = 4 − d, c2(EZ2) = 2. The bundle EZ2 is indecom-
posable for d ≥ 3 and we have the exact sequences:

0 → OYd
(d− 4) → E∗

Z2
→ IZ2 → 0.(4.14)

0 →

OP3(4− 2 d)
⊕

OP3(1− d)2

⊕
OP3(2− d)

→

OP3

⊕
OP3(3− d)2

⊕
OP3(2− d)

→ ι∗(EZ2) → 0.(4.15)

These resolutions are obtained via a standard mapping cone construction
from the obvious resolutions of the ideal sheaves Iy, IZ2 . The fact that the
previous bundles are initialized follows immediately from their resolutions.

Proposition 4.4. Let E be an initialized indecomposable rank 2 ACM bundle
on Yd, d ≥ 4, and suppose c1(E) = 5 − d. Then we have: c2(E) ∈ {3, 4, 5}.
A general section of E vanishes, respectively, along a length 3 ci subscheme
of type (1, 1, 3), a length 4 ci subscheme of type (1, 2, 2), and a length 5
subscheme in Yd contained in 5 independent quadrics.

All the three possibilities take place on any smooth surface Yd.

Proof. Let Z be a nonzero section of E . Since E is ACM, property (c) of
Theorem 2.5 gives ∆h(RZ , t) = ∆h(RZ , 2− t), so ∆h(RZ , 2) = 1. Further-
more, we have 1 ≤ ∆h(RZ , 1) ≤ 3, hence c2(E) = len(Z) runs between 3
and 5.

If c2(E) = 3 (i.e. if ≤ ∆h(RZ , 1) = 1), then h0(IZ(1)) = 2. This means
that Z is contained in a line and therefore it is ci. Similarly, c2(E) = 4
implies h0(IZ(1)) = 1, so Z is contained in a plane and thus it is complete
intersection. In case c2(E) = 5, we have h0(IZ(1)) = 0 and h0(IZ(2)) = 5,
which means 5 independent quadrics.

Clearly, any hypersurface Yd contains 3 collinear points. Analogously, 4
general coplanar points in Yd are aG. Finally, 5 general points in Yd are also
aG, indeed it suffices that they are non coplanar, for in this case ∆h(RZ , t)
takes the form 1, 3, 1. �
Proposition 4.5. Let E be an initialized indecomposable rank 2 ACM bundle
on Yd, d ≥ 5, and suppose c1(E) = 6 − d. Let Z be the vanishing locus of
a nonzero section of E. Then we have: c2(E) ∈ {4, 6, 8}. If c2(E) ∈ {4, 6},
then Z is a ci subscheme of type (1, 1, 4), (1, 2, 3). If c2(E) = 8, then Z is
contained in three independent quadrics (and no hyperplane).

All the above possibilities take place over a general hypersurface Yd.

Proof. By Theorem 2.5, in our hypothesis the function ∆h(RZ) takes one
of the three possible forms: 1, 1, 1, 1 or 1, 2, 2, 1 or 1, 3, 3, 1. In the first two
cases the aG subscheme Z is contained in a plane and thus it is a complete
intersection, see Remark 2.8. In the third case, i.e. if c2(E) = 8, then looking
at the function ∆h(RZ), one sees that Z is contained in three independent
quadrics and no hyperplane.
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For the second statement, of course any Yd contains 4 collinear points.
Moreover, intersecting Yd with a conic C contained in a general plane, one
gets 2 d points on C. Choosing Z to be the union of 6 of them, one can
find a cubic intersecting C at Z, so we find the subscheme Z ⊂ Yd of type
(1, 2, 3). To deal with the case c2(E) = 8, we can use Lemma 3.2, indeed Z
is contained in no hyperplane and c1 ≤ 3. It suffices to prove that a general
cubic surface Y3 contains the subscheme Z8 in question. This is clear: just
take an elliptic quartic contained in Y3 and intersect with a general quadric
to obtain Z8. �

Remark 4.6. We can say something more precise about the geometry of
the subschemes Z ⊂ Yd which are 0-loci of sections of an initialized rank 2
ACM bundle E on Yd, d ≥ 4, with c1(E) = 6− d and c2(E) = 8.

Namely, assume that Z is a set of 8 points in very uniform position, on an
irreducible quadric Q. Then, up to generalization, either Z is a ci subscheme
of type (2, 2, 2), or it lies on a rational cubic curve C ⊂ Q.

The first case holds when three independent quadrics containing Z in-
tersect in a finite set of points. The second one takes place when all the
quadrics through Z contain a common curve.

Observe that both cases occur a general Yd. Indeed, we proved above that
the second one occurs. But since the second case is a degeneration of the
first one (see [IK99, Theorem 5.25]), then also the first case takes place by
diagram (3.1).

5. Rank 2 ACM bundles on surfaces of degree up to 4

Let us summarize here the well-known classification of rank 2 ACM bun-
dles on a general surface Yd ⊂ P3 of degree d, for all d ≤ 4.

For d = 2, Y2 is a smooth quadric Q ∼= P1×P1, and any ACM bundle splits
as a direct sum of twists of OQ(0, 0), OQ(1, 0) and OQ(0, 1). For d = 3 the
result is well-known by [Fae08]. The case d = 4 follows immediately from
the classification of rank 2 ACM bundles on a smooth quartic threefold
in P4, achieved by Madonna in [Mad00]. We reproduce here these results
and sketch an easy proof for the case d = 4. In the following theorem,
in the column Difference Hilbert Function column, the tth place represents
the integer ∆h(RZ , t) (only non-zero values are displayed). The column
Resolution illustrates (an instance of) the generators P(E) in the sheafified
minimal graded free resolution of ι∗(E), in the framework of Theorem 2.9.
Note that, in order to write down the resolution, it suffices to show the
generators P(E), for the syzygies are given by P∗(c1 − d).

Theorem 5.1. Let E be an initialized, indecomposable, rank 2 ACM bundle
over a general surface Yd of degree d ∈ {3, 4} in P3, with c1(E) = c1H, let
s be a general section of E and set Z = {s = 0}. Then E and Z are among
the types summarized by the following table.
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(5.1)
degree Chern Diff. Hilbert Function Resolution

3

c1(E) c2(E)
0 1
1 2
2 5

0 1 2

1
1 1
1 3 1

P(E)
OP3 ⊕OP3(−1)3

O3
P3 ⊕OP3(−1)

O6
P3

4

c1(E) c2(E)
−1 1
0 2
1 3
1 4
1 5
2 8
2 8
3 14

0 1 2 3 4

1
1 1
1 1 1
1 2 1
1 3 1
1 3 3 1
1 3 3 1
1 3 6 3 1

P(E)
OP3 ⊕OP3(−2)3

OP3 ⊕OP3(−1)2 ⊕OP3(−2)
O3

P3 ⊕OP3(−2)
O2

P3 ⊕OP3(−1)2

OP3 ⊕OP3(−1)5

O4
P3

O4
P3 ⊕OP3(−1)2

O8
P3

Moreover, any class in the table is non-empty.

Proof. All the possibilities for the c1 are listed in the table, by the inequal-
ities (4.1) of Proposition 4.1. The list of possible c2 follows then by (4.2),
(4.3), (4.4), (4.5) of the same proposition, and by Proposition 4.2. The state-
ment about the difference Hilbert Function follows directly from Theorem
2.5.

Remark 4.3 and Proposition 4.4 prove the existence for c1 < 2. The
remaining cases are a consequence of the main theorem of [Mad00]. Indeed,
in the paper, it is proved that indecomposable ACM bundles with c1 = 2,
c2 = 8 and c1 = 3, c2 = 14 exist on any smooth quartic hypersurface
Ỹ4 ⊂ P4. Then just take as Y4 a hyperplane section of Ỹ4.

Alternatively, in order to prove existence for c1 = 2, c2 = 8 one just
needs to prove that a general quartic can be obtained as the Pfaffian of a
skew-symmetric matrix f : O4

P3(−2) → O4
P3 . Given a general matrix f, set

ι(E0) = coker(f), Y 0
4 = Pf(f), where ι : Y 0

4 ↪→ P3 is the natural embedding.
Observe that E0 is a stable bundle. By a parameter count, our claim is
equivalent to the moduli space MY 0

4
(2; 2, 8) being smooth of the expected

dimension 10 at the point [E0]. But since Y 0
4 is a smooth K3 surface, this

is indeed the case, see for instance [HL97, Part II, Chapter 6]. The same
approach has been used by Beauville to prove existence in the case c1 = 3,
c2 = 14, see [Bea00, Lemma 7.7].

To compute the resolutions, whenever ∆h(RZ , t) starts with 1, s, with
s ≤ 2, the scheme Z is contained in a plane, hence it is ci. The resolution
of the ideal sheaf IZ follows immediately. By a standard mapping cone
construction, it is easy to obtain the resolution of E as well. One settles
similarly the case c2(E) = 5. For the case c2(E) = 14, we see that the matrix
f(E) of Theorem 2.9 can only have linear entries, working as in [Fae08,
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Theorem 4.1]. Finally, in case c2(E) = 8, we have two cases, according to
whether Z is contained or not in a twisted cubic curve: in both cases the
resolution of E follows easily from that of IZ . On the other hand, the matrix
f(E) cannot have bigger size (say a square matrix of order 8), for in this case
Y4 would be a determinantal quartic, contradicting generality. �

6. Rank 2 ACM bundles on the quintic surface

From now on, we will denote by X a general quintic surface in P3, em-
bedded in P3 by ι, defined by a homogeneous polynomial F of degree d = 5.
We will write E for an initialized indecomposable rank 2 ACM bundle on X.
We have the following result, whose proof amounts to writing the conditions
of Proposition 4.2.

Proposition 6.1. Let E and X be as above. Then the Chern classes of E,
and the difference Hilbert function of the zero locus of a nonzero section Z
of E fall into one of the types summarized by the following table.

(6.1)

Chern Difference Hilbert Function

c1(E) c2(E)
−2 1
−1 2
0 3
0 4
0 5
1 4
1 6
1 8
2 11
2 12
2 13
2 14
3 20
4 30

0 1 2 3 4 5 6

1
1 1
1 1 1
1 2 1
1 3 1
1 1 1 1
1 2 2 1
1 3 3 1
1 3 3 3 1
1 3 4 3 1
1 3 5 3 1
1 3 6 3 1
1 3 6 6 3 1
1 3 6 10 6 3 1

In the Difference Hilbert Function column, the tth place represents the
integer ∆h(RZ , t) (only non-zero values are displayed).

The rest of the paper is devoted to a detailed analysis of the above cases.
We will prove that all of these alternatives take place over the general hy-
persurface X.

Remark 6.2. In fact, we only need to prove the existence of bundles for
the cases where c1 ≥ 2. Indeed, the cases c1 = −2 and c1 = −1 follow
by Remark 4.3. The cases c1 = 0, 1 are covered by Proposition 4.4 and
Proposition 4.5.
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6.1. The case c1 = 2. Here we assume c1(E) = 2 and prove the existence
of rank 2 ACM bundles whose second Chern class appears in Table (6.1).

Proposition 6.3. On a general quintic surface X there exists an indecom-
posable rank 2 ACM bundle E with Chern classes c1 = 2 and c2, for any
c2 ∈ {11, . . . , 14}.

Proof. Going back to Diagram (3.1) of Remark 3.1, we need to prove that
the map pm,i,d is dominant, for any triple (m, i, d) = (m, 3, 5), with m =
11, . . . , 14. In other words, we need to prove the existence, on a general quin-
tic surface, of an aG set of points with index 3 and degree m = 11, . . . , 14.

We will use Lemma 3.2, and start working on a surface of degree 4, indeed
we are assuming c1 = 2. So take a general quartic hypersurface Y4 in P3

and let Zm be an aG subscheme Zm ⊂ Y4 with iZm = 3 and len(Zm) = m.
We have thus an exact sequence:

(6.2) 0 → OY4(−3) → E∗
m → IZm → 0,

where, by Theorem 2.5, the sheaf Em is a rank 2 ACM stable bundle, with
c1(Em) = 3 and c2(Em) = m. One sees easily that h0(Y4, E∗

m(2)) = 14 −m.
Thus, Em is initialized if and only if m = 14. On the other hand, looking at
Table (6.1), we assume m ≥ 11. So we distinguish the two cases c2(Em) =
m = 14, or c2(Em) = m ∈ {11, 12, 13}.

Case 1. On a general surface X of degree 5 there exists an initialized
stable rank 2 ACM bundle Em with c1(Em) = 2 and c2(Em) = m, for
m ∈ {11, 12, 13}.

Proof. In view of the previous discussion, it suffices to check that a general
hypersurface Y4 contains an aG subscheme Zm with the required Hilbert
function.

By Theorem 5.1, over Y4 one has rank 2 ACM bundles Eℓ with c1(Eℓ) = 1
and c1(Eℓ) = ℓ, for ℓ ∈ {3, 4, 5}. By Lemma 2.2, we have:

c1(Eℓ(1)) = 3, c2(Eℓ(1)) = ℓ+ 8 ∈ {11, 12, 13}.

Set Fℓ+8 := Eℓ(1). Of course, the bundle Em is also ACM, so the zero locus
of a general section of Em vanishes along the required aG subscheme. �

Case 2. On a general surface X of degree 5 there exists an ACM stable
initialized rank 2 bundle E with c1(E) = 2 and c2(E) = 14.

Proof. We proceed similarly, considering a general hypersurface Y4. This
time we have to provide 14 aG points of index 4 in Y4, with difference
Hilbert function 1, 3, 6, 3, 1. Equivalently, we have to provide an initialized
rank 2 ACM bundle with c1 = 3, c2 = 14. As we have already pointed out,
this question has been addressed by Beauville, see also Theorem 5.1. The
statement follows. �

The proof of Proposition 6.3 is thus established. �
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6.2. The submaximal case: c1 = 3, 20 points. Unfortunately, we cannot
use the degeneration technique of the previous section, because on a quartic
surface, an aG set of 20 points with index 4 yields a bundle with c1 = 4.
Instead, we construct a set of 20 points with the wrong Hilbert function on
a general quintic surface and deform it to the required set of points.

Remark 6.4. We would like to point out that the existence of such E over
the general quintic surface can be addressed by Macaulay2, see Schreyer’s
appendix in [Bea00]. Indeed, it suffices to take a random skew-symmetric
matrix f : O5

P3(−2)⊕OP3(−1) → OP3(−1)⊕O5
P3 and check that the differ-

ential of the rational map Pf is surjective at [f]. This happens if the space of
quintic forms in the four variables x0, . . . , x3 is generated by the polynomials
Pi j k = xk Pf(fi,j), where fi,j is obtained by f removing the i-th column and
the j-th row.

This computation is carried out easily by Macaulay 2, see [GS], and in
fact it proves that on the general surface of degree d ≤ 13 it is defined an
initialized rank 2 ACM bundle E with c1(E) = d − 2 and c2(E) = d (d −
1) (d− 2)/3.

In view of the previous remark, the question about existence is thus set-
tled. However, we give here an abstract proof, in the hope of clarifying
why the phenomenon occurs. We will use the notation Cd

g for a reduced

connected curve of arithmetic genus g and degree d contained in P3.

Lemma 6.5. A general quintic surfaces in P3 contain a smooth set of 10
points A0 in uniform position, with difference Hilbert function of the form
1, 3, 4, 2. Moreover we may assume that A0 lie in a smooth irreducible com-
plete intersection curve C = C4

6 .

Proof. Take the intersection of a general quartic or quintic surface with a
general quartic elliptic curve D = C1

4 and consider a length 10 subscheme A0

of the intersection. Since D is complete intersection of two general quadrics
and A0 lies in no hyperplanes, one computes ∆h(RA0 , 2) = 4. The claim
on the Hilbert function follows. Notice that A0 is contained in a smooth
quadric surface Q ⊃ D. Consider the linear system |L| cut on Q by cu-
bic surfaces through A0. Since cubics separate the points of A0, |L| has
no fixed components. Furthermore, |L| contains properly all the unions of
C1
4 with hyperplane sections of Q, so |L| is not composed with a pencil.

Thus a general element C in the linear system |L| is irreducible, by Bertini’s
theorem. The curve C is also smooth, since A0 is smooth and separated
(sheaf-theoretically) by cubics. �
Corollary 6.6. A general quintic surface in P3 contains a set of 20 distinct
points A, in uniform position, with difference Hilbert function of the form
1, 3, 5, 6, 4, 1.

Proof. Fix a general quinticX and consider the set A0 ⊂ X and the complete
intersection curve C, of degree 6, containingA0, given by the previous lemma.
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Then the residual intersection A = (C∩X)\A0 is formed by 20 points. It is
easy to compute the Hilbert function of A and check that it has the desired
form.

The linear series cut on C by quintics through A0 has no base points,
for A0 is cut sheaf-theoretically by quintics. Therefore its general element
is smooth. Then, replacing X with another quintic surface X ′ in a neigh-
bourhood of X, we may assume A consists of distinct points in uniform
position.

Finally, since the curve C is contained in a smooth quartic surface, the
same happens to A. �

Recall the notation introduced at the beginning of section 3: G(m, i)
denotes the subset Hilbm(P3) parametrizing aG sets of points with index
i. Denote by U the locally closed subvariety of Hilb20(P3) parametrizing
smooth sets of 20 points given by the previous lemma.

We want to prove that U sits in the closure of G(20, 4). To perform the
task, we take a general A ∈ U and we examine carefully the behavior of
sections of a bundle on Y4 associated to A. We need a series of lemmas.

Lemma 6.7. Take a general A ∈ U , contained in a smooth general quartic
Y4. Then:

i) the subscheme A induces a unique semistable bundle FA of rank 2 on
Y4 with c1(FA) = 4;

ii) the bundle FA(−2) has a global section vanishing on a smooth set B of
4 non-aligned points lying in some plane π;

iii) the bundle FA(−1) has a 5-dimensional space of sections, the general
one vanishing on a smooth set W of 8 points in π, with difference Hilbert
function 1, 2, 3, 2 (i.e. with general Hilbert function on π);

iv) we may assume that the curve Γ = π ∩ Y4 is smooth.

Proof. From the difference Hilbert function, one sees immediately that A is
not separated by quartics, and H1(Y4, IA(4)) = 1. Then by Serre duality,
Ext1(IA(4),OY4) is 1-dimensional and provides an extension, as in sequence
(2.6):

(6.3) 0 → OY4 → FA → IA(4) → 0,

where, by Theorem 2.3, FA is a rank 2 bundle with Chern classes c1(FA) = 4,
c2(FA) = 20.

Looking at the Hilbert function ofA, we get H0(Y4,FA(−3)) = 0, h0(Y4,FA(−2)) =
1, h0(Y4,FA(−1)) = 5. It turns out then that FA is semistable, and FA(−2)
has a global section s vanishing on a finite set B. We have c1(FA(−2)) = 0,
c2(FA(−2)) = 4, so B has length 4. We have an exact sequence:

(6.4) 0 → OY4

s−→ FA(−2) → IB → 0.

We obtain that h0(Y4, IB(1)) = h0(Y4,FA(−1)) − h0(Y4,OY4(1)) = 5 −
4 = 1, so B is not aligned. Since h0(Y4,FA(−1)) > h0(Y4,OY4(1)), then
FA(−1) has global sections which are not multiple of s. Consequently, a
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general global section t ∈ H0(Y4,FA(−1)) vanishes on a set W of finite
length 8 = c2(FA(−1)), and we have an exact sequence:

(6.5) 0 → OY4

t−→ FA(−1) → IW (2) → 0.

One easily computes the value of h0(Y4,FA(t)) for all t, hence the Hilbert
functions of B and W are known. Let us show that W belongs to π. By
construction the plane π is induced in H0(Y4, IB(1)) by a general section
t ∈ H0(Y4,FA(−1)), thus it corresponds to the vanishing set of the wedge
product s ∧ t. More precisely, W corresponds to the intersection of the
vanishing loci of s f and t, for any choice of f ∈ H0(Y4,OY4(1))). Since the
plane containing W is induced by any global section s ∈ H0(Y4,FA(−2)),
the two planes coincides.

Finally, we need to show that we may assume B,W and Γ = π ∩ Y4
to be smooth. Indeed on π the Hilbert scheme of subschemes of finite
length is smooth. Then we may move generically B in π to a smooth set
of 4 points. Since the Hilbert function is constant in the family, the space
H0(Y4, IB,P2(4)) defines a bundle over the deformation. Thus Y4 moves in a

family of quartic surfaces containing the 4 points. Similarly, Ext1(IB,OY4),
which is dual to H1(Y4, IB), has constant dimension through the deforma-
tion. Thus also FA moves in a family of bundles. Possibly replacing A
with some neighbouring general element of U , we can now assume that the
schemes B and Γ are smooth. A similar procedure proves that we may
presume W to be smooth. �
Lemma 6.8. Fix the previous notation. The sections H0(Y4,FA(−1)) de-
termine a non-complete linear series of degree 8 and dimension at most 4
on the curve Γ = π ∩ Y4. The dimension of the series is 4, unless FA has
infinitely many sections (modulo the k∗ action) vanishing on W .

Proof. The datum of W and B corresponds to a linear section of Γ. Indeed
we have the natural exact diagram:

(6.6) OY4(−1)

��

OY4(−1)

��

0 // OY4
// FA(−1)

��

// IW (2)

��

// 0

0 // OY4
// IB(1)

��

//

��

IB,Γ(1)

��

// 0

0 0.

The claim follows, since h0(Y4,FA(−1)) = 5. �
Next, we need a technical result, for deformations of 8 points. We are

grateful to Ciro Ciliberto, who pointed us an elegant a quick proof for it.
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Proposition 6.9. Let W be a general set of 8 points in a plane π ⊂ P3.
Then in Hilb8(P3), W sits in the closure of the subvariety defined by complete
intersections of three quadrics.

Proof. In fact, we are going to prove that W is the projection to π of a
complete intersection W ′ of three quadrics Q1, Q2, Q3 ⊂ P3. Then the pro-
cedure of projection determines a deformation of the quadrics which, in turn,
defines a deformation of W ′ to W .

To show the claim, fix a cubic plane curve B ⊂ π which contains W . As
W is general, we may assume B smooth. Call N the linear series cut on B
by the lines of π and consider the complete linear series M = OB(W − 2N )
on B. This series is a pencil for it has degree 2. Fix a Weierstrass point
y for M and consider the complete linear series N ′ = OB(N + y) on B.
Since N ′ has degree 4, it defines a map ϕ : B → P3, whose image is a
quartic curve B′ ⊂ P3. The curve B corresponds to the projection of B′

from z = ϕ(y). The subscheme W sits in the series 2N ′ by construction.
Hence W ′ = ϕ(W ) is the intersection of B′ and a quadric. Since B′ is itself
a complete intersection of two quadrics and the projection from z maps W ′

to W , the claim follows. �

Remark 6.10. In general one may ask for which values of a, b, c, a general
set of a b c points in π is the limit of a complete intersection of type (a, b, c)
in P3. A simple parameter count proves that the answer is negative as soon
as (a, b, c) > (2, 3, 3). The previous lemma provides a positive answer for
(a, b, c) = (2, 2, 2). A similar argument works for (a, b, c) = (2, 2, n).

Now we are ready to prove:

Proposition 6.11. The subscheme U ⊂ Hilb20(P3) sits in the closure of
G(20, 4).

Proof. Call A a general element in U and fix a quartic surface Y containing
A. Let F be a rank 2 bundle on Y associated to A, with Chern classes
c1 = 4 and c2 = 20. Consider also a smooth set W of 8 points in a plane π,
given by a general section of F(−1) (see Lemma 6.7).

By Proposition 6.9, we have a flat family η : W → ∆ of smooth length-
8 subschemes of P3, parametrized by a neighbourhood ∆ of 0, whose fibre
η−1(0) isW and whose general fibre η−1(g) is a setWg, complete intersection

of three quadrics. Since h0(P3, IW,P3(4)) = h0(P3, IWg ,P3(4)), we may lift Y
to a family of quartic surfaces whose general element Yg contains Wg. Notice
that the family Wg is produced via the choice of a cubic plane curve through
W (which moves in a pencil) plus a Weierstrass point on the curve (they are
interchanged in the pencil). Thus it depends continuously on one parameter.

The rank 2 bundle F corresponds, up the k∗ action, to the choice of an
element in the 2-dimensional space Ext1(IW (2),OY ) ∼= H1(Y, IW (2))∗. Our
statement amounts to the following:
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Claim 1. The deformation η of the 8 points W ⊂ Γ = Y ∩ π can be chosen
in such a way that F extends to a rank 2 bundle Fg on Yg, where Fg(−1) is
associated with a complete intersection set of 8 points.

�
Notice that Ext1(IWg(2),OYg)

∼= H1(Yg, IWg(2))
∗, thus Ext1(IWg(2),OYg)

defines a 1-dimensional subset of the 2-dimensional space Ext1(IW (2),OY ),
as Wg goes to W . So the claim is non trivial.

Proof Claim 1. The statement is obvious when there are infinitely many sec-
tions of F(−1) vanishing on W (mod k∗), for in this case all the elements of
Ext1(IW (2),OY ) correspond to the same rank 2 bundle F (only the section
varies). Assume this is not the case. Thus F defines a 4-dimensional linear
series in |W |.

Changing the element in Ext1(IW (2),OY ) has the effect of choosing a
bundle F ′ on Y , associated with a 4-dimensional linear series in |W |. This
linear series cannot be fixed as we vary the extension, for |W | has dimension
5, so it is not the union of disjoint 4-dimensional subspaces, while a general
set of 8 points on Γ determines a rank 2 bundle on Y , hence a 4-dimensional
linear subseries. Since a general set of 8 points can be lifted to a ci subscheme
in P3, we have at least a 1-dimensional family of bundles on Y , associated
with W , which lifts to a deformation of a set of 8 points on Γ. Possibly
replacing now W with a neighbouring element in |W |, we may assume that
W admits a deformation to a complete intersection. This completes the
proof. �

We are now in position to prove:

Theorem 6.12. The map p = p20,4,5 : G(20, 4, 5) → |OP3(5)| of diagram
(3.1) is dominant. In other words, on a general quintic surface X ⊂ P3 it is
defined an initialized indecomposable ACM bundle E of rank 2, with Chern
classes c1 = 3 and c2 = 20.

Proof. Consider the set U ′ of pairs (A, Y ) where A ∈ U and Y is a quintic
surface containing A. Since U sits in the closure of G(20, 4) and elements
of both U and G(20, 4) are separated by quintics, then U ′ sits in the closure
of G(20, 4, 5). So Corollary 6.6 proves that the map p|U ′ : U ′ → |OP3(5)| is
dominant. �
6.3. The maximal case: c1 = 4, 30 points. Here we prove the existence
of an initialized ran 2 ACM bundle on the general surface X, achieving
the maximal value of c1 and c2. This result is already known, and due to
Beauville and Schreyer, see the appendix of [Bea00]. However their proof
relies on a Macaulay2 computation, while we outline a geometric approach
which makes use of Beilinson’s theorem and a deformation argument.

Theorem 6.13. On a general quintic surface X there exists an initialized
indecomposable rank 2 ACM bundle E with Chern classes c1 = 4 and c2 = 30.
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The rest of this section contains the proof of this theorem. Consider the
sheaves of differentials Ωp

P3(p) = ∧pΩP3(p), for 0 ≤ p ≤ 3. Define the bundle

P = O10
P3 ⊕Ω1

P3(1)⊕Ω2
P3(2) and the vector space V = H0(P3,∧2(P)(1)). We

can view an element in V as a skew-symmetric matrix f : P∗(−1) → P.
So we can define a rational map Pf : P(V ) 99K P(H0(P3,OP3(5))), which
associates to an element of V the square root of its determinant, defined up
to a nonzero scalar.

Lemma 6.14. Assume that on the general quintic surface X there exists
an initialized rank 2 bundle F , with c1(F) = 2, c2(F) = 15, and with
h1(X,F(t)) = 0, for each t ∈ Z, except for h1(X,F) = h1(X,F(−1)) = 1.
Then the rational map Pf defined above is dominant.

Proof. Let ι : X → P3 be the natural inclusion. Applying Beilinson’s theo-
rem to the sheaf ι∗(F(1)), one can write down the following resolution:

(6.7) 0 →

OP3(−1)10

⊕
Ω2
P3(2)
⊕

Ω1
P3(1)

f(F(1))−−−−→

O10
P3

⊕
Ω1
P3(1)
⊕

Ω2
P3(2)

→ ι∗(F(1)) → 0.

We still denote by P(F(1)) the target of the map f(F(1)), while we write
Q(F(1)) for the domain of f(F(1)). Notice that P(F(1)) ≃ P, and Q(F(1)) ≃
P∗(−1), with P defined above. Observe that there is no obstruction to the
lifting of any map P(F(1)) → F(1) to an endomorphism of P(F(1)), thanks
to the vanishing:

Ext1(P(F(1)),Q(F(1))) = 0.

Using this fact one can easily prove, following step by step the proof
of Theorem 2.9 contained in [Bea00], that there is an isomorphism ϕ :
P(F(1)) → Q(F(1))∗(−1) such that the following diagram commutes:

0 // Q(F(1))
f(F(1))

//

ϕ⊤

��

P(F(1))

ϕ

��

// ι∗(F(1)) //

κ

��

0

0 // P(F(1))∗(−1)
−f(F(1))⊤

// Q(F(1))∗(−1) // ι∗(F∗(3)) // 0.

where κ is a skew-symmetric duality of F . Equivalently, the matrix f(F(1))
is skew-symmetric, i.e. f(F(1)) sits in the vector space V defined above.
Now Pf(f(F(1))) is the equation of the support of F , which is defined over
the general quintic surface. So our hypothesis implies that the rational map
Pf is dominant. �

Now set P′ = O10
P3 , V

′ = H0(P3,∧2(P′)(1)) and consider the restriction Pf ′

of the rational map Pf to P(V ′), where we think of an element [f ′] of P(V ′)
in P(V ) as a block matrix made up of f ′, the identity map on Ω1

P3(1) and

Ω2
P3(2), and zero everywhere else.
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Roughly speaking, the next lemma allows to deform the matrix f(F(1)) in
such a way that we can erase the undesired summands from the resolution
- namely, the copies of Ω1

P3(1) and Ω2
P3(2). This will provide us with an

initialized rank 2 ACM bundle as a generalization of F(1).

Lemma 6.15. Set hypothesis as in the previous lemma. Then the rational
map Pf ′ : P(V ′) 99K |OP3(5)| is dominant. In particular, Theorem 6.13
holds.

Proof. Recall by Lemma 6.14 that Pf is dominant, so its differential at a gen-
eral element [f] of P(V ) is surjective. Representing [f] as a skew-symmetric
matrix f : P∗(−1) → P, we can write f in the form: f0 a b

−a⊤ c d
−b⊤ −d⊤ 0

 ,

with:

a : Ω2
P3(2) → P′, a⊤ : (P′)∗(−1) → Ω1

P3(1),

b : Ω1
P3(1) → P′, b⊤ : (P′)∗(−1) → Ω2

P3(2),

c : Ω2
P3(2) → Ω1

P3(1), c⊤ : Ω2
P3(2) → Ω1

P3(1),

d : Ω1
P3(1) → Ω1

P3(1), d⊤ : Ω2
P3(2) → Ω2

P3(2).

and with f0 = −f⊤0 and c = −c⊤. Consider a matrix f of the form (6.7)
provided by Lemma 6.14. It satisfies d = 0, and the differential of Pf is
surjective at the point represented by such f. In general d must be a scalar
multiple of the identity, so we may set fε = f + ε idΩ1

P3
(1) − ε idΩ2

P3
(2). The

differential of Pf will be surjective at the point [fε] of the space P(V ).
Since c is skew-symmetric, we can choose ζ ∈ Hom(Ω2

P3(2),Ω
1
P3(1)) with

ζ − ζ⊤ = c. Consider now the automorphism g of P, written in the form of
a block matrix like:  1 −b/ε 1/ε2(ε a− b c)

0 ε ζ
0 0 1

 .

We obtain the matrix hε = g⊤ · fε · g. The only nonvanishing blocks of
the matrix hε are a block of linear forms f ′ and identity maps of Ω1

P3(1) and

Ω2
P3(2), which we can now factor out. This means that [hε] sits in P(V ′),

and the differential of Pf is surjective at [hε], hence we are done. �

Lemma 6.16. On the general quintic surface X it is defined a rank 2 bundle
F which satisfies the hypothesis of Lemma 6.14.

Proof. Our claim is equivalent to the fact that the general quintic surface
contains a length 15 subscheme Z having difference Hilbert function of the
form 1, 3, 6, 4, 1.
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We need a slight refinement of Lemma 3.2, where we allow the subscheme
Z to be of the above form, (in particular Z is not aG). Namely we claim that
if Z is given as the vanishing locus of a section of a rank 2 bundle G with
c1 ≤ 3 defined on the general quartic surface Y4, then the general quintic
surface X contains a subscheme with the same Hilbert function as Z. The
proof of this claim is similar to that of Lemma 3.2, so we omit it here.

Counting dimensions, we see that our claim amounts to the fact that on a
given smooth quartic surface Y4 containing Z, with Pic(Y4) = Z, the family
of subschemes of Y4 with difference Hilbert function 1, 3, 6, 4, 1 has dimension
24. Notice that G is stable and has 7 independent sections, hence it suffices
to show that on such Y4 the moduli space MY4(2; 3, 15) has dimension 18.
But since Y4 is a smooth K3 surface and G is a stable bundle, this is indeed
the case, see for instance [HL97, Part II, Chapter 6]. �
Corollary 6.17. Let X ⊂ P3 be a general quintic surface, and for let c1, c2
be integers given in the table (1.1) of Chern classes of an ACM rank 2
bundle E on X, with c1 ≥ 1. Then the component of the moduli space
MX(2; c1(E), c2(E)) containing [E ] is reduced and of the expected dimension.

Proof. For all such integers c1, c2, set i = c1 + 1, m = c2. By our main
result, the map pm,i,5 is dominant, so its differential has maximal rank

at a general point (Z,X). The fibre p−1
m,i,5(X) is thus generically smooth

of the expected dimension. Now, Theorem 2.3 and Theorem 2.5 provide
a rational map ζ : p−1

m,i,5(X) 99K FMs
X(2; c1(E), c2(E)), where the target

space is the so-called moduli space of framed sheaves, i.e. pairs [F , s] with
F ∈ MX(2; c1(E), c2(E)) and s ∈ P(H0(X,F)). The map ζ is a locally closed
immersion. Since being ACM is an open condition, the differential at [E ]
of the natural projection FMs

X(2; c1(E), c2(E)) → MX(2; c1(E), c2(E)) is sur-
jective on the tangent space of MX(2; c1(E), c2(E)) at [E ]. It follows that the
moduli space MX(2; c1(E), c2(E)) is smooth in a neighbourhood of [E ]. It
easily follows that the component of MX(2; c1(E), c2(E)) containing [E ] has
the expected dimension. �
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