Exercise 1. -

Let X, Y be simply connected closed subsets of \mathbb{R}^2 . Determine if $X \cup Y$ is necessarily simply connected in the following two cases (by giving an argument if the answer is positive or a counterexample if the answer is negative).

Case 1. $X \cap Y = a$ singleton.

Case 2. $X \cap Y = 2$ points.

Exercise 2. -

Prove that if X is pathwise connected, in the product $X \times X$ the subset $\Delta = \{(x, x) : x \in X\}$ (also called the diagonal) is pathwise connected.

Exercise 3. -

Let X be a simply connected topological space and take a pathwise connected subset $Y \subset X$, with the induced topology. Assume there exists a continuous map $f: X \to Y$ such that the restriction $f_{|Y}$ is the identity on Y. Prove that Y is simply connected.