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Abstract—The increasing adoption of electric vehicles (EVs) I. INTRODUCTION

and the related need for efficient battery charging leads to

additional challenges to the power network and energy prowers.
One of the main issues regards the intrinsic uncertainty atcting
the EV charging process, which calls for appropriate stratgies
to ensure reliable solutions. From the perspective of a patkg
lot, the electric vehicle charging process should be manaden
order to guarantee the recharge at competitive price. In ths
paper, the problem of energy pricing under vehicle uncertanty is
addressed. Specifically, we propose a new energy pricing ategy
where the daily profit of the parking lot is guaranteed with
a given probability level. The source of uncertainty is relaed
to the EV arrival/departure times and the daily number of
incoming vehicles. By exploiting photovoltaic (PV) and eletrical
storage system (ESS) facilities, procedures and algorithenare
formulated to compute the optimal selling price and to operae
the battery in a receding horizon framework. Since the propsed
chance constraint problems are intractable for realistic senarios,
suitable approximations are provided in order to find a feasble
solution. Numerical results show the effectiveness of therpposed
approach and the tightness of the introduced relaxation, esn in
the presence of a high number of incoming vehicles.

Index Terms—Electric vehicles, charging stations, pricing,
stochastic optimization, receding horizon.

NOMENCLATURE
A Sampling time
PEV Nominal EV charging power
to Arrival time (plug-in time) of thev-th EV
td Departure time (plug-out time) of theth EV
ts, Charging time of the-th EV
Ny Total number of daily vehicles
H(t) Number of vehicles which are charging at timhe
H(r 1) Number of connected vehicles at timewhich will

be still charging at time

EFS5(t) Battery level of charge at time
PESS* (1) Battery charging power in time slot
PPS5-(t)Battery discharging power in time slot

PP55(t) Net power exchanged into the battery in time glot
EFV(t) Energy required to charge plugged-in EVs in time slot
ETV(t) Energy drained from the PV plant in time siot

ETY(t) Energy production of the PV plant in time slot

EC(t) Energy drawn from the grid in time slat

Grid electricity price in time slot

Electricity cost in time slot

n ESS charging/discharging efficiency

Q@ Fraction of daily profit with respect to daily cost
s Daily electricity selling price

€ Probability level

8 Auxiliary probability level
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To overcome issues caused by pollution and, @@issions,
electric vehicles (EVs) are becoming an appealing oppdsytun
especially in large cities. In fact, EVs make it possible to
move CQ emissions outside living centers. Moreover, in
contrast to from internal combustion engine vehicles, tteay
exploit renewables (e.g., solar, wind, etc.) for their dirag.
However, EVs may be source of different critical issues
for safe and reliable power grid operation while ensuring
user satisfaction/comfort. On the power side, attentioa ha
been focused on several aspects involving cost minimizatio
approaches and peak shaving targets. In [1], a battery sa@pp
strategy is proposed to satisfy safety power grid congsain
while minimizing the grid operation cost. In [2], [3], the
problem of sizing and siting of charging stations is studied
provide a proper charging service. Charging unit managémen
inside an airport EV parking lot is presented in [4]. In [5],
game theory is exploited to derive a smart energy management
of an EV parking lot. To improve the advantages given by
renewable generation and electricity storage faciliting|6]

a smart charging management system for an EV parking lot
is developed, while in [7] a parking lot energy management
strategy is designed by considering EV mobility and parking
patterns. In [8], a receding horizon strategy to minimizil gr
operation cost of an industrial microgrid is presented.

Paying attention to EV owner customer satisfaction, in [9],
[10] battery swapping strategies are derived to optimize th
charging station cost while ensuring a fast fueling servine
[11], a charging strategy is developed to reduce user éligtr
cost by employing incentive programs, whereas in [12] the
same goal is achieved by considering user time anxiety.

As well known, EVs represents an intrinsic source of
uncertainty due to traffic conditions and user preferentes.
handle such problems, several solutions have been provided
in the literature. In [13], the profit maximization of an EV
parking lot under uncertain EV arrival and departure tinges i
investigated. To manage the uncertain load of EVs, a gritl cos
minimization strategy is proposed in [14], while in [15] age
power reduction problem is addressed.

From EV electricity pricing perspective, the investigated
topics are focused on providing solutions about problems
involving both user and power system side. In [16], a game
theory study is carried out in order to derive an optimal
selling price for several charging stations. Consideriog/gr
and transportation network frameworks, a pricing strategy
optimally manage a large number of EVs is developed in [17].
To reduce the overlap between residential and EV charging



station loads, in [18] a dynamic pricing procedure aimed at The proposed algorithms are based on the solution of mixed
shifting the EV demand to low peak hours is reported. In [19teger linear programs which are tractable for realisfipla

a two layer model is developed to generate electricity reglli cations, as witnessed by the extensive numerical simuakatio
price under market price uncertainty, while in [20] an E\performed.

energy pricing procedure to lower the peak power absorption

is proposed. Paper Organization

To handle the uncertainty on EVs and renewables, anThe paper is organized as follows. In Section II, problem
electricity pricing framework is developed in [21]. In [22] variables, constraints and probability derivations ascdbed.

a pricing mechanism to fill load valleys in the presence of Section IIl, the optimization problem aimed at finding the
EVs is designed. In such a strategy, the recharge of vebptimal daily selling price is analyzed and solved through a
cles is considered for both cooperative and non-cooperatiuitable algorithm. Section 1V is related to the formulataf a
scenarios. A pricing strategy based on EV user responsesdoeding horizon procedure to operate the ESS during the day
different prices is reported in [23]. In particular, assogii In Section V, numerical results to evaluate the effectigsne
that the utility company may individually adapt the energgnd the computational feasibility of the proposed approach
price, a profit maximization technique is proposed. In [244re reported. Finally, conclusions and future researeslare

a distribution locational marginal pricing method to miig drawn in Section VI.

system congestion caused by uncontrolled charging of EVs

is introduced. A charging station providing vehicle-taegr Il. PROBLEM FORMULATION

services is considered in [25]. In this scenario, the pgcin In this work, we focus on a charging station used to charge
problem is analyzed by considering battery degradation aadarge number of electric vehicles. The charging station is
by proposing different charging contracts to users. In [26hssumed to be equipped with charging units, a PV plant and
a real-time energy pricing strategy based on the conceptasf electrical storage system. It is supposed that the nuafber
inverse-demand function under renewable and load demaithrging units is enough to provide charging for all incognin
uncertainty is proposed. To provide a probabilistic gusgan vehicles, and so no vehicle queues are considered. Moreover
for the EV charging profit, a chance constrained programunde is assumed that the daily electricity cost profile and a
EV load uncertainty is formulated in [27]. forecast of the PV daily production are available in advance
In the setting considered, the charging station is not atbw
to sell energy to the grid, i.e. no vehicle-to-grid energwflo

is considered.

In this work, a parking lot equipped with a charging station, The problem is formulated in a discrete time setting, where
photovoltaic (PV) generation and electrical energy steraghe sampling time is denoted bj. The EV arrival and
system (ESS) is considered. The main contribution of thepagieparture times, and the daily number of incoming vehidles a
is twofold: uncertain and their probability distributions, or estigsafor

i) To design a procedure aimed at computing the daityiem, are assumed to be available. Each plugged-in velsicle i
selling price for charging EVs. In particular, such a pricestn charged at a constant power rd&¢" from the arrival time to
be the lowest which ensures a given profit with a probatilistits departure time. We assume that the reference day isedivid
guarantee. Moreover, the selling price is considered to bgo T time slots where the initial time slot starts @at= 0,
constant throughout the day for commercial reasons. In thile the last one at= T—1. Lett? be thev-th vehicle arrival
considered setting, the source of uncertainty is related time andt¢ the corresponding charging time, i.e. the number
future incoming vehicles, specifically, to arrival timepdeture of time slots the vehicle remains in charge. Without loss of
time and the daily number of incoming EVs. To handlgenerality, we consider that vehicles leave the parkingatot
such uncertainties, a chance constrained optimizatiobl@mo time t¢ = ¢2 +¢¢. In fact, in a realistic scenario, vehicles may
aimed at finding the optimal selling price is designed. Tkeep a charging unit busy longer than the charging duration.
find a tractable formulation of such problem, the optimizeglowever, such vehicles can be neglected affersince they
Bonferroni approximation described in [28] is exploited.  are no longer charging and the number of charging units is

ii) To provide a receding horizon control algorithm toassumed to be enough to receive incoming vehicles. The total
operate the ESS during the day to achieve the expectagmber of incoming vehicles during each day is represented
profit of i). Contrary to the procedure designed in i), thipy the random variabléVy,. Let us assume that the random
algorithm takes advantage of the knowledge acquired in @ariables related to arrival time and charging time of each
online approach about the random process outcomes of@rrivehicle are independent and identically distributed. Thie
vehicles. arrival time, departure time and charging time of a generic

The major novelty of the contribution is to provide a robustehicle are denoted b#?, t* andt¢, respectively. Moreover,
selling price policy as the solution of an optimization gt we assume that the supports of random variabflesnd Ny
where the uncertainty on the EVs is modeled through suitaldee bounded. We denote their minimum valuegbgnd N,
probability distributions. The proposed approach allowe o and their maximum values by and Ny.
to deal with different configurations and scenarios becagse Let us define byE”" (¢) the overall energy required to
specific assumptions on probability distributions desoghhe charge plugged in vehicles in theth time slot, i.e. between
EV uncertainties is made. time t andt + 1.

Paper Contribution



Concerning the ESS, we denote @Wy”°(t) the stored  To fulfill Problem 1, the overall revenue must satisfy the
energy at timet, and its charging/discharging power rates bfollowing inequality with probabilityl — e.
PESST(1)IPESS™ (1), respectively. We use a simple dynamic S B
model for the ESS Z EEV(#)s' > (1+a) Z c(t). (3)

1 - = -
EESS(t + 1):EESS(t) + nAPESS+(t) _ ZApESs (t), N t=0 . t 0
Ui By definings = s’/(1 + «), (3) is equivalent to
wherer is the battery efficiency. LeEXS denote the energy T-1 T-1
stored at the initial time step of the day, i.e. Z EFV(t)s > Z c(t).
EESS(O) — EESS t=0 t=0
o - So, the goal is to find aatrtificial selling prices capable of
The ESS charging and dischggging power rates are boundedering the daily cost. Then, traetual selling price will be

by zero and a maximum rat€” ", i.e. s’ = (14 «)s. Hereafter, we will focus on the computation
of s which, for the sake of simplicity, will be denoted as the

0 < PESS' (1) < P70 selling price
0< PESS™ (1) < ﬁESS’ To compute the probability distribution of the daily net

profit, we focus on finding the distribution of the energy dnaw
while the energy level is bounded by its capacﬁfiss, je. from the grid at each time step. Since the randomness is due
to vehicle statistics, let us focus on random variables riogle
0< EESS(1t) < B, the EV process.
Denote byP(A) the probability that a given event occurs.
Let P(A, B) be the joint probability that eventd and B
PESS (1) = pESss* (t) — PESS™ (4). occur, andP(AU B) be the probability of the union of the two
events. The probability that an eveatoccurs conditioned on
Notice that, in order to have a consistent ESS dynamigs,is denoted byP(A|B). Moreover, let4 be the complement

PESSH(t) and PPS5~ (t) cannot be both nonzero. Thus, thef event4, i.e. P(A) = 1 — P(A).
following constraint will be enforced The probability that a generic vehicle is in charge at time
PESS+(1) pESS= (1) = 0, can be expressed as

P <t t'>t) =
t

Let us define the net power exchanged by the battery as

Let E”V(t) be the PV plant energy production between time
tandt+ 1 and letE"V (t) denote the energy that is injected _ Z P (4> 1l = 1) P (19 = 7)
into the parking lot charging station, during the same time
interval. HenceE"V (¢) is such that:

t
OSEPV(t)SEPV(t). = {Z_ }P(t >t_T)P(t :T)a
T=max t—tc+1,0

T=max{t—%°+1,0} (4)

. [~y =374 . . PV | . .
Notice that, £~ (¢) is different from £V (¢) when curtail- ¢ js the convolution between the complement of the charg-
ment is necessary, i.e., when the PV production exceeds thaf time cumulative distribution with the distribution olfiet

required by the parking lot for managing EV charging angyjya| time. Notice that, the probability of having a veleic
ESS operation. e in charge at time follows a Bernoulli distribution, so we can
Thus, the overall energy drawn from the giitt () in time  g4gjly compute the probability that a given amount of velsicl
slott is be in charge at a given time step. In fact, E{t) be the
EC(t) = max { EPV(t)— EPV(t)+ APESS1), 0} random variable denoting the number of vehicles in charge at
time ¢. Then, its probability distribution is derived as follows

ES(t) (1) -

_ G v
_maX{E (t),O}, '])(H(t):n):Z’P(H(t):n|NV:m)P(NV:m) (5)

where the max function is needed since the parking lot is not m=n

allowed to export energy to the grid. where
Let us define the cost per time steft) as P(H(t) =n|Ny =m) =
n - \mn 6
o(t) = B (t)p(1), @ = (m>73(t“ <t 1> P <t 1) ©)
n

wherep(t) is the electricity price at time.
The aim of this work is summarized in the following
problem.

Notice that, in (6) the probability that vehicles are charging
at time t, given that the number of daily vehicles is, is
described by the binomial probability mass function where
Problem 1. For each day, compute the minimum electricityhe success probability is represented by the event thdthe
selling price s’ such that the daily net profit is at least acharging period overlaps time The study of such probabili-
fraction o of the daily cost, with probability at leadt— ¢. ties is useful to derive the probability distribution of teergy



needed by EVs at each time step. Indeed, the relation betwéleam probability of having a daily los&®" is
EEV(t) and H(t) is expressed by the following equation

Ny
P cp = LPV | =
EPV(t) = H(t)ARY. <z_:1 )
Ny Ny
Of course, the marginal cost distribution at each time s¢ep i — Z P ZC” = LEV’NV =n|P(Ny =n)
immediately obtained from the marginal distribution of &\ n=N, o—1

energy. Unfortunately, computing the probability distition Ny N
of the EV daily cost starting from the marginal distributson Z P <Z - LEv> P (Ny =n). (10)
of each time step is a hard task, since the energy amounts

required at different time slots are correlated. In fact, to _ . o .
compute such distribution one needs to enumerate all the pbi9tice that the single vehicle loss distributions are irefefent
sible combinations of vehicle arrivals and departuresingiv @nd identically distributed, since their relative arritahes
raise to a combinatorial problem whose calculation becom@ad charging times are independent and identically distth
intractable even for a small number of vehicles. To overcon®: the distribution of the sum of losses is equivalent to
this issue, the concept &V daily lossis introduced. Let us the corjvolution ofn single .Ioss _distributions._The previqgs
define the EV daily loss agtT:—ol EEY (t)(p(t) — s). Notice easoning can be summarized in the following proposition,
that, a negative loss means that the selling psiggovides a Which links (7) and (10).

profit. Let the selling prices and the daily electricity price pyoposition 1. The probability in(7) satisfies
profile p(t) be given, we are interested in computing the

following probability T-1 Ny
P EEV(t)(p(t) — 3) — LEV> —p < Cp = LEV> .

T-1
P (Z EEV (1) (p(t) — 5) = LEV> , ) Notice that, through Proposition 1, the intractable cearrel
t=0 tion between time steps in (7) can be overcome by exploiting
(10).
where L®V denotes a realization of the EV daily loss. Notice
that, sinces and p(t) are fixed, (7) only involves discrete 1. SELLING PRICE OPTIMIZATION
random variables. Computation of such a probability will be

: . . . In this section, the chance constraint on the daily profit
extremely important for solving Problem 1, and in partm:ulaand the optimization problem to compute the optimal sellin
for running Algorithm 2 which will be introduced in the next P P P P g

section. To compute the probability in (7), one may consid rice are .presented.. To simplify the treatment, let us define
e following events:

a different approach based on the probability distributiddn
the daily loss for a single vehicle. " {Tl T

v=1

n=N,

1

Y

EV
For a fixeds, if vehicle v has been charged in the time Z EZT(t)s
interval [r1, 72), then the corresponding loss is =0

B¢ (t)p(t)} (1)

~
Il
=]

T-1 T-1
a1 B = {Z EPV(t)s > EG(t)p(t)} ;12
cu= 3 ARFV(plt) - 9)
= c2 {EG(t) >0, Vtel0,T - 1]} . (13)
Then, let us introduce the following set The constraint on the selling price satisfying Problem 1 is
T-1 T-1
EV > >1_
c(h) = {(71,72) e, T -1, e[0,T—1],7 >, P (; 022, C(t)> SR
T2l which by (2) is equivalent to
D APV (p(t) —s)=hy,
= P(A)>1 e (14)
C)

Notice that, sincé=“ (¢) is defined as anaxfunction involving

that defines all the possible time windows which can lead #§cision variables, finding the selling price based on caimt

a lossh. Therefore, the probability that the daily loss of 414) iS & hard task, in general. To overcome this issue, let us
vehicle ish can be computed as introduce the following proposition which gives a suffidien

condition to enforce (14).

Py =h) = Z P(t*=m, t*=m), (9) Proposition 2. Let

(11,72)€C(R) P(B,C) >1—¢. (15)

that is the probability that a log's occurs is equal to the sumypen P(A) >1—-e.
of the probabilities of eaclir;, 72) leading to a loss.. Then, -



Problem 2.

glsgg s (16a)
P ,8
T—1
EPV(t)s> S EC(t)p(t
P ;) 0= ;) Or) 21l-e¢ (16b)
EC@{t) >0, Vte[0,T —1]
EC ) = EFV(t) + APPSS(t) — EPV (1) vt e [0,T —1] (16¢)
0< EPV(t) < EPV (1) vt e [0,T —1] (16d)
EBSS(4 4 1) = EESS(1) 4 nAPESST (1) — lAPESS’(t) vt € [0,T —1] (16e)
n
0< EFSS(t) < EFS vt € [0, 7] (16f)
0< PESST () < pESS vt € [0, T —1] (169)
0 < PESS™ (1) < PP vt € [0,T —1] (16h)
PESST () pESS™ (1) = 0 vt e [0,T — 1] (16i)
PESS (1) = PPSST (1) — PPSS™ (1) vt € [0,T — 1] (16))
EESS(O) _ Eéass (16k)
$>0. (16l)

Proof. Since EC(t) = max { EC(t) ,0}, one hasP(4|C) = and

P(BI|C). So,P(A,C) = P(AIC)YP(C) = P(B|CYP(C) = S _—
P(B,C). Hence, P(B) =P (Z EEV (t)s > Z EG(t)p(t)> —
P(A)>P(AC)=P(B,C)>1—c¢. 0 t=0 =0

T-1 —1
Notice that, in Proposition 2 the evet is related to =P (ZEEV(t)(p(t)—S)S (EPV(t)—APESS(t))p(t) :
the profit, while the evenC requires the energy flow to be =0 =0 29)

positive throughout the day. Thanks to Proposition 2, ong ma . S . i
introduce Problem 2 which aims to find the minimum sellin Notice that the probability in (22) can be effectively com
uted if the selling prices, the power schedule of the bat-

price s satisfying (15). ESS (4 =Py
. . I . ery P#°°(t), and the energy drawn from the PK¥"" (),
One may notice that the nonlinearity in constraint (16 t € 0,7 — 1] are known. In fact, in this case, (22) can be

can be substituted by replacing (169)—(16i) with the follayv computed by exploiting Proposition 1 and (8)—(10).

constraints S To1  spy bog
s _pss et Let us call the quantity _, ;" ( E“" (t) — AP (t)) p(t)
0<P @)<pP (11— ) Vte[0,T—1] (17) the daily savings In (22), it is apparent that for a given
0 < PESS*(1) < P, bss vt e [0,T—1] (18) prc|>|pability IeveIAthe Il?rglir the daily zavingsIs the SrITra‘h:
5 selling prices. Actually, Proposition 3 can be exploited to
€{0.1} vt € [0,T-1]. (19) find a feasible solution of Problem 2. For this purpose, a two-
The following proposition gives sufficient conditions toStep procedure is provided in the following. The first step
ensure (15). aims to compute the maximum of the daily savings while
. enforcing (20). The second one, on the basis of the prewiousl|
Proposition 3. Let0 < f <e. If computed daily savings, is focused on finding the best sgllin
P(C)>1-7 (20) price satisfying (21).
Focusing on the first step, for a fixgd Problem 3 is intro-
and duced. This optimization problem aims to find the maximum
PB)>1—-e+4, (21)  daily savingsr), guaranteeing (20) (i.e., constraint (23b) in
thenP(B,C) > 1 — . Problgm _3), that is the prlobability that t_he energy flow is
negative is less thapy. Notice that (23b) is a joint chance
Proof. It holds that, constraint. Joint chance constrained optimization proklare
= = — — notoriously difficult to solve. However, such a constraiahc
P(B,C)=1-P(BUC)>1-P(B) -P(C) = be converted to its robust counterpart in order to derive a
=PB)+PC)-1=>1-c. O tractable reformulation of the original optimization plein
[28]. This makes it possible to compute a solution of the
original problem by employing a conservative feasible Se.
P(C) =P (Ec(t) >0, Vte0,T — 1]) _ let us focus on I?roblem 4 S _
R where constraint (23b) is converted to a distributionalinj
=P (EEV(t) > EPV(t) — APPSS(t), vt € [0,T — 1]) ,  chance constraint where the probability distributidielongs

By (16c), probabilities in (20)-(21) can be written as



Problem 3.

/o PV SS
rh = max ; (E (t) — APE (t)) 0 (23a)
P (EEV(t) > BEPV(t) — APESS(1), vt € [0,T — 1}) >1-8 (23b)
0< EPY (1) < EPV(1) vt e [0,T —1] (23c)
EESS(t 4 1) = EESS(t) + nAPESST (1) — %APESS’ (t) vt € [0,T —1] (23d)
0 < EESS(1) < EPS vt € [0, T (23e)
PESS () = pESST(y) _ pESS™ () vt e [0,T — 1] (23f)
0< PE‘S'Sf(t) SﬁESS(l—ZtESS) vt € [0,T — 1] (239)
0 < PESS+(p) < pPOS,ESS vt e 0,7 — 1] (23h)
295 € {0,1} vt e [0,T —1] (23i)
EPS5(0) = E§55. (23))
Problem 4.

o= max 3 (B7V (0 - aPPS5(0) a0 (242)

: EV PV ESS
Jnf P (E (t) > EPV(t) — APESS(1), vt € [0,T — 1]) >1-8 (24b)
0< EPY 1) < EPY () vt e [0,T —1] (24c)
BESS(4 4 1) = EESS(1) + yAPESST (1) — LApESS™ (4 Ve € [0,T — 1] (24d)

n

0< EESS(t) < EPS vt € [0,T] (24€)
PPSS (1) = PESST (1) - PPSS () vt € [0,T — 1] (24f)
0 < PESS—(1) < PP9(1 — ,B55) vt e [0,T — 1] (24g)
0 < PESS+(p) < PPO5,BSS vt e [0,T — 1] (24h)
299 ¢ {0,1} vt € [0,T — 1] (24i)
EESS(O) — EOESS? (241)

to the ambiguity seD. Such an ambiguity set is defined agomputation of the best selling prieg for given 5 andrg.

follows Such a selling price can be obtained by solving Problem 6,
BV where constraint (26b) coincides with (21) for a given antoun

D={P:PeM(Po,...,Pr-1), B*(t)~P:,Vt € [0,T~1]} of daily savingsrg, i.e. by considering the optimal solution

whereP; denotes the probability distribution d&*V (), and Of Problem 5.

M(Py, ..., Pr-1) denotes the set of all joint probability proplem 6 (min_selling price)
distributions whose marginals afe,. As described in [28],

since random variableB®" (¢) are distributed along discrete ( sz =min s (26a)
supports, Problem 4 is equivalent to the mixed integer tinea T—1
program (MILP) reported in Problem 5. In this problem, the P <Z EEV(t)(p(t) — s) < Tﬁ) >1—¢c+ [ (26b)
original robust joint chance constraint (24b) has beernrnefs t=0
lated by using the Bonferroni inequality, where the optienis s> 0. (26¢)

allowed to choose the best option for the Bonferroni weights
(B¢. Concerning the binary variableq’?,y, they are used to
satisfy each individual chance constraint (25c). A. Optimal selling price algorithm

Remark 1. Notice that, the number of binary variable§ ~ To compute the optimal selling price satisfying Problem 1,
in Problem 5 may be large, since it equal§N + 1). Thus, the procedure reported in Algorithm 1 has been devised.
the computational burden of Problem 5 might be intractable, First, initialization of some variables are performed. In
in general. However, constrair{25n) enforces that only one Particular, the candidate optimal selling prieeis set to the
binary variable can be equal to at each time step, makingMaximum of the grid electricity price, while the candidate
the problem structure suitable to be efficiently managed 9ptimal value of/3 is set to 0. Sincé) < f < ¢, a grid

standard solvers, as reported in Section V. search in3 with stepy from 0 toes —  is performed. For any
value of 3, the subroutinenax savingsprovides the solution

~ In Problem 5, the maximum daily savings for a fixed 5 of problem 5 returning the related daily savings, while
is computed. The second step of the procedure concerns i@ selling price returnssg, i.e. the solution of Problem 6. If



Problem 5 (max_savings)

T—1
o = o D (BPYV (1) — APESS()) p(t) (25a)
Ny
3 (AP(FVn) 2V > BPV (1) — APPSS (1) vt €[0,7 — 1] (25b)
n=0
Z P, (EEV > APOEVn) LBV >1-p vt € (0,7 — 1] (25¢)
n=0
0< EPV(@) < EPY (1) vt € [0,T —1] (25d)
EBSS(4 4 1) = EESS(1) 4 nAPESST (1) — lAPESS’(t) vt € [0,T — 1] (25€)
n
0 < EESS(t) < EFF vt € [0,T] (25f)
PESS(t) — PESS+(t) PEssf(t) vt € [07,1—, _ 1] (259)
0 < PESS—(1) < P95 (1 — . B95) vt €[0,T — 1] (25h)
0 < PESS+(p) < PFI5,ESS vt € [0,T — 1] (25i)
2E9% e {0,1} vt e [0,T —1] (25j)
EFS3(0) = EFSS (25k)
Bt >0 vt €[0,T —1] (251)
zt Ve {0,1} vt € [0,T — 1], n € [0,Ny] (25m)
Z 25 =1 vt € [0,T — 1] (25n)
n=0
T—-1
S BB (250)
t=0
Data: ¢, p(t), B, a, distributions ont,, t., Ny, and Data: f3, r3, €, p(t), distributions ont,, t., Nv and
step sizey tolerancey.
1 8" = maxyepo,r—1) P(t); 1 Spot = 0; Stop = Maxycio,1) P(t); €sat = 1 — €+ f5;
2 57 =0, 2 et = P (X1 EEV (D)(p(0) = shor) < 75
s for B=010 (¢ —~) by v do ’ ey =
4 |rg = mazx_savings(p); 3 £top =P (Zt o E7V () (p(t) — stop) < 7"6);
5 |sg = min_selling_price(B,73); 4 while Ster—=sat 5 o do
6 |if sg < s* then Stop+8bot
7 8* — Sﬁ; 5 (Smid = — 5 —
o |57 =5 o |emis =P (ST BZY (0)(6(0) — smia) <75)
9 |end 7 |if emia > €sat then
10 end 8 ||Etop = Emid;
11 return s*, 8%, 9 ||Stop = Smid;
Algorithm 1: Main procedure to solve Problem 1. 10 |else
11 | |Ebot = Emids
12 || Sbot = Smid,
13 |end
the current selling price is less than the current optimaleja | ** end
N . . . . 15 return s¢op;
s* and3* are updated accordingly. Finally, the optimal values

Algorlthm 2: Bisection procedure to solve Problem 6

are returned.
. . . o . for given g andrg.
Since Problem 5 is a MILP, it can be easily implemented in

the max savingssubroutine. On the other hand, the solution
of Problem 6 requires an ad-hoc procedure. Notice that,-Prqgh
lem 6 involves an individual chance constraint where the on
decision variable is related to the selling priceMoreover,
the probability on the left hand side of constraint (26b) i
monotonically non-decreasing with respect 4p and so

bisection procedure or can be designed, see Algorithm
The lowest value of the selling price has been seftp = 0, Remark 2. To help the reader, the complete reasoning un-
while the highest one coincides with the maximum of thderpinning the proposed method is summarized. In particula
electricity price over the day, i.6s;,, = max,cjo,r7—17p(t), a summary showing that Algorithm 1, where Problem 5 and
which guarantees a non-negative profit. The computation Bfoblem 6 are sequentially solved, provides a feasibletsmiu

Etops Ebot, aNdeiq is performed by exploiting Proposition 1of Problem 1 is outlined in Fig. 1. To clarify the scheme

nd (8)—(10). The algorithm stops when the relative difiese
between the maximum and the minimum probability level in
26Db) is less than a given tolerange Because of the bisection
ormulation, computation ofmin_selling price is efficiently
2pen‘ormed.



P5 = P4 — P3 \ Data: ¢, p(t), EFSS, and distributions orta, tc, Nv
Set3 = B* as returned in Algorithm 1;
/PQ — P1 Setr = 0 and EES%(0) = EFS%;
P6

while 7 < T — 1 do
Fig. 1. Functional relationship representation of the pdure for solving

na = |{v:ty < T
H(r,t) = [{v:t2 <t >t} , Vvt >,
Problem 1. Notation P1..,P6 stands for Problem, 1.., Problem 6.

computeP(Ny = n|Nv(0,7) = n,), ¥n € [na, N,| as
in (27);
computeP(tq = t|ta > 7), Vt € [T +1,T — 1] as in (28);

o ; ; . 8 |compute distributions of{(¢),Vt € [r +1,T — 1],
reported in Fig. 1, the following statements are in order: o | solve Problem 5 by using the updated constraints

- an optimal solution of Problem 5 is optimal for the equiv (29)—(30), and geP"5%(r);
alent Problem 4; 0 |EESS(r+1) =
- an optimal solution of Problem 5 provides a feasible esti EESS (1) 4+ nAPESS ™+ (1) — }]APESS**(T);
mate of the optimal cost function of Problem 3; ulr=7+1
- by Proposition 3, the optimal solutions of Problem 5 angt? €nd
Problem 6 provide a feasible approximation of Problem 2; ~ Algorithm 3: Receding horizon algorithm.
- by Proposition 2, the solution of Problem 2 is a feasible
approximation of the original Problem 1.

o A~ W N P

~

Fort > 7, the arrival time distribution can be updated as

Y P(te>rlte=t)P(te=t) P(t*=t)
IV. OPTIMAL ESSOPERATION Pt*=tjt">T1)= Pl T) =Pl (28)

T_he ab0\_/e me_ntloned methc_>d S used to compute thgt us denote byﬁ(t) the random variable describing the
optimal selling price at the beginning of the day. Howeve,;Tu ber of vehicles in charge at time> 7, ignoring the EVs

during the play, the energy §chedu_|e of the E_SS may be ada%% ch are in charge at time. In other words H (¢) coincides
to further improve the daily profit, taking into account th%vith H{(t) if one assumes empty parking lots and initial time

actual realizations of the stochastic processes modeliag gtep equal tor. Then, the probability distribution oﬁ(t)
EVs. In fact, at each time step, it is reasonable to assur?e ) !

. an be computed similarly to that &f(¢) in (5), by using the
the _knowledge_of the energy to be charged in each connecH/eF) ated distributions of the total number of incoming végsc
vehicle and their departure times, as well as the number af E . : . ;

and the EV arrival times, i.e. (27) and (28), respectively.

that have arrived up to the prese_nt time. A receding horizonT, exploit the same reasoning described in Section I,
procedure to operate the ESS during the course of the day ga# receding horizon procedure is based on the solution of
be designed, following a similar reasoning to that describ&roblem 5, where the optimization is performednT — 1],
in Section 1. and constraints (25b)—(25c) are adjusted as follows

Let us denote the present time stephyand letH (r,t) be  w,
the number of connected vehicles which will be still in clearg Z(APOEVn) st > E7V(t) — APPSS(t) — H(r,t) AP, (29)

at timet > 7, i.e. H(r,t) = |[{v:t2 <7, td >t}|, where n=0 Ve [r T — 1]
| - | denotes the cardinality operator of a set. Notice that, af¥v . v\ By ’
time 7, H(r,t) is known for anyt > 7. > P (E (t) = APy n) Ztin 21— P, VE € [1,T = 1], (30)

Let Ny (0,7) be the random variable associated to the"=°

number of incoming vehicles during the interV@J 7], and let | 1 o EEV(t) = APOEvfI(t)_ A sketch of the receding

us denote by, the actual number of vehicles arrived up to thﬂorizon procedure to online operate the ESS is given in
present time step, i.e. in the intenjal 7]. So, the distribution Algorithm 3

of the daily incoming vehicles can be refined by exploiting

the knowledge of the already arrived vehicles V. NUMERICAL SIMULATIONS

P (Ny =n|Ny(0,7) = n,) = In order to validate the proposed procedure, numerical sim-
P (Nv(0,7) = ng|Ny =n) P (Ny =n) (27) ulations have been performed. It is assumed that the clrargin
o P (Ny(0,7) = ng) ' station is located in a commercial center and it suppliesggne

from 4:00 till 24:00. The sampling time is set tt0 minutes,
i.e. A = 1/6 hours, while the nominal charging power for
Ny electric vehicles i22 kW. The ESS capacity i$000 kWh,
P(Ny(0,7)=n,)= ZP(Nv(O,T):na|NV:k)P(NV:k) while its maximum charging and discharging power rates are
k=n, 500 kW, with an efficiencyn = 0.9. Concerning the PV
plant, its peak power is assumed equabtokW. To perform
simulations, for each day the PV production has been scaled
P (Ny(0,7) =ng|Ny =k) = by a uniform distribution in the intervdD.2, 1]. An example
k " k—n, of PV production realization ovei0 days is depicted in
= ( )7) 0<te<7)"PO0<t, <7) : Fig. 2. Figure 3 shows the EV arrival time distribution, and

Na

where

and
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Fig. 2. Photovoltaic production in 10 simulated days. Fig. 5. Probability of having a generic vehicle in charge dixad time.
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Fig. 4. EV charging time distribution. selling prices* and the corresponding* are denoted by the red dot.

the probability distribution of the charging time is givem i s; for a generic day is depicted. Notice that in Problem 6
Fig. 4. By computing the convolution in (4), it is possible tdt is not easy to figure out hows evolves with3, since it
obtain the probabilities that a generic vehicle is in chaage also depends oms which is again a function of. In the
a fixed time, shown in Fig. 5. reported day, the optimal value &f; is obtained whens
The number of daily incoming vehicles has been modelésl 3.33%. To validate the satisfaction of constraint (15), the
by a symmetric triangular distribution wittVy, = 100 and computed selling price and the battery schedule obtained by
Ny = 200, as shown in Fig. 6. Concerning the dailyusing Algorithm 1 have been considered. In this simulatibe,
profit, the fractiona has been set t0.2, corresponding to an number of days where this constraint is not satisfied amounts
earnings/cost ratio of.2, while the probability levek is 10%. to 15, corresponding t6% of the total.
The electricity price has been taken from the Italian eleityr =~ The average selling price lies between the mean and the
market [29], where for each simulated day a new electricifiaximum value of the daily electricity price, as shown in
price profile is considered. the box plots of Fig. 8. In Fig. 9, the daily electricity price
The configuration described above has been simulated &rd daily selling price for day3 are shown. Photovoltaic
300 days. In Fig. 7, the relation betwegmand the selling price production and overall energy needed by the EVs for the same
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Fig. 11. Day 93. ESS power schedule [top] and corresponéivil bf charge

day are reported in Fig. 10.
To assess the performance of the receding horizon battery
schedule, a comparison with respect to the one computed
at the beginning of the day has been carried out. The ESS
power schedule®”5(¢) in day 93 for both the initial and
the receding horizon strategies are shown in Fig. 11 [top],
while the corresponding levels of charge are reported in
Fig. 11 [bottom]. Notice that, during the first time period,
both solutions almost coincide because no vehicles have yet
arrived. However, when vehicles start arriving to the pagki
lot, the two profiles separate. Notice that the behavior of
the ESS charging/discharging power has a smooth profile
throughout the day when computed at the beginning of the
day, while it is sharper in some intervals for the receding
horizon implementation. This is not surprising since threrfer
is computed open-loop on the basis of the given distribstiorh

Earnings/Cost Ratio Difference

0.14

0.12

0.06

0.04 -

0.02

-0.02

[bottom] computed by Algorithm 1 (blue) and Algorithm 3 (jed

100

150 200 250 300
Day

12. Difference between the earnings/cost ratio obthiny the receding

while the latter is recursively computed at each time step %gr.izon procedure and that computed by Algorithm 1 at thérinéng of a day.

the basis of the actual outcomes of the stochastic processes
a result of the knowledge of the past and actual vehicleasiv
and energy required, the receding horizon strategy owpad

the one computed at the beginning of the day, providing #ginning of the day, the computed control actions depend

earnings/cost ratio of.24 versus1.22.

on a priori information and not on the actual realizations of

In Fig. 12, the daily earnings/cost ratio difference betwedhe random variables. On the contrary, the receding horizon
the initial and receding horizon plans is depicted, while iitmplementation exploits past and present vehicle infoiomat
Fig. 13 the earnings/cost ratio boxplot for both procedures it works in a closed loop manner. So, it is very likely that
are shown. As expected, in general, the receding horizthe receding horizon algorithm outperforms Algorithm leev
strategy outperforms the one computed at the beginningibthis is not guaranteed in general. Moreover, the number of
the day. In fact, since Algorithm 1 is executed once at thaays when constraint (15) is violated has been reduced to 2.
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; ‘ the optimal selling price, while the receding horizon siggt

| performs one iteration step i6.18 seconds. Simulations

145 + ] have been run in MATLAB, with the optimization problems
formulated using YALMIP [30] and solved by CPLEX [31]

. on an Intel(R) Core(TM) i7-7700 CPU @3.60 GHz with 32
i * ] GB of RAM. Thanks to the low computational burden, both
13l ! E ] algorithms can be effectively used in practical applicagio

E even with a larger number of incoming vehicles.
125 E

1.2

15

14t n

1351

Earnings/Cost Ratio

— VI. CONCLUSIONS

Receding Initial plan

To derive an effective energy pricing strategy under uncer-
Fig. 13. Boxplot of the earnings/cost ratio for the recedimgizon EDS tain EV demand, a chance constrained optimization problem
schedule (left) and the policy computed at the beginninghefday (right). 55 peen formulated. The resulting chance constraint ischas
The green line denotes the specified probabilistic threshol ", C. . . )
on probability distributions that characterize the EV all
behavior. A tractable formulation of the original problem
A. Discussion has been derived, and a procedure to compute the optimal
selling price has been devised. While the selling price is
It is worth noting that the proposed technique exploits t"t?bmputed at the beginning of the day, during the day a
EV distributions without requiring limiting assumptions o receding horizon strategy to operate the ESS, by exploiting
them. This means that the approach allows one to deal Widhlizations of the EV random processes, has been designed.
different daily scenarios, possibly accounting for weejla simulation results show that such approach is close to @tim
holidays, strikes, etc. In fact, on average, the daily profit is reasonably close & th
Examining Fig. 13 (right), one can see that in general thequired value, while the chance constraint is tightlyssei.
selling price computed by Algorithm 1 at the beginning of thghe receding horizon strategy to adapt the battery charging
day leads to an earnings/cost ratio greater than the retjuisghedule generally leads to better performance. Moretver,
threshold. This result fully agrees with the requiremeis. number of chance constraint violations is reduced.
fact, the small number of days falling below the threshokl ar Future developments will address more complex scenarios,
less than the prescribed%-limit, but at the same time, it is where uncertainty on renewable forecasts and on elegtricit
greater than zero, showing a low degree of conservativenegfice are explicitly taken into account. Moreover, chaggin
Once the selling price has been fixed, the proposed recedifigtions equipped with vehicle-to-grid facilities can bene
horizon algorithm can be used to operate the EDS durigfflered, as well as the participation of the parking lot in
the day. This procedure takes advantage of the knowledgigmand response programs. An additional research dingistio
of the random processes outcomes related to EVs, which asgated to competitive environments, where the energynyic
clearly known only in probabilistic terms at the beginninig oproblem will be analyzed by considering the presence ofrothe
the day when Algorithm 1 is run. So, it is expected that thelayers involved in the charging service.
daily profit obtained by the receding horizon procedure out-
performs that given by operating the ESS with the commands
provided at the beginning of the day. This has been confirmed
by numerical simulations as reported in Fig. 12, where th@] Q. Kang, J. Wang, M. Zhou, and A. C. Ammari, “Centralizeltarging
difference between the daily earnings/cost ratio provitdgd strategy and scheduling algorithm for electric vehicleslarma battery
. o . . swapping scenario,IEEE Transactions on Intelligent Transportation
the two procedures is shown. In addition, the receding bariz g giemsvol. 17, no. 3, pp. 659-669, 2016.
algorithm shows better performance in terms of violatiofs 0[2] O. Erding, A. Tascikaraoglu, N. G. Paterakis,Dursun, M. C. Sinim,
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