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Stochastic Energy Pricing of an Electric Vehicle
Parking Lot

Giovanni Gino Zanvettor*, Marco Casini*, Roy S. Smith**, Antonio Vicino*

Abstract—The increasing adoption of electric vehicles (EVs)
and the related need for efficient battery charging leads to
additional challenges to the power network and energy providers.
One of the main issues regards the intrinsic uncertainty affecting
the EV charging process, which calls for appropriate strategies
to ensure reliable solutions. From the perspective of a parking
lot, the electric vehicle charging process should be managed in
order to guarantee the recharge at competitive price. In this
paper, the problem of energy pricing under vehicle uncertainty is
addressed. Specifically, we propose a new energy pricing strategy
where the daily profit of the parking lot is guaranteed with
a given probability level. The source of uncertainty is related
to the EV arrival/departure times and the daily number of
incoming vehicles. By exploiting photovoltaic (PV) and electrical
storage system (ESS) facilities, procedures and algorithms are
formulated to compute the optimal selling price and to operate
the battery in a receding horizon framework. Since the proposed
chance constraint problems are intractable for realistic scenarios,
suitable approximations are provided in order to find a feasible
solution. Numerical results show the effectiveness of the proposed
approach and the tightness of the introduced relaxation, even in
the presence of a high number of incoming vehicles.

Index Terms—Electric vehicles, charging stations, pricing,
stochastic optimization, receding horizon.

NOMENCLATURE

∆ Sampling time
PEV
0 Nominal EV charging power

tav Arrival time (plug-in time) of thev-th EV
tdv Departure time (plug-out time) of thev-th EV
tcv Charging time of thev-th EV
NV Total number of daily vehicles
H(t) Number of vehicles which are charging at timet

H(τ, t)
Number of connected vehicles at timeτ which will
be still charging at timet

EESS(t) Battery level of charge at timet
PESS+(t)Battery charging power in time slott
PESS−(t)Battery discharging power in time slott
PESS(t) Net power exchanged into the battery in time slott

EEV (t) Energy required to charge plugged-in EVs in time slott

ÊPV (t) Energy drained from the PV plant in time slott
EPV (t) Energy production of the PV plant in time slott
EG(t) Energy drawn from the grid in time slott
p(t) Grid electricity price in time slott
c(t) Electricity cost in time slott
η ESS charging/discharging efficiency
α Fraction of daily profit with respect to daily cost
s Daily electricity selling price
ε Probability level
β Auxiliary probability level
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I. I NTRODUCTION

To overcome issues caused by pollution and CO2 emissions,
electric vehicles (EVs) are becoming an appealing opportunity,
especially in large cities. In fact, EVs make it possible to
move CO2 emissions outside living centers. Moreover, in
contrast to from internal combustion engine vehicles, theycan
exploit renewables (e.g., solar, wind, etc.) for their charging.
However, EVs may be source of different critical issues
for safe and reliable power grid operation while ensuring
user satisfaction/comfort. On the power side, attention has
been focused on several aspects involving cost minimization
approaches and peak shaving targets. In [1], a battery swapping
strategy is proposed to satisfy safety power grid constraints
while minimizing the grid operation cost. In [2], [3], the
problem of sizing and siting of charging stations is studiedto
provide a proper charging service. Charging unit management
inside an airport EV parking lot is presented in [4]. In [5],
game theory is exploited to derive a smart energy management
of an EV parking lot. To improve the advantages given by
renewable generation and electricity storage facilities,in [6]
a smart charging management system for an EV parking lot
is developed, while in [7] a parking lot energy management
strategy is designed by considering EV mobility and parking
patterns. In [8], a receding horizon strategy to minimize grid
operation cost of an industrial microgrid is presented.

Paying attention to EV owner customer satisfaction, in [9],
[10] battery swapping strategies are derived to optimize the
charging station cost while ensuring a fast fueling service. In
[11], a charging strategy is developed to reduce user electricity
cost by employing incentive programs, whereas in [12] the
same goal is achieved by considering user time anxiety.

As well known, EVs represents an intrinsic source of
uncertainty due to traffic conditions and user preferences.To
handle such problems, several solutions have been provided
in the literature. In [13], the profit maximization of an EV
parking lot under uncertain EV arrival and departure times is
investigated. To manage the uncertain load of EVs, a grid cost
minimization strategy is proposed in [14], while in [15] a peak
power reduction problem is addressed.

From EV electricity pricing perspective, the investigated
topics are focused on providing solutions about problems
involving both user and power system side. In [16], a game
theory study is carried out in order to derive an optimal
selling price for several charging stations. Considering power
and transportation network frameworks, a pricing strategyto
optimally manage a large number of EVs is developed in [17].
To reduce the overlap between residential and EV charging
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station loads, in [18] a dynamic pricing procedure aimed at
shifting the EV demand to low peak hours is reported. In [19],
a two layer model is developed to generate electricity selling
price under market price uncertainty, while in [20] an EV
energy pricing procedure to lower the peak power absorption
is proposed.

To handle the uncertainty on EVs and renewables, an
electricity pricing framework is developed in [21]. In [22],
a pricing mechanism to fill load valleys in the presence of
EVs is designed. In such a strategy, the recharge of vehi-
cles is considered for both cooperative and non-cooperative
scenarios. A pricing strategy based on EV user responses to
different prices is reported in [23]. In particular, assuming
that the utility company may individually adapt the energy
price, a profit maximization technique is proposed. In [24],
a distribution locational marginal pricing method to mitigate
system congestion caused by uncontrolled charging of EVs
is introduced. A charging station providing vehicle-to-grid
services is considered in [25]. In this scenario, the pricing
problem is analyzed by considering battery degradation and
by proposing different charging contracts to users. In [26],
a real-time energy pricing strategy based on the concept of
inverse-demand function under renewable and load demand
uncertainty is proposed. To provide a probabilistic guarantee
for the EV charging profit, a chance constrained program under
EV load uncertainty is formulated in [27].

Paper Contribution

In this work, a parking lot equipped with a charging station,
photovoltaic (PV) generation and electrical energy storage
system (ESS) is considered. The main contribution of the paper
is twofold:

i) To design a procedure aimed at computing the daily
selling price for charging EVs. In particular, such a price must
be the lowest which ensures a given profit with a probabilistic
guarantee. Moreover, the selling price is considered to be
constant throughout the day for commercial reasons. In the
considered setting, the source of uncertainty is related to
future incoming vehicles, specifically, to arrival time, departure
time and the daily number of incoming EVs. To handle
such uncertainties, a chance constrained optimization problem
aimed at finding the optimal selling price is designed. To
find a tractable formulation of such problem, the optimized
Bonferroni approximation described in [28] is exploited.

ii) To provide a receding horizon control algorithm to
operate the ESS during the day to achieve the expected
profit of i). Contrary to the procedure designed in i), this
algorithm takes advantage of the knowledge acquired in an
online approach about the random process outcomes of arrived
vehicles.

The major novelty of the contribution is to provide a robust
selling price policy as the solution of an optimization problem
where the uncertainty on the EVs is modeled through suitable
probability distributions. The proposed approach allows one
to deal with different configurations and scenarios becauseno
specific assumptions on probability distributions describing the
EV uncertainties is made.

The proposed algorithms are based on the solution of mixed
integer linear programs which are tractable for realistic appli-
cations, as witnessed by the extensive numerical simulations
performed.

Paper Organization

The paper is organized as follows. In Section II, problem
variables, constraints and probability derivations are described.
In Section III, the optimization problem aimed at finding the
optimal daily selling price is analyzed and solved through a
suitable algorithm. Section IV is related to the formulation of a
receding horizon procedure to operate the ESS during the day.
In Section V, numerical results to evaluate the effectiveness
and the computational feasibility of the proposed approach
are reported. Finally, conclusions and future research lines are
drawn in Section VI.

II. PROBLEM FORMULATION

In this work, we focus on a charging station used to charge
a large number of electric vehicles. The charging station is
assumed to be equipped with charging units, a PV plant and
an electrical storage system. It is supposed that the numberof
charging units is enough to provide charging for all incoming
vehicles, and so no vehicle queues are considered. Moreover,
it is assumed that the daily electricity cost profile and a
forecast of the PV daily production are available in advance.
In the setting considered, the charging station is not allowed
to sell energy to the grid, i.e. no vehicle-to-grid energy flow
is considered.

The problem is formulated in a discrete time setting, where
the sampling time is denoted by∆. The EV arrival and
departure times, and the daily number of incoming vehicles are
uncertain and their probability distributions, or estimates for
them, are assumed to be available. Each plugged-in vehicle is
charged at a constant power ratePEV

0 from the arrival time to
its departure time. We assume that the reference day is divided
into T time slots where the initial time slot starts att = 0,
while the last one att = T−1. Let tav be thev-th vehicle arrival
time andtcv the corresponding charging time, i.e. the number
of time slots the vehicle remains in charge. Without loss of
generality, we consider that vehicles leave the parking lotat
time tdv = tav + tcv. In fact, in a realistic scenario, vehicles may
keep a charging unit busy longer than the charging duration.
However, such vehicles can be neglected aftertdv, since they
are no longer charging and the number of charging units is
assumed to be enough to receive incoming vehicles. The total
number of incoming vehicles during each day is represented
by the random variableNV . Let us assume that the random
variables related to arrival time and charging time of each
vehicle are independent and identically distributed. Thus, the
arrival time, departure time and charging time of a generic
vehicle are denoted byta, td and tc, respectively. Moreover,
we assume that the supports of random variablestc andNV

are bounded. We denote their minimum values bytc andNV ,
and their maximum values byt

c
andNV .

Let us define byEEV (t) the overall energy required to
charge plugged in vehicles in thet-th time slot, i.e. between
time t andt+ 1.
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Concerning the ESS, we denote byEESS(t) the stored
energy at timet, and its charging/discharging power rates by
PESS+

(t)/PESS−

(t), respectively. We use a simple dynamic
model for the ESS

EESS(t+ 1)=EESS(t) + η∆PESS+

(t)−
1

η
∆PESS−

(t),

whereη is the battery efficiency. LetEESS
0 denote the energy

stored at the initial time step of the day, i.e.

EESS(0) = EESS
0 .

The ESS charging and discharging power rates are bounded
by zero and a maximum rateP

ESS
, i.e.

0 ≤ PESS+

(t) ≤ P
ESS

0 ≤ PESS−

(t) ≤ P
ESS

,

while the energy level is bounded by its capacityE
ESS

, i.e.

0 ≤ EESS(t) ≤ E
ESS

.

Let us define the net power exchanged by the battery as

PESS(t) = PESS+

(t)− PESS−

(t).

Notice that, in order to have a consistent ESS dynamics,
PESS+(t) andPESS−(t) cannot be both nonzero. Thus, the
following constraint will be enforced

PESS+(t)PESS−(t) = 0.

Let EPV (t) be the PV plant energy production between time
t andt+ 1 and letÊPV (t) denote the energy that is injected
into the parking lot charging station, during the same time
interval. HenceÊPV (t) is such that:

0 ≤ ÊPV (t) ≤ EPV (t).

Notice that,ÊPV (t) is different fromEPV (t) when curtail-
ment is necessary, i.e., when the PV production exceeds that
required by the parking lot for managing EV charging and
ESS operation.

Thus, the overall energy drawn from the gridEG(t) in time
slot t is

EG(t) = max
{
EEV(t)−ÊPV(t)+∆PESS(t)︸ ︷︷ ︸

ÊG(t)

, 0
}

= max
{
ÊG(t), 0

}
,

(1)

where the max function is needed since the parking lot is not
allowed to export energy to the grid.

Let us define the cost per time stepc(t) as

c(t) = EG(t)p(t), (2)

wherep(t) is the electricity price at timet.
The aim of this work is summarized in the following

problem.

Problem 1. For each day, compute the minimum electricity
selling price s′ such that the daily net profit is at least a
fraction α of the daily cost, with probability at least1− ε.

To fulfill Problem 1, the overall revenue must satisfy the
following inequality with probability1− ε.

T−1∑

t=0

EEV (t)s′ ≥ (1 + α)

T−1∑

t=0

c(t). (3)

By definings = s′/(1 + α), (3) is equivalent to

T−1∑

t=0

EEV (t)s ≥

T−1∑

t=0

c(t).

So, the goal is to find anartificial selling prices capable of
covering the daily cost. Then, theactual selling price will be
s′ = (1 + α)s. Hereafter, we will focus on the computation
of s which, for the sake of simplicity, will be denoted as the
selling price.

To compute the probability distribution of the daily net
profit, we focus on finding the distribution of the energy drawn
from the grid at each time step. Since the randomness is due
to vehicle statistics, let us focus on random variables modeling
the EV process.

Denote byP(A) the probability that a given eventA occurs.
Let P(A,B) be the joint probability that eventsA and B
occur, andP(A∪B) be the probability of the union of the two
events. The probability that an eventA occurs conditioned on
B is denoted byP(A|B). Moreover, letA be the complement
of eventA, i.e. P(A) = 1− P(A).

The probability that a generic vehicle is in charge at timet
can be expressed as

P
(
ta ≤ t, td > t

)
=

=

t∑

τ=max{t−t
c+1,0}

P
(
td > t|ta = τ

)
P (ta = τ)

=

t∑

τ=max{t−t
c+1,0}

P (tc > t− τ)P (ta = τ) ,

(4)

that is the convolution between the complement of the charg-
ing time cumulative distribution with the distribution of the
arrival time. Notice that, the probability of having a vehicle
in charge at timet follows a Bernoulli distribution, so we can
easily compute the probability that a given amount of vehicles
be in charge at a given time step. In fact, letH(t) be the
random variable denoting the number of vehicles in charge at
time t. Then, its probability distribution is derived as follows

P(H(t)=n) =

NV∑

m=n

P(H(t)=n|NV =m)P(NV = m) (5)

where

P (H(t) = n|NV = m) =

=

(
m

n

)
P
(
ta ≤ t, td > t

)n
P
(
ta ≤ t, td > t

)m−n

.
(6)

Notice that, in (6) the probability thatn vehicles are charging
at time t, given that the number of daily vehicles ism, is
described by the binomial probability mass function where
the success probability is represented by the event that theEV
charging period overlaps timet. The study of such probabili-
ties is useful to derive the probability distribution of theenergy
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needed by EVs at each time step. Indeed, the relation between
EEV (t) andH(t) is expressed by the following equation

EEV (t) = H(t)∆PEV
0 .

Of course, the marginal cost distribution at each time step is
immediately obtained from the marginal distribution of theEV
energy. Unfortunately, computing the probability distribution
of the EV daily cost starting from the marginal distributions
of each time step is a hard task, since the energy amounts
required at different time slots are correlated. In fact, to
compute such distribution one needs to enumerate all the pos-
sible combinations of vehicle arrivals and departures, giving
raise to a combinatorial problem whose calculation becomes
intractable even for a small number of vehicles. To overcome
this issue, the concept ofEV daily lossis introduced. Let us
define the EV daily loss as

∑T−1
t=0 EEV (t)(p(t) − s). Notice

that, a negative loss means that the selling prices provides a
profit. Let the selling prices and the daily electricity price
profile p(t) be given, we are interested in computing the
following probability

P

(
T−1∑

t=0

EEV (t)(p(t)− s) = LEV

)
, (7)

whereLEV denotes a realization of the EV daily loss. Notice
that, sinces and p(t) are fixed, (7) only involves discrete
random variables. Computation of such a probability will be
extremely important for solving Problem 1, and in particular
for running Algorithm 2 which will be introduced in the next
section. To compute the probability in (7), one may consider
a different approach based on the probability distributionof
the daily loss for a single vehicle.

For a fixeds, if vehicle v has been charged in the time
interval [τ1, τ2), then the corresponding loss is

cv =

τ2−1∑

t=τ1

∆PEV
0 (p(t)− s).

Then, let us introduce the following set

C(h) =

{
(τ1, τ2) : τ1 ∈ [0, T − 1], τ2 ∈ [0, T − 1], τ2 > τ1,

τ2−1∑

t=τ1

∆PEV
0 (p(t)− s) = h

}
,

(8)

that defines all the possible time windows which can lead to
a lossh. Therefore, the probability that the daily loss of a
vehicle ish can be computed as

P (cv = h) =
∑

(τ1,τ2)∈C(h)

P
(
ta = τ1, td = τ2

)
, (9)

that is the probability that a lossh occurs is equal to the sum
of the probabilities of each(τ1, τ2) leading to a lossh. Then,

the probability of having a daily lossLEV is

P

(
NV∑

v=1

cv = LEV

)
=

=

NV∑

n=N
V

P

(
NV∑

v=1

cv = LEV
∣∣∣NV = n

)
P (NV = n)

=

NV∑

n=NV

P

(
n∑

v=1

cv = LEV

)
P (NV = n) . (10)

Notice that the single vehicle loss distributions are independent
and identically distributed, since their relative arrivaltimes
and charging times are independent and identically distributed.
So, the distribution of the sum ofn losses is equivalent to
the convolution ofn single loss distributions. The previous
reasoning can be summarized in the following proposition,
which links (7) and (10).

Proposition 1. The probability in(7) satisfies

P

(
T−1∑

t=0

EEV (t)(p(t)− s) = LEV

)
= P

(
NV∑

v=1

cv = LEV

)
.

Notice that, through Proposition 1, the intractable correla-
tion between time steps in (7) can be overcome by exploiting
(10).

III. SELLING PRICE OPTIMIZATION

In this section, the chance constraint on the daily profit
and the optimization problem to compute the optimal selling
price are presented. To simplify the treatment, let us define
the following events:

A ,

{
T−1∑

t=0

EEV (t)s ≥

T−1∑

t=0

EG(t)p(t)

}
, (11)

B ,

{
T−1∑

t=0

EEV (t)s ≥

T−1∑

t=0

ÊG(t)p(t)

}
, (12)

C ,

{
ÊG(t) ≥ 0, ∀t ∈ [0, T − 1]

}
. (13)

The constraint on the selling price satisfying Problem 1 is

P

(
T−1∑

t=0

EEV (t)s ≥

T−1∑

t=0

c(t)

)
≥ 1− ε

which by (2) is equivalent to

P(A) ≥ 1− ε. (14)

Notice that, sinceEG(t) is defined as amaxfunction involving
decision variables, finding the selling price based on constraint
(14) is a hard task, in general. To overcome this issue, let us
introduce the following proposition which gives a sufficient
condition to enforce (14).

Proposition 2. Let

P(B,C) ≥ 1− ε. (15)

Then,P(A) ≥ 1− ε.
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Problem 2. 




min
PESS,s

s

P





T−1∑

t=0

EEV(t)s≥

T−1∑

t=0

ÊG(t)p(t)

ÊG(t) ≥ 0, ∀t ∈ [0, T − 1]



≥1− ε

ÊG(t) = EEV (t) + ∆PESS(t) − ÊPV (t) ∀t ∈ [0, T − 1]

0 ≤ ÊPV (t) ≤ EPV (t) ∀t ∈ [0, T − 1]

EESS(t + 1) = EESS(t) + η∆PESS+

(t) −
1

η
∆PESS−

(t) ∀t ∈ [0, T − 1]

0 ≤ EESS(t) ≤ E
ESS

∀t ∈ [0, T ]

0 ≤ PESS+

(t) ≤ P
ESS

∀t ∈ [0, T − 1]

0 ≤ PESS−

(t) ≤ P
ESS

∀t ∈ [0, T − 1]

PESS+

(t)PESS−

(t) = 0 ∀t ∈ [0, T − 1]

PESS(t) = PESS+

(t) − PESS−

(t) ∀t ∈ [0, T − 1]

EESS(0) = EESS
0

s ≥ 0.

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

(16g)

(16h)

(16i)

(16j)

(16k)

(16l)

Proof. SinceEG(t) = max
{
ÊG(t), 0

}
, one hasP(A|C) =

P(B|C). So,P(A,C) = P(A|C)P(C) = P(B|C)P(C) =
P(B,C). Hence,

P(A) ≥ P(A,C) = P(B,C) ≥ 1− ε.

Notice that, in Proposition 2 the eventB is related to
the profit, while the eventC requires the energy flow to be
positive throughout the day. Thanks to Proposition 2, one may
introduce Problem 2 which aims to find the minimum selling
price s satisfying (15).

One may notice that the nonlinearity in constraint (16i)
can be substituted by replacing (16g)–(16i) with the following
constraints

0 ≤ PESS−(t) ≤ P
ESS

(1− zESS
t ) ∀t ∈ [0, T − 1] (17)

0 ≤ PESS+(t) ≤ P
ESS

zESS
t ∀t ∈ [0, T − 1] (18)

zESS
t ∈ {0, 1} ∀t ∈ [0, T − 1]. (19)

The following proposition gives sufficient conditions to
ensure (15).

Proposition 3. Let 0 ≤ β ≤ ε. If

P(C) ≥ 1− β (20)

and
P(B) ≥ 1− ε+ β , (21)

thenP(B,C) ≥ 1− ε.

Proof. It holds that,

P(B,C) = 1− P(B ∪ C) ≥ 1− P(B)− P(C) =

= P(B) + P(C)− 1 ≥ 1− ε.

By (16c), probabilities in (20)–(21) can be written as

P(C) = P
(
ÊG(t) ≥ 0, ∀t ∈ [0, T − 1]

)
=

= P
(
EEV (t) ≥ ÊPV (t)−∆PESS(t), ∀t ∈ [0, T − 1]

)
,

and

P(B) = P

(
T−1∑

t=0

EEV (t)s ≥

T−1∑

t=0

ÊG(t)p(t)

)
=

= P

(
T−1∑

t=0

EEV(t)(p(t)−s)≤

T−1∑

t=0

(
ÊPV(t)−∆PESS(t)

)
p(t)

)
.

(22)
Notice that the probability in (22) can be effectively com-

puted if the selling prices, the power schedule of the bat-
tery PESS(t), and the energy drawn from the PV̂EPV (t),
∀t ∈ [0, T − 1] are known. In fact, in this case, (22) can be
computed by exploiting Proposition 1 and (8)–(10).

Let us call the quantity
∑T−1

t=0

(
ÊPV (t)−∆PESS(t)

)
p(t)

the daily savings. In (22), it is apparent that for a given
probability level, the larger the daily savings, the smaller the
selling prices. Actually, Proposition 3 can be exploited to
find a feasible solution of Problem 2. For this purpose, a two-
step procedure is provided in the following. The first step
aims to compute the maximum of the daily savings while
enforcing (20). The second one, on the basis of the previously
computed daily savings, is focused on finding the best selling
price satisfying (21).

Focusing on the first step, for a fixedβ, Problem 3 is intro-
duced. This optimization problem aims to find the maximum
daily savingsr′β guaranteeing (20) (i.e., constraint (23b) in
Problem 3), that is the probability that the energy flow is
negative is less thanβ. Notice that (23b) is a joint chance
constraint. Joint chance constrained optimization problems are
notoriously difficult to solve. However, such a constraint can
be converted to its robust counterpart in order to derive a
tractable reformulation of the original optimization problem
[28]. This makes it possible to compute a solution of the
original problem by employing a conservative feasible set.So,
let us focus on Problem 4,

where constraint (23b) is converted to a distributionally joint
chance constraint where the probability distributionP belongs



6

Problem 3. 




r′β = max
PESS

T−1∑

t=0

(
ÊPV (t) −∆PESS(t)

)
p(t)

P
(
EEV (t) ≥ ÊPV (t) −∆PESS(t), ∀t ∈ [0, T − 1]

)
≥ 1− β

0 ≤ ÊPV (t) ≤ EPV (t) ∀t ∈ [0, T − 1]

EESS(t + 1) = EESS(t) + η∆PESS+

(t) −
1

η
∆PESS−

(t) ∀t ∈ [0, T − 1]

0 ≤ EESS(t) ≤ E
ESS

∀t ∈ [0, T ]

PESS(t) = PESS+

(t) − PESS−

(t) ∀t ∈ [0, T − 1]

0 ≤ PESS−(t) ≤ P
ESS

(1− zESS
t ) ∀t ∈ [0, T − 1]

0 ≤ PESS+(t) ≤ P
ESS

zESS
t ∀t ∈ [0, T − 1]

zESS
t ∈ {0, 1} ∀t ∈ [0, T − 1]

EESS(0) = EESS
0 .

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

(23g)

(23h)

(23i)

(23j)

Problem 4.





rβ = max
PESS

T−1∑

t=0

(
ÊPV (t) −∆PESS(t)

)
p(t)

inf
P∈D

P
(
EEV (t) ≥ ÊPV (t) −∆PESS(t), ∀t ∈ [0, T − 1]

)
≥ 1− β

0 ≤ ÊPV (t) ≤ EPV (t) ∀t ∈ [0, T − 1]

EESS(t + 1) = EESS(t) + η∆PESS+

(t) −
1

η
∆PESS−

(t) ∀t ∈ [0, T − 1]

0 ≤ EESS(t) ≤ E
ESS

∀t ∈ [0, T ]

PESS(t) = PESS+

(t) − PESS−

(t) ∀t ∈ [0, T − 1]

0 ≤ PESS−(t) ≤ P
ESS

(1− zESS
t ) ∀t ∈ [0, T − 1]

0 ≤ PESS+(t) ≤ P
ESS

zESS
t ∀t ∈ [0, T − 1]

zESS
t ∈ {0, 1} ∀t ∈ [0, T − 1]

EESS(0) = EESS
0 ,

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

(24g)

(24h)

(24i)

(24j)

to the ambiguity setD. Such an ambiguity set is defined as
follows

D=
{
P :P∈M(P0, . . . ,PT−1), E

EV(t)∼Pt, ∀t ∈ [0, T−1]
}

wherePt denotes the probability distribution ofEEV (t), and
M(P0, . . . ,PT−1) denotes the set of all joint probability
distributions whose marginals arePt. As described in [28],
since random variablesEEV (t) are distributed along discrete
supports, Problem 4 is equivalent to the mixed integer linear
program (MILP) reported in Problem 5. In this problem, the
original robust joint chance constraint (24b) has been reformu-
lated by using the Bonferroni inequality, where the optimizer is
allowed to choose the best option for the Bonferroni weights
βt. Concerning the binary variableszEV

t,n , they are used to
satisfy each individual chance constraint (25c).

Remark 1. Notice that, the number of binary variableszEV
t,n

in Problem 5 may be large, since it equalsT (NV +1). Thus,
the computational burden of Problem 5 might be intractable,
in general. However, constraint(25n) enforces that only one
binary variable can be equal to1 at each time step, making
the problem structure suitable to be efficiently managed by
standard solvers, as reported in Section V.

In Problem 5, the maximum daily savingsrβ for a fixedβ
is computed. The second step of the procedure concerns the

computation of the best selling pricesβ for given β and rβ .
Such a selling price can be obtained by solving Problem 6,
where constraint (26b) coincides with (21) for a given amount
of daily savingsrβ , i.e. by considering the optimal solution
of Problem 5.

Problem 6 (min selling price).




sβ =min s

P

(
T−1∑

t=0

EEV (t)(p(t) − s) ≤ rβ

)
≥1− ε+ β

s ≥ 0.

(26a)

(26b)

(26c)

A. Optimal selling price algorithm

To compute the optimal selling price satisfying Problem 1,
the procedure reported in Algorithm 1 has been devised.

First, initialization of some variables are performed. In
particular, the candidate optimal selling prices∗ is set to the
maximum of the grid electricity price, while the candidate
optimal value ofβ is set to 0. Since0 ≤ β < ε, a grid
search inβ with stepγ from 0 to ε− γ is performed. For any
value ofβ, the subroutinemax savingsprovides the solution
of Problem 5 returning the related daily savingsrβ , while
min selling price returnssβ, i.e. the solution of Problem 6. If
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Problem 5 (max savings).





rβ = max
PESS

T−1∑

t=0

(
ÊPV (t) −∆PESS(t)

)
p(t)

NV∑

n=0

(
∆PEV

0 n
)
zEV
t,n ≥ ÊPV (t) −∆PESS(t) ∀t ∈ [0, T − 1]

NV∑

n=0

Pt

(
EEV (t) ≥ ∆PEV

0 n
)
zEV
t,n ≥ 1− βt ∀t ∈ [0, T − 1]

0 ≤ ÊPV (t) ≤ EPV (t) ∀t ∈ [0, T − 1]

EESS(t+ 1) = EESS(t) + η∆PESS+

(t) −
1

η
∆PESS−

(t) ∀t ∈ [0, T − 1]

0 ≤ EESS(t) ≤ E
ESS

∀t ∈ [0, T ]

PESS(t) = PESS+

(t) − PESS−

(t) ∀t ∈ [0, T − 1]

0 ≤ PESS−(t) ≤ P
ESS

(1 − zESS
t ) ∀t ∈ [0, T − 1]

0 ≤ PESS+(t) ≤ P
ESS

zESS
t ∀t ∈ [0, T − 1]

zESS
t ∈ {0, 1} ∀t ∈ [0, T − 1]

EESS(0) = EESS
0

βt ≥ 0 ∀t ∈ [0, T − 1]

zEV
t,n ∈ {0, 1} ∀t ∈ [0, T − 1], n ∈ [0, NV ]

NV∑

n=0

zEV
t,n = 1 ∀t ∈ [0, T − 1]

T−1∑

t=0

βt ≤ β.

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

(25g)

(25h)

(25i)

(25j)

(25k)

(25l)

(25m)

(25n)

(25o)

Data: ε, p(t), EESS
0 , α, distributions onta, tc, NV , and

step sizeγ
1 s∗ = maxt∈[0,T−1] p(t);
2 β∗ = 0;
3 for β = 0 to (ε− γ) by γ do
4 rβ = max savings(β);
5 sβ = min selling price(β, rβ);
6 if sβ < s∗ then
7 s∗ = sβ ;
8 β∗ = β;
9 end

10 end
11 return s∗, β∗;

Algorithm 1: Main procedure to solve Problem 1.

the current selling price is less than the current optimal value,
s∗ andβ∗ are updated accordingly. Finally, the optimal values
are returned.

Since Problem 5 is a MILP, it can be easily implemented in
the max savingssubroutine. On the other hand, the solution
of Problem 6 requires an ad-hoc procedure. Notice that, Prob-
lem 6 involves an individual chance constraint where the only
decision variable is related to the selling prices. Moreover,
the probability on the left hand side of constraint (26b) is
monotonically non-decreasing with respect tos, and so a
bisection procedure ons can be designed, see Algorithm 2.
The lowest value of the selling price has been set tosbot = 0,
while the highest one coincides with the maximum of the
electricity price over the day, i.e.stop = maxt∈[0,T−1] p(t),
which guarantees a non-negative profit. The computation of
εtop, εbot, andεmid is performed by exploiting Proposition 1

Data: β, rβ , ε, p(t), distributions onta, tc, NV and
toleranceγε

1 sbot = 0; stop = maxt∈[0,T ] p(t); εsat = 1− ε+ β;

2 εbot = P
(∑T−1

t=0 EEV (t)(p(t)− sbot) ≤ rβ

)
;

3 εtop = P
(∑T−1

t=0 EEV (t)(p(t)− stop) ≤ rβ

)
;

4 while εtop−εsat

εsat
> γε do

5 smid =
stop+sbot

2
;

6 εmid = P
(∑T−1

t=0 EEV (t)(p(t)− smid) ≤ rβ

)
;

7 if εmid ≥ εsat then
8 εtop = εmid;
9 stop = smid;

10 else
11 εbot = εmid;
12 sbot = smid;
13 end
14 end
15 return stop;

Algorithm 2: Bisection procedure to solve Problem 6
for givenβ andrβ .

and (8)–(10). The algorithm stops when the relative difference
between the maximum and the minimum probability level in
(26b) is less than a given toleranceγε. Because of the bisection
formulation, computation ofmin selling price is efficiently
performed.

Remark 2. To help the reader, the complete reasoning un-
derpinning the proposed method is summarized. In particular,
a summary showing that Algorithm 1, where Problem 5 and
Problem 6 are sequentially solved, provides a feasible solution
of Problem 1 is outlined in Fig. 1. To clarify the scheme
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P5 P4 P3

P6

P2 P1

Fig. 1. Functional relationship representation of the procedure for solving
Problem 1. Notation P1, . . . ,P6 stands for Problem 1, . . . ,Problem 6.

reported in Fig. 1, the following statements are in order:

- an optimal solution of Problem 5 is optimal for the equiv-
alent Problem 4;

- an optimal solution of Problem 5 provides a feasible esti-
mate of the optimal cost function of Problem 3;

- by Proposition 3, the optimal solutions of Problem 5 and
Problem 6 provide a feasible approximation of Problem 2;

- by Proposition 2, the solution of Problem 2 is a feasible
approximation of the original Problem 1.

IV. OPTIMAL ESSOPERATION

The above mentioned method is used to compute the
optimal selling price at the beginning of the day. However,
during the day, the energy schedule of the ESS may be adapted
to further improve the daily profit, taking into account the
actual realizations of the stochastic processes modeling the
EVs. In fact, at each time step, it is reasonable to assume
the knowledge of the energy to be charged in each connected
vehicle and their departure times, as well as the number of EVs
that have arrived up to the present time. A receding horizon
procedure to operate the ESS during the course of the day can
be designed, following a similar reasoning to that described
in Section III.

Let us denote the present time step byτ , and letH(τ, t) be
the number of connected vehicles which will be still in charge
at time t > τ , i.e. H(τ, t) =

∣∣{v : tav ≤ τ, tdv > t
}∣∣ , where

| · | denotes the cardinality operator of a set. Notice that, at
time τ , H(τ, t) is known for anyt > τ .

Let NV (0, τ) be the random variable associated to the
number of incoming vehicles during the interval[0, τ ], and let
us denote byna the actual number of vehicles arrived up to the
present time step, i.e. in the interval[0, τ ]. So, the distribution
of the daily incoming vehicles can be refined by exploiting
the knowledge of the already arrived vehiclesna,

P (NV = n|NV (0, τ) = na) =

=
P (NV (0, τ) = na|NV = n)P (NV = n)

P (NV (0, τ) = na)
,

(27)

where

P(NV (0, τ)=na)=

NV∑

k=na

P(NV (0, τ)=na|NV =k)P(NV =k)

and

P (NV (0, τ) = na|NV = k) =

=

(
k

na

)
P (0 ≤ ta ≤ τ)

na P
(
0 ≤ ta ≤ τ

)k−na
.

Data: ε, p(t), EESS
0 , and distributions onta, tc, NV

1 Setβ = β∗ as returned in Algorithm 1;
2 Setτ = 0 andEESS

0 (0) = EESS
0 ;

3 while τ < T − 1 do
4 na = |{v : tav ≤ τ}|;
5 H(τ, t) = |{v : tav ≤ τ, tdv ≥ t}| , ∀t > τ ;
6 computeP (NV = n|NV (0, τ ) = na), ∀n ∈ [na, Nv] as

in (27);
7 computeP (ta = t|ta > τ ), ∀t ∈ [τ +1, T − 1] as in (28);
8 compute distributions of̃H(t),∀t ∈ [τ + 1, T − 1];
9 solve Problem 5 by using the updated constraints

(29)–(30), and getPESS(τ );
10 EESS

0 (τ + 1) =

EESS
0 (τ ) + η∆PESS∗+(τ )− 1

η
∆PESS∗

−(τ );
11 τ = τ + 1;
12 end

Algorithm 3: Receding horizon algorithm.

For t > τ , the arrival time distribution can be updated as

P(ta= t|ta>τ)=
P(ta>τ |ta= t)P(ta= t)

P(ta>τ)
=

P(ta= t)

P(ta>τ)
. (28)

Let us denote byH̃(t) the random variable describing the
number of vehicles in charge at timet > τ , ignoring the EVs
which are in charge at timeτ . In other words,H̃(t) coincides
with H(t) if one assumes empty parking lots and initial time
step equal toτ . Then, the probability distribution of̃H(t)
can be computed similarly to that ofH(t) in (5), by using the
updated distributions of the total number of incoming vehicles
and the EV arrival times, i.e. (27) and (28), respectively.

To exploit the same reasoning described in Section III,
the receding horizon procedure is based on the solution of
Problem 5, where the optimization is performed in[τ, T − 1],
and constraints (25b)–(25c) are adjusted as follows

NV∑

n=0

(
∆P

EV
0 n

)
z
EV
t,n ≥ Ê

PV(t)−∆P
ESS(t)−H(τ, t)∆P

EV
0 ,

∀t ∈ [τ, T − 1]

(29)

NV∑

n=0

Pt

(
Ẽ

EV(t) ≥ ∆P
EV
0 n

)
z
EV
t,n ≥1− βt, ∀t ∈ [τ, T − 1], (30)

where ẼEV (t) = ∆PEV
0 H̃(t). A sketch of the receding

horizon procedure to online operate the ESS is given in
Algorithm 3.

V. NUMERICAL SIMULATIONS

In order to validate the proposed procedure, numerical sim-
ulations have been performed. It is assumed that the charging
station is located in a commercial center and it supplies energy
from 4:00 till 24:00. The sampling time is set to10 minutes,
i.e. ∆ = 1/6 hours, while the nominal charging power for
electric vehicles is22 kW. The ESS capacity is1000 kWh,
while its maximum charging and discharging power rates are
500 kW, with an efficiencyη = 0.9. Concerning the PV
plant, its peak power is assumed equal to90 kW. To perform
simulations, for each day the PV production has been scaled
by a uniform distribution in the interval[0.2, 1]. An example
of PV production realization over10 days is depicted in
Fig. 2. Figure 3 shows the EV arrival time distribution, and
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Fig. 2. Photovoltaic production in 10 simulated days.
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Fig. 3. Arrival time distribution of incoming EVs.
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Fig. 4. EV charging time distribution.

the probability distribution of the charging time is given in
Fig. 4. By computing the convolution in (4), it is possible to
obtain the probabilities that a generic vehicle is in chargeat
a fixed time, shown in Fig. 5.

The number of daily incoming vehicles has been modeled
by a symmetric triangular distribution withNV = 100 and
NV = 200, as shown in Fig. 6. Concerning the daily
profit, the fractionα has been set to0.2, corresponding to an
earnings/cost ratio of1.2, while the probability levelε is 10%.
The electricity price has been taken from the Italian electricity
market [29], where for each simulated day a new electricity
price profile is considered.

The configuration described above has been simulated for
300 days. In Fig. 7, the relation betweenβ and the selling price
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Fig. 5. Probability of having a generic vehicle in charge at afixed time.
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Fig. 6. Probability distribution of the total number of vehicles for each day.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.146

0.147

0.148

0.149

0.15

0.151

0.152

0.153

0.154

Fig. 7. Value of the selling pricesβ with respect toβ (day93). The minimum
selling prices∗ and the correspondingβ∗ are denoted by the red dot.

sβ for a generic day is depicted. Notice that in Problem 6
it is not easy to figure out howsβ evolves withβ, since it
also depends onrβ which is again a function ofβ. In the
reported day, the optimal value ofsβ is obtained whenβ
is 3.33%. To validate the satisfaction of constraint (15), the
computed selling price and the battery schedule obtained by
using Algorithm 1 have been considered. In this simulation,the
number of days where this constraint is not satisfied amounts
to 15, corresponding to5% of the total.

The average selling price lies between the mean and the
maximum value of the daily electricity price, as shown in
the box plots of Fig. 8. In Fig. 9, the daily electricity price
and daily selling price for day93 are shown. Photovoltaic
production and overall energy needed by the EVs for the same
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Fig. 9. Daily electricity price (blue) and optimal selling price (red), for day93.

day are reported in Fig. 10.
To assess the performance of the receding horizon battery

schedule, a comparison with respect to the one computed
at the beginning of the day has been carried out. The ESS
power schedulesPESS(t) in day 93 for both the initial and
the receding horizon strategies are shown in Fig. 11 [top],
while the corresponding levels of charge are reported in
Fig. 11 [bottom]. Notice that, during the first time period,
both solutions almost coincide because no vehicles have yet
arrived. However, when vehicles start arriving to the parking
lot, the two profiles separate. Notice that the behavior of
the ESS charging/discharging power has a smooth profile
throughout the day when computed at the beginning of the
day, while it is sharper in some intervals for the receding
horizon implementation. This is not surprising since the former
is computed open-loop on the basis of the given distributions,
while the latter is recursively computed at each time step on
the basis of the actual outcomes of the stochastic processes. As
a result of the knowledge of the past and actual vehicle arrivals
and energy required, the receding horizon strategy outperforms
the one computed at the beginning of the day, providing an
earnings/cost ratio of1.24 versus1.22.

In Fig. 12, the daily earnings/cost ratio difference between
the initial and receding horizon plans is depicted, while in
Fig. 13 the earnings/cost ratio boxplot for both procedures
are shown. As expected, in general, the receding horizon
strategy outperforms the one computed at the beginning of
the day. In fact, since Algorithm 1 is executed once at the
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Fig. 10. Day93. PV production [top] and energy needed to charge EVs
[bottom].
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Fig. 11. Day 93. ESS power schedule [top] and corresponding level of charge
[bottom] computed by Algorithm 1 (blue) and Algorithm 3 (red).
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Fig. 12. Difference between the earnings/cost ratio obtained by the receding
horizon procedure and that computed by Algorithm 1 at the beginning of a day.

beginning of the day, the computed control actions depend
on a priori information and not on the actual realizations of
the random variables. On the contrary, the receding horizon
implementation exploits past and present vehicle information
as it works in a closed loop manner. So, it is very likely that
the receding horizon algorithm outperforms Algorithm 1, even
if this is not guaranteed in general. Moreover, the number of
days when constraint (15) is violated has been reduced to 2.
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Fig. 13. Boxplot of the earnings/cost ratio for the recedinghorizon EDS
schedule (left) and the policy computed at the beginning of the day (right).
The green line denotes the specified probabilistic threshold.

A. Discussion

It is worth noting that the proposed technique exploits the
EV distributions without requiring limiting assumptions on
them. This means that the approach allows one to deal with
different daily scenarios, possibly accounting for weekdays,
holidays, strikes, etc.

Examining Fig. 13 (right), one can see that in general the
selling price computed by Algorithm 1 at the beginning of the
day leads to an earnings/cost ratio greater than the required
threshold. This result fully agrees with the requirements.In
fact, the small number of days falling below the threshold are
less than the prescribed10%-limit, but at the same time, it is
greater than zero, showing a low degree of conservativeness.

Once the selling price has been fixed, the proposed receding
horizon algorithm can be used to operate the EDS during
the day. This procedure takes advantage of the knowledge
of the random processes outcomes related to EVs, which are
clearly known only in probabilistic terms at the beginning of
the day when Algorithm 1 is run. So, it is expected that the
daily profit obtained by the receding horizon procedure out-
performs that given by operating the ESS with the commands
provided at the beginning of the day. This has been confirmed
by numerical simulations as reported in Fig. 12, where the
difference between the daily earnings/cost ratio providedby
the two procedures is shown. In addition, the receding horizon
algorithm shows better performance in terms of violations of
constraint (15).

Regarding the computation of the best value ofβ, note that
in order to obtain the best selling price, the optimal value
of β changes day by day on the basis of the expected PV
production and of the electricity price profile. Moreover, as
shown in Fig. 7, the flat behavior of the selling price around
the optimal valueβ∗, allows one to perform the grid search
in Algorithm 1 with only a few iterations.

Concerning computational aspects, Algorithm 2 needs about
20 iterations to return the optimal value of Problem 6, with a
toleranceγε = 10−6, while the loop in Algorithm 1 has been
run over100 equally spaced values between0 andε, i.e. with
a resolution of10−3. Such a resolution is enough to obtain a
value ofsβ very close to the optimal one (see Fig. 7). For this
problem, Algorithm 1 takes on average3.5 minutes to compute

the optimal selling price, while the receding horizon strategy
performs one iteration step in0.18 seconds. Simulations
have been run in MATLAB, with the optimization problems
formulated using YALMIP [30] and solved by CPLEX [31]
on an Intel(R) Core(TM) i7-7700 CPU @3.60 GHz with 32
GB of RAM. Thanks to the low computational burden, both
algorithms can be effectively used in practical applications
even with a larger number of incoming vehicles.

VI. CONCLUSIONS

To derive an effective energy pricing strategy under uncer-
tain EV demand, a chance constrained optimization problem
has been formulated. The resulting chance constraint is based
on probability distributions that characterize the EV daily
behavior. A tractable formulation of the original problem
has been derived, and a procedure to compute the optimal
selling price has been devised. While the selling price is
computed at the beginning of the day, during the day a
receding horizon strategy to operate the ESS, by exploitingthe
realizations of the EV random processes, has been designed.
Simulation results show that such approach is close to optimal.
In fact, on average, the daily profit is reasonably close to the
required value, while the chance constraint is tightly satisfied.
The receding horizon strategy to adapt the battery charging
schedule generally leads to better performance. Moreover,the
number of chance constraint violations is reduced.

Future developments will address more complex scenarios,
where uncertainty on renewable forecasts and on electricity
price are explicitly taken into account. Moreover, charging
stations equipped with vehicle-to-grid facilities can be con-
sidered, as well as the participation of the parking lot in
demand response programs. An additional research direction is
related to competitive environments, where the energy pricing
problem will be analyzed by considering the presence of other
players involved in the charging service.
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