
Adaptive Threshold Selection

for Set Membership State Estimation

with Quantized Measurements

Marco Casini, Andrea Garulli, Antonio Vicino ∗

Abstract

State estimation for discrete-time linear systems with uniformly quantized measurements

is addressed. By exploiting the set-theoretic nature of the information provided by the quan-

tizer, the problem is cast in the set membership estimation setting. Assuming the possibility

of suitably tuning the quantizer range and resolution, the optimal design of adaptive quan-

tizers is formulated in terms of the minimization of the radius of information associated to

the state estimation problem. The optimal solution is derived for first-order systems and the

result is exploited to design adaptive quantizers for generic systems, minimizing the size of

the feasible output signal set. Then, the number of sensor thresholds for which the adaptive

quantizers guarantee asymptotic boundedness of the state estimation uncertainty is estab-

lished. Threshold adaptation mechanisms based on several types of outer approximations of

the feasible state set are also proposed. The effectiveness of the designed adaptive quantizers

is demonstrated on numerical tests, highlighting the trade off between the resulting estimation

uncertainty and the computational burden required by recursive set approximations.

1 Introduction

The effect of quantization in control systems has been investigated since long time (see, e.g., [1,2]
and references therein). In particular, it is well known that adaptive quantizers can be employed
to improve the performance of the control loop [3–6]. Due to the steadily increasing diffusion of
networked systems with limited communication rate, the role of quantization has been intensively
studied also in system identification [7–12] and state estimation [13–16].

In estimation problems, online adaptation of the quantizer thresholds can be exploited to
reduce estimation errors and improve the system performance. The problem considered in this
paper is relevant to two possible application settings. The first one is that of a sensor with a
limited number of quantization levels, whose thresholds can be suitably triggered. Examples of
such sensors are described in [7, Chapter 1] and the threshold adaptation problem is treated
in [7, Chapter 14] in the context of system identification. Another application domain is that
of networked systems, such as wireless sensor networks or industrial control networks, in which
quantization for communication allows the user to choose how to partition the signal range in
subsets, which is equivalent to suitably select the quantizer thresholds. This has motivated a
growing interest in the design of adaptive quantizers for system identification [17–21], distributed
sensing [22, 23] and data converters [24]. In particular, an expectation-maximation algorithm
and a quasi-Newton search are employed in [20] to obtain a parameter estimate, on the basis of
which the quantizer thresholds are adapted. In [21], a similar solution is proposed, based on a
stochastic gradient algorithm. Time-varying thresholds are obtained in [22] by adding a control
input before sensor quantization. Three different threshold adaptation schemes for distributed
parameter estimation are proposed in [23]. In the above settings, it is implicitly assumed that the
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same estimation algorithm is run at both ends of the communication channel, so that the sensor
can autonomously adapt the thresholds in the same way as it is done by the estimator.

In this paper, the problem of designing adaptive quantizers will be addressed in the context of
set membership state estimation for discrete-time linear systems. The aim is to find an adaptation
scheme for the sensor thresholds which minimizes the set-theoretic uncertainty associated to the
state estimates.

1.1 Related work

Set membership state estimation has a long history, whose origin dates back to more than 50
years ago [25, 26]. The main idea is as follows: when the system is affected by unknown-but-
bounded (UBB) process disturbance and measurement noise, it is possible to define the so-called
feasible state set, i.e., the set of all the states that are compatible with the available input-output
measurements and the disturbance bounds. An advantage of this approach is that all the elements
of the feasible set can be equivalently considered as pointwise estimates of the state, depending
on the specific application at hand. Different measures of the size of the feasible set can be used
to quantify the uncertainty affecting the estimate. On the other hand, a major problem in set
membership estimation is that feasible sets rapidly become too complex to be computed exactly.
Even in the case of linear dynamic systems, feasible sets are usually polytopes with an increasing
number of facets and vertices. This has generated a rich literature in which researchers have
proposed a number of techniques for approximating the feasible sets. The common idea underlying
these approaches is to choose a family of sets of limited complexity and compute a set within the
family that contains the true feasible set. Popular approximating sets incluse ellipsoids [27–29],
parallelotopes [30], zonotopes [31–34] and constrained zonotopes [35–37]. The interested reader is
referred to [38] for a detailed survey on the subject.

The effect of measurement quantization in state estimation has been mostly addressed in
the stochastic framework. Since the seminal work in [13], the objective has been to design the
quantizer parameters so that the estimation error possesses some desirable properties (typically,
a bounded covariance). By leveraging the set-theoretic nature of the information provided by
quantized sensor measurements, a natural alternative is to cast the state estimation problem in
a deterministic setting. Recently, this approach has been proposed for state estimation based on
binary sensor measurements, in the presence of UBB disturbances, leading to deterministic bounds
on the estimation errors [39,40]. A further step is to formulate the state estimation problem in the
set membership estimation framework, which allows to characterize the uncertainty associated to
the state estimates in terms of feasible state sets. Quite interestingly, the possibility of adopting
a set membership approach when dealing with quantized measurements was already mentioned
in [14], which however considered a very specific system class (cascaded integrators). A set-valued
observer for linear systems with quantized measurements was first proposed in [41]. In [42] a set
membership state estimation algorithm is presented, assuming that quantized measurements of all
the state variables are available and that such measurements always remain in the quantizer range.
In all these works, the quantizer thresholds are fixed a priori. In [43], a strategy for adapting the
threshold of a binary sensor to minimize the size of the feasible state set is proposed.

1.2 Paper contribution

In this paper, the state estimation problem with uniformly quantized measurements is addressed
for linear discrete-time systems affected by UBB disturbances. The problem is cast in the set
membership estimation framework. Assuming that the thresholds of the quantizer can be adapted
online, the optimal design of the quantizer parameters (range and resolution) is formulated in
terms of the minimization of the radius of information, i.e., the radius of the feasible state set
corresponding to the worst-case realization of the quantized measurements. To the best of our
knowledge, the design of adaptive quantizers has never been studied in a set-theoretic framework.
First, a complete solution is provided for first-order systems. Then, such a result is exploited
to design adaptive quantizers for general n-th order systems, by minimizing the radius of the
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feasible output signal set, namely, the set of feasible values of the (unaccessible) output signal.
Moreover, it is shown that such a design guarantees asymptotic boundedness of the feasible state
set, and hence of the uncertainty affecting the state estimate, provided that the quantizer has
a sufficient number of thresholds. The threshold adaptation mechanism is also applied to outer
approximations of the feasible state sets, computed by recursive approximation algorithms based
on parallelotopes, zonotopes and constrained zonotopes. In particular, analytical expressions
of the time-varying thresholds are derived for parallelotopes and zonotopes, thus making the
computational burden of online adaptation negligible. The effectiveness of the proposed techniques
for designing and adapting the quantizer parameters is demonstrated via numerical simulations
on a specific case study and on randomly generated systems with multiple process disturbances
and quantized measurements. The results provide empirical evidence that the proposed approach
outperforms the results obtained by set membership estimators based on fixed thresholds.

Summing up, the contributions of the paper are:

i) the formulation and solution of the optimal design of adaptive quantizers, for set membership
state estimation of linear systems with quantized measurements (Theorems 1 and 3);

ii) results showing that the proposed optimal adaptive quantizers guarantee asymptotic bound-
edness of the feasible state set, even in the case of unstable systems (Theorems 2 and 4);

iii) an effective and computationally viable way to select the quantizer thresholds, based on
commonly employed outer approximations of the feasible state set.

The rest of the paper is organized as follows. Section 2 introduces some preliminary mate-
rial on set manipulations. The optimal threshold selection problem is formulated in Section 3.
The problem solution is derived in Section 4 for first-order systems, and then extended to linear
systems of arbitrary dimension in Section 5. The threshold selection mechanism based on outer
approximations of the feasible state set is illustrated in Section 6. Numerical simulations are
presented in Section 7, while Section 8 contains some concluding remarks and suggests possible
future developments.

2 Definitions and preliminaries

The notation adopted in the paper is standard. For x ∈ R, ⌊x⌋ is the largest integer less than or
equal to x. A closed interval in R is denoted as [a, b] = {x ∈ R : a ≤ x ≤ b}. Given a vector
v ∈ R

n, diag(v) is a diagonal matrix with diagonal equal to v. The transpose of v is denoted by
v′. The p-norm of v is ‖v‖p (the subscript is omitted when p = 2). The column vector of ones is
denoted by 1 = [1 1 . . . 1]′. The unit ball in the infinity norm is B∞ = {x : ‖x‖∞ ≤ 1}.

Given sets V ,W ⊆ R
n, we define their Minkowski sum as

V ⊕W = {z ∈ R
n : z = v + w, ∀ v ∈ V , ∀w ∈ W}, (1)

and the linear set transformation with matrix A ∈ R
m×n as

AV = {z ∈ R
m : z = Av, ∀ v ∈ V}. (2)

The radius of a set V is defined as

rad(V) = inf
z
sup
v∈V

‖z − v‖. (3)

The argument z of the infimum in (3) is the center of V .
Given p ∈ R

n and γ ∈ R, a strip is defined as

S(p, γ) = {x ∈ R
n : |p′x− γ| ≤ 1}. (4)
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A non-degenerate parallelotope is the intersection of n linearly independent strips. Given c ∈ R
n

and a nonsingular matrix P ∈ R
n×n, it is defined as

P(P, c) = {x ∈ R
n : ‖Px− c‖∞ ≤ 1}

= {x ∈ R
n : x = xc + Tα, ‖α‖∞ ≤ 1}

(5)

where T = P−1 and xc = P−1c. Its radius is given by

rad(P(P, c)) = max
w∈B∞

‖P−1w‖. (6)

Moreover, for any vector v ∈ R
n, it holds

sup
x∈P

v′x− inf
x∈P

v′x = 2‖v′P−1‖1. (7)

A zonotope [31] is an extension of a parallelotope, defined as

Z(T, xc) = {x ∈ R
n : x = xc + Tα, ‖α‖∞ ≤ 1} (8)

where T ∈ R
n×m and α ∈ R

m. The columns of T are the generators of the zonotope and its order
is o = m

n
.

A constrained zonotope [35] is an extension of a zonotope, defined as

CZ(T, xc, A, b) = {x ∈ R
n : x = xc + Tα,

‖α‖∞ ≤ 1, Aα = b}
(9)

where A ∈ R
nc×m and b ∈ R

nc . The order of a constrained zonotope is defined as o = m−nc

n
,

where nc is the number of equality constraints in (9).

Proposition 1 Given a strip S(p, c) ⊂ R
n, a nonsingular matrix A ∈ R

n×n, a matrix G ∈ R
n×m

and a constant γ > 0, one has

AS(p, c) ⊕ γGB∞ =

{x ∈ R
n : |p′A−1x− c| ≤ 1 + γ‖p′A−1G‖1}.

(10)

Proof: See Appendix .1. �

3 Problem formulation

Consider the discrete-time linear system

x(k + 1) = Ax(k) +Gw(k) (11)

z(k) = Cx(k) + v(k) (12)

where x(k) ∈ R
n is the state vector, z(k) ∈ R is the (inaccessible) output signal, w(k) ∈ R

m is the
process disturbance and v(k) ∈ R is the output noise. In the case of multi-output systems, the
results presented in the paper can be applied by processing sequentially the output measurements,
at the price of a higher conservativeness of the uncertainty estimates (see Section 7.2).

The process disturbance w(k) and the output noise v(k) are unknown-but-bounded (UBB)
sequences, i.e. they satisfy

‖w(k)‖∞ ≤ δw (13)

|v(k)| ≤ δv (14)

for all k ≥ 0.
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Observations of the output signal are obtained from a quantized sensor with d thresholds
τ1, . . . , τd, such that

y(k) = σ(z(k)) ,



















0 if z(k) ≤ τ1
1 if τ1 < z(k) ≤ τ2

...
d if z(k) > τd.

(15)

The quantization is assumed to be uniform in the range [τ1, τd], i.e., the sensor thresholds satisfy
τi+1 − τi = ∆, for i = 1, . . . , d − 1 and ∆ > 0. Therefore, the quantizer is defined by choosing
the center of the quantizer range τc = τ1+τd

2 and the resolution ∆, thus meaning that it is fully

characterized by the parameter vector θ =

[

τc
∆

]

. Then, the thresholds can be expressed in terms

of θ as

τi = τc −

(

d+ 1

2
− i

)

∆ , i = 1, . . . , d. (16)

According to the set membership estimation paradigm, the information provided by the quan-
tized measurement y(k) is captured by the feasible measurement set, i.e., the set of states x(k)
which are compatible with y(k). By using (12) and (14), this is given by

M(k) =



















x ∈ R
n :

Cx ≤ τ1 + δv if y(k) = 0
τ1 − δv ≤ Cx ≤ τ2 + δv if y(k) = 1

...

Cx ≥ τd − δv if y(k) = d



















(17)

in which all strict inequalities have been transformed into nonstrict ones, in order to deal only
with closed feasible sets. The set M(k) is a strip in the state space when 1 ≤ y(k) ≤ d− 1, and a
half-space when y(k) = 0 or y(k) = d (notice that this occurs even in the noiseless case δv = 0).
This justifies the set membership approach to the state estimation problem. In particular, it is
possible to compute the feasible state set, i.e., the set of all the state vectors compatible with the
available information. Let us denote by Ξ(k|k) and Ξ(k+1|k) the sets of states x(k) and x(k+1),
respectively, which are compatible with the quantized measurements collected up to time k. Such
sets are defined by the recursion

Ξ(k|k) = Ξ(k|k − 1)
⋂

M(k) (18)

Ξ(k + 1|k) = AΞ(k|k)⊕ δwGB∞ (19)

which is initialized by choosing a set Ξ(0| − 1), containing all the feasible initial states x(0).
Hereafter, we will denote ρ(k) = rad(Ξ(k|k)). By choosing the center of Ξ(k|k) as a pointwise
estimate of the state x(k), ρ(k) represents the maximum uncertainty associated to the estimate.

If the parameter vector θ of the quantizer is kept constant, the evolution of the feasible state
sets in (18)-(19) may show undesired behaviors. For example, it may happen that the feasible set
tends to become asymptotically unbounded, as in the following example.

Example 1 Let n = 1, A = G = C = 1 , δw = 1, δv = 0. Assume x(0) = 1
2 and w(k) = 1,

∀k ≥ 0, so that z(k) = x(k) = 1
2 + k. Consider the quantizer in (15) with d = 3, τ1 = −1, τ2 = 0,

τ3 = 1. Then, y(0) = 2 and y(k) = 3, ∀k ≥ 1. Hence M(0) = [0, 1] and M(k) = {x : x ≥ 1},
∀k ≥ 1. By choosing Ξ(0| − 1) = [0, 1] and applying the recursion (18)-(19), one gets the sequence
of feasible state sets Ξ(k|k) = [1, k+1], for k ≥ 1, which is asymptotically unbounded. This means
that the uncertainty associated to any estimate of x(k) will diverge, irrespectively of the adopted
estimation algorithm.

For the reasons exposed above, it is of interest to adapt the quantizer parameters in order to
minimize the size of the feasible state set. Let us assume that at each time k it is possible to
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choose the parameters of the quantizer θ(k) =

[

τc(k)
∆(k)

]

. The aim is to select θ(k) online in order

to minimize the size of the resulting feasible set Ξ(k|k). Since M(k) depends on the actual value
taken by the output y(k), which in turn depends on the feasible predicted states Ξ(k|k − 1) and
the realization of the measurement noise v(k), a meaningful objective is to minimize the radius of
Ξ(k|k) with respect to the worst-case value taken by y(k), i.e., to select

θ∗(k) = arg inf
θ
sup
y(k)

ρ(k; θ, y(k)) (20)

where
ρ(k; θ, y(k)) = rad (Ξ(k|k)) = rad

(

Ξ(k|k − 1)
⋂

M(k)
)

,

in which the dependence of the radius on both θ and y(k), through M(k) in (17), has been made
explicit. Notice that in the information-based complexity framework, this corresponds to trigger
the quantizer in order to minimize the so-called radius of information [44,45]. In the next section,
the solution of problem (20) is derived for first-order systems.

4 Optimal adaptive quantizer for first-order systems

Let n = m = 1. Without loss of generality, consider the system

x(k + 1) = ax(k) + w(k) (21)

z(k) = x(k) + v(k) (22)

with |w(k)| ≤ δw, |v(k)| ≤ δv, ∀k ≥ 0, and a ∈ R. For ease of exposition, let us assume a > 0. If
Ξ(0| − 1) ⊂ R is an interval, then all feasible sets Ξ(k|k) and Ξ(k+ 1|k) are also intervals. Hence,
let us adopt the notation Ξ(k|k) = [l(k), r(k)], whose radius is ρ(k) = (r(k) − l(k))/2.

The next theorem provides a solution of problem (20).

Theorem 1 Consider system (21)-(22) with the quantized sensor (15). Let (13)-(14) hold, with
known bounds δw, δv. If aρ(k − 1) + δw > δv, a solution of problem (20) is given by

τc(k) = a
l(k − 1) + r(k − 1)

2
, (23)

∆(k) =
2

d+ 1
(aρ(k − 1) + δw − δv) . (24)

When aρ(k− 1)+ δw ≤ δv, any θ(k) with τc(k) given by (23) and ∆(k) > 0 is an optimal solution
of (20).

Proof: By applying (21) to Ξ(k − 1|k − 1), one has

Ξ(k|k − 1) = [al(k − 1)− δw, ar(k − 1) + δw] =

= [l(k|k − 1), r(k|k − 1)]
(25)

whose radius is (r(k|k − 1)− l(k|k− 1))/2 = aρ(k − 1) + δw. Problem (20) requires to select θ(k)
in order to minimize the worst-case radius of the interval Ξ(k|k) = Ξ(k|k − 1)

⋂

M(k), for all
possible values taken by the quantized output signal y(k). By using (17) one has

Ξ(k|k) =















































[l(k|k − 1), min{τ1 + δv, r(k|k − 1)}]
if y(k) = 0,

[ max{l(k|k − 1), τi − δv},
min{τi+1 + δv, r(k|k − 1)}]

if y(k) = i, 1 ≤ i ≤ d− 1,...
[ max{l(k|k − 1), τd − δv}, r(k|k − 1)]

if y(k) = d.

(26)
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By adopting a simple geometric argument, the thresholds of the quantizer should be symmetrically
distributed over Ξ(k|k−1) in order to provide a solution to problem (20). Therefore, the center τc
of the quantizer range must coincide with the center of Ξ(k|k−1) in (25), from which (23) follows.

In order to prove (24), let us compute ρ(k) = rad (Ξ(k|k)) for the different outcomes of the
quantized sensor y(k). When y(k) = 0, by using (16) with i = 1 and (23), from (26) one gets

ρ(k) = 1
2 min{r(k|k − 1)− l(k|k − 1), τ1 + δv − l(k|k − 1)}

= 1
2 min{2aρ(k − 1) + 2δw,

τc(k)−
(

d−1
2

)

∆+ δv − al(k − 1) + δw
}

=min{aρ(k − 1) + δw,

1
2

[

aρ(k − 1) + δw + δv −
d−1
2 ∆(k)

]}

.

For y(k) = d the derivation is analogous and leads to the same result. For y(k) = i, with
1 ≤ i ≤ d− 1, one gets

ρ(k) =1
2 min{r(k|k − 1)− l(k|k − 1), τi+1 − τi + 2δv,

τi+1 + δv − l(k|k − 1), r(k|k − 1)− τi + δv}

=1
2 min{2aρ(k − 1) + 2δw,∆+ 2δv,

τc(k)−
(

d−1
2 − y(k)

)

∆+ δv − al(k − 1) + δw,

ar(k − 1) + δw − τc(k) +
(

d+1
2 − y(k)

)

∆+ δv
}

= min{aρ(k − 1) + δw,
1
2∆(k) + δv,

1
2

[

aρ(k − 1)+δw+δv+
1
2∆(k)−

∣

∣

d
2−y(k)

∣

∣∆(k)
]}

.

Summing up, the radius of Ξ(k|k) is equal to

ρ(k) =







































min {aρ(k − 1) + δw,
1
2

(

aρ(k − 1) + δw + δv −
d−1
2 ∆(k)

)}

if y(k) ∈ {0, d},

min
{

1
2∆(k) + δv, aρ(k − 1) + δw,

1
2

[

aρ(k − 1)+δw+δv−
(∣

∣

d
2 − y(k)

∣

∣− 1
2

)

∆(k)
]}

if y(k) ∈ {1, . . . , d− 1}.

(27)

Let us now distinguish two cases. If aρ(k − 1) + δw ≤ δv, for y(k) = ⌊d
2⌋ one has that (27) yields

ρ(k) =



















min
{

1
2∆(k) + δv, aρ(k − 1) + δw,

1
2

[

aρ(k − 1)+δw+δv+
1
2∆(k)

]}

if d is even,

min
{

1
2∆(k) + δv, aρ(k − 1) + δw,

1
2 [aρ(k − 1)+δw+δv]

}

if d is odd.

Hence, using condition aρ(k− 1)+ δw ≤ δv one has ρ(k) = aρ(k− 1)+ δw. For all other outcomes
of y(k) 6= ⌊d

2⌋, all the expressions of ρ(k) in (27) involve the minimum between aρ(k− 1)+ δw and
other quantities. Therefore,

sup
y(k)

ρ(k) = aρ(k − 1) + δw. (28)

Since the expression in (28) does not depend on ∆(k), any value of ∆(k) is optimal.
Conversely, let us consider the case aρ(k − 1) + δw > δv. From (27) one gets

ρ(k) =



























1
2

(

aρ(k − 1) + δw + δv −
d−1
2 ∆(k)

)

if y(k) ∈ {0, d},

min
{

1
2∆(k) + δv, aρ(k − 1) + δw,

1
2

[

aρ(k − 1)+δw+δv−
(
∣

∣

d
2 − y(k)

∣

∣− 1
2

)

∆(k)
]}

if y(k) ∈ {1, . . . , d− 1}.

(29)
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Let us assume that d is odd. Then, the term
(∣

∣

d
2 − y(k)

∣

∣− 1
2

)

is equal to zero when either y(k) =

⌊d
2⌋ or y(k) = ⌊d+1

2 ⌋, while it is positive for any other value taken by y(k). Therefore, from the
lower term in (29), one has

sup
y(k)∈{1,...,d−1}

ρ(k) =

= min
{

1
2∆(k) + δv, aρ(k − 1) + δw,
1
2 [aρ(k − 1) + δw + δv]

}

= min
{

1
2∆(k) + δv,

1
2 [aρ(k − 1) + δw + δv]

}

where the last equality stems from the assumption aρ(k − 1) + δw > δv. By comparing the two
terms in the right hand side one gets

sup
y(k)∈{1,...,d−1}

ρ(k) =

=



















1
2∆(k) + δv

if ∆(k) ≤ aρ(k − 1) + δw − δv,
1
2 (aρ(k − 1) + δw + δv)

if ∆(k) ≥ aρ(k − 1) + δw − δv.

(30)

Now, observe that the upper term in (29) is a decreasing function of ∆(k), while the upper term
in (30) is an increasing function of ∆(k) and the lower term in (30) does not depend on ∆(k). By
direct comparison of such terms, one obtains

sup
y(k)

ρ(k) =



















































1
2

(

aρ(k − 1) + δw + δv −
d−1
2 ∆(k)

)

if ∆(k) ≤ 2
d+1 (aρ(k − 1) + δw − δv) ,

1
2∆(k) + δv

if 2
d+1 (aρ(k − 1) + δw − δv) ≤ ∆(k) ≤

≤ aρ(k − 1) + δw − δv,

1
2 (aρ(k − 1) + δw + δv)

if ∆(k) ≥ aρ(k − 1) + δw − δv.

(31)

By applying the same procedure when d is even, one gets

sup
y(k)

ρ(k) =



















































1
2

(

aρ(k − 1) + δw + δv −
d−1
2 ∆(k)

)

if ∆(k) ≤ 2
d+1 (aρ(k − 1) + δw − δv) ,

1
2∆(k) + δv

if 2
d+1 (aρ(k − 1) + δw − δv) ≤ ∆(k) ≤

≤ 2(aρ(k − 1) + δw − δv),

aρ(k − 1) + δw

if ∆(k) ≥ 2(aρ(k − 1) + δw − δv).

(32)

Finally, one can observe that both (31) and (32) are piecewise linear functions of ∆(k), whose
minimum is attained for ∆(k) = 2

d+1(aρ(k − 1) + δw − δv), which corresponds to (24). �

The rationale behind the quantizer adaptation (23)-(24) is clarified by the following example.

Example 2 Let a = 2, δw = 1, δv = 2. Assume that at time k−1 one has Ξ(k−1|k−1) = [−5, 5].
Then, from (25) one gets Ξ(k|k−1) = [−11, 11]. By applying (23)-(24) with d = 5, one has τc(k) =
0 and ∆(k) = 3. The resulting thresholds τi(k) in (16) are equal to −6,−3, 0, 3, 6. It is worth
stressing that such thresholds do not partition the predicted feasible set Ξ(k|k − 1) in equal parts.
Rather, they are selected in such a way that the corrected feasible set Ξ(k|k) = Ξ(k|k− 1)

⋂

M(k)
has always the same radius, equal to 1

2∆(k)+ δv = 7
2 , irrespectively of the sensor output y(k), thus

achieving the optimal solution of problem (20).

8



By using the result in Theorem 1 it is possible to establish conditions for the asymptotic
boundedness of the feasible set Ξ(k|k).

Theorem 2 By choosing the quantizer parameters as in (23)-(24), the radius of information
ρ̄(k) = supy(k) ρ(k) evolves according to

ρ̄(k) =











aρ̄(k − 1) + δw if ρ̄(k − 1) ≤ δv−δw
a

,

1
d+1 (aρ̄(k − 1) + δw + dδv)

if ρ̄(k − 1) ≥ δv−δw
a

.

(33)

Moreover, if d > a− 1, one has

lim
k→+∞

ρ̄(k) =

{ 1
1−a

δw if δw ≤ (1− a)δv,

1
d+1−a

(δw + dδv) if δw > (1− a)δv,
(34)

and if δw > (1− a)δv,

lim
k→+∞

sup
y(k)

∆(k) =
2

d+ 1− a
(δw + (a− 1)δv) . (35)

Proof: Expression (33) is obtained from (28) and (31)-(32), by substituting the optimal value
of ∆(k) in (24) into (31)-(32). Then, (34) follows from standard arguments on the asymptotic
behavior of system (33). Finally, (35) is obtained by substituting the second expression in (34) into
(24). Note that when the first expression in (34) holds, the choice of ∆(k) becomes asymptotically
irrelevant. �

Theorem 2 states that in order to guarantee asymptotic boundedness of the feasible state set,
the number of thresholds of a uniform quantizer must exceed a− 1. Notice that if system (21) is
stable, this condition is always satisfied. Conversely, in the special case of a binary sensor (d = 1),
asymptotic boundedness holds if and only if a < 2.

Remark 1 If a < 0, the results in Theorems 1 and 2 still hold with few amendments. In par-
ticular, τc(k) in (23) remains the same, while the optimal quantizer resolution becomes ∆(k) =
2

d+1 (|a|ρ(k − 1) + δw − δv). Similarly, (33)-(35) hold if one replaces a with |a| in all the expres-
sions.

Remark 2 The result (34) in Theorem 2 can be seen as the set-theoretic counterpart of that
in [13, Th. 3] for a stochastic estimation framework. In fact, the latter result provides the minimum
number n of bits for a coder-estimator guaranteeing asymptotic boundedness of the covariance
of the state estimation error. Specifically, under the assumption that all the involved stochastic
disturbances have a finite-support density function, it is shown that 2n > a implies asymptotic
stability of a coder estimator for a first-order system with pole a. By observing that an n-bit coder
corresponds to a quantizer with d = 2n − 1 thresholds, the condition d > a − 1 is recovered. In
addition, Theorem 2 provides exact asymptotic expressions for the worst-case uncertainty ρ̄(k) and
quantizer resolution ∆(k), in the considered set-theoretic framework.

5 General case

The solution of problem (20) in the general case of n-th order systems is intractable, because it
involves a nonconvex min-max optimization over n-dimensional sets. Nevertheless, we can leverage
the solution for first-order systems, in order to solve an alternative formulation of the problem,
which is both meaningful and computationally feasible.
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Instead of minimizing the radius of the feasible state set at time k, the aim is to minimize
the radius of the feasible output signal set, i.e., the set of feasible values that the nominal output
z̄(k) = Cx(k) can take at time k. This is given by

CΞ(k|k) = C (Ξ(k|k − 1)
⋂

M(k))

= CΞ(k|k − 1)
⋂

CM(k)
(36)

where the last equality follows from the definition of M(k) in (17). Then, one can design the
quantizer parameters according to

θ∗(k) = arg inf
θ
sup
y(k)

rad(CΞ(k|k))

= arg inf
θ
sup
y(k)

rad
(

CΞ(k|k − 1)
⋂

CM(k)
)

.
(37)

From a geometric viewpoint, the difference between problems (20) and (37) is that the latter
minimizes the projection of the uncertainty set onto the output measurement manifold. The next
result provides a solution of problem (37).

Theorem 3 Consider system (11)-(12) with the quantized sensor (15). Let

l̄(k) = inf
x∈Ξ(k|k−1)

Cx , r̄(k) = sup
x∈Ξ(k|k−1)

Cx. (38)

Then, if r̄(k)− l̄(k) > 2δv, a solution of problem (37) is given by

τc(k) =
l̄(k) + r̄(k)

2
, (39)

∆(k) =
r̄(k)− l̄(k)− 2δv

d+ 1
. (40)

When r̄(k)− l̄(k) ≤ 2δv, any θ(k) with τc(k) given by (39) and ∆(k) > 0 is an optimal solution of
(37).

Proof: Since CΞ(k|k) in (36) is a one-dimensional interval, one can solve problem (37) by adopting
the same strategy adopted in Theorem 1 for solving problem (20) in the case of first-order systems.
In particular, by using (25), the optimal quantizer parameters in (23)-(24) can be rewritten as

τc(k) =
l(k|k − 1) + r(k|k − 1)

2
, (41)

∆(k) =
r(k|k − 1)− l(k|k − 1)− 2δv

d+ 1
, (42)

where l(k|k − 1) and r(k|k − 1) are, respectively, the infimum and the supremum of the interval
Ξ(k|k− 1), namely the predicted feasible state set in the case of first-order systems. By observing
that l̄(k), r̄(k) in (38) are the infimum and the supremum of the interval CΞ(k|k − 1), (39)-(40)
immediately follow from (41)-(42). � In words, the choice of the quantizer
parameters provided by Theorem 3 corresponds to selecting the sensor thresholds in such a way
that the feasible output signal set in (36) turns out to have the same radius, irrespectively of the
value taken by the output y(k), thus leading to the optimal solution of problem (37).

A question that naturally arises is whether the entire feasible state set Ξ(k|k) is asymptotically
bounded when the quantizer is adapted online according to (39)-(40). First, it can be observed
that this property trivially holds when system (11) is asymptotically stable. Indeed, even in the
least informative scenario in which no measurement set M(k) is able to reduce the size of the
feasible set, namely M(k) ⊇ Ξ(k|k − 1), ∀k ≥ 0, from (18)-(19) one has

Ξ(k + 1|k + 1) = AΞ(k|k)⊕ δwGB∞.

Then, if A is asymptotically stable, it turns out that Ξ(k|k) is asymptotically included in the
bounded set

∑+∞
i=0 A

iδwGB∞ (see, e.g., [46, 47]).
When the stability assumption is not enforced, the following general result holds.
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Theorem 4 Assume matrix A is nonsingular and system (11)-(12) is observable. Define the
matrix

Ω =











C
CA−1

...
CA−n+1











(43)

and the vector α = CAΩ−1. Let η∗ > 0 be such that the polynomial

q(z) = zn − η

n
∑

i=1

|αi|z
n−i (44)

has all the roots strictly inside the unit circle, for all η ∈ [0, η∗). Then, if the quantizer parameters
are chosen according to (39)-(40), with d ∈ N such that

d >
1

η∗
− 1 (45)

then the feasible state set Ξ(k|k) is asymptotically bounded, i.e., there exists ρ∞ > 0 such that
lim supk→+∞ ρ(k) ≤ ρ∞. Moreover, for every d satisfying (45), one has

ρ∞ ≤ max
w∈B∞

‖Ω−1D∞w‖ (46)

where

D∞ = diag

([

1

2
∆∞ + δv

]

1+ δwβ

)

(47)

with

∆∞ =
2

d+ 1− ‖α‖1
·

{

δv (‖α‖1 − 1) + δw

(

‖CG‖1 +

n
∑

h=1

|αh|βh

)}

(48)

and β ∈ R
n is defined as

β1 = 0 , βh =

h−2
∑

i=0

‖CA−(i+1)G‖1 , h = 2, . . . , n. (49)

Proof: See Appendix .2. �

Theorem 4 provides a bound to the number of thresholds for which asymptotic boundedness
of the feasible state set Ξ(k|k) is guaranteed. Such a bound is obtained by computing η∗ =
sup{η : q(z) is Schur} and then choosing d as the minimum integer strictly larger than 1

η∗
− 1.

Notice that η∗ > 0 always exists, thanks to the continuity of the roots of polynomial q(z) with
respect to its coefficients.

In general, the bound (45) may be conservative. However, there are cases in which it turns out
to be quite tight, as in the following numerical examples.

Example 3 Consider system (11)-(12) with

A =

[

a 1
0 a

]

, C = [1 0], G = I2

with a ∈ R, δw = 0.05 and δv = 0. The quantizer parameters are updated according to (39)-(40),
for different values of d. Figure 1 reports, for different values of a: (i) the minimum d ∈ N for
which the feasible set Ξ(k|k), resulting from the worst-case realization of the quantized output y(k),
remains asymptotically bounded; (ii) the minimum d ∈ N satisfying (45). It can be observed that
the upper bound given by Theorem 4 is only slightly larger than the minimum number of thresholds
for which the feasible state is actually bounded. In this example, the upper bound is tight for
a ≥ 2.3.
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Figure 1: Example 3: minimum d for which the worst-case Ξ(k|k) is asymptotically bounded (red
circles) and minimum d satisfying (45) (blue triangles), for different values of a.

Remark 3 The lower bound (45) generalizes the condition d > a − 1 in Theorem 2. In fact,
for the first-order system (21)-(22), q(z) in (44) boils down to q(z) = z − ηa, for which clearly
η∗ = 1

a
, thus leading to d > a − 1 in (45). To the best of the authors’ knowledge, in stochastic

state estimation of n-th order systems, a lower bound on the number of thresholds guaranteeing
boundedness of the covariance of the state estimation error is still an open problem.

6 Threshold selection based on set approximations

The main drawback of the threshold selection mechanism (39)-(40) is that it requires the propaga-
tion of the true feasible state set Ξ(k|k) according to the recursion (18)-(19). Unfortunately, this
is not computationally feasible, even for low state dimensions n. This is a well-known problem in
the set membership estimation literature, which led to the development of a number of set approx-
imation techniques. A popular approach is based on the choice of a class of approximating sets
Π, from which an outer approximation of the true feasible set is selected at each time k through
the recursion

Π(k|k) ⊇ Π(k|k − 1)
⋂

M(k) (50)

Π(k + 1|k) ⊇ AΠ(k|k)⊕ δwGB∞ (51)

which is initialized by picking a Π(0| − 1) ⊇ Ξ(0| − 1). Many different set classes have been
considered in the literature, including ellipsoids [27–29], parallelotopes [30], zonotopes [31–34] and
constrained zonotopes [35–37].

When an outer approximation of the feasible set is available, one can design the quantizer
thresholds by applying the ideas developed in Section 5 to the approximating set Π(k|k − 1). In
particular, τc(k) and ∆(k) can still be chosen according to (39)-(40), where l̄(k) and r̄(k) are
computed as

l̄(k) = inf
x∈Π(k|k−1)

Cx , r̄(k) = sup
x∈Π(k|k−1)

Cx. (52)

Notice that l̄(k) and r̄(k) are easy to compute when the approximating sets Π are parallelotopes
or zonotopes. If xc(k|k−1) and T (k|k−1) denote respectively the center and the generator matrix
associated to Π(k|k − 1), according to the notation in (5) and (8), one gets

l̄(k) = Cxc(k|k − 1)− ‖CT (k|k − 1)‖1 (53)

r̄(k) = Cxc(k|k − 1) + ‖CT (k|k − 1)‖1 (54)

12



and hence (39)-(40) boil down to

τc(k) = Cxc(k|k − 1), (55)

∆(k) =
2

d+ 1
(‖CT (k|k − 1)‖1 − δv), (56)

which can be easily computed at each time step. When constrained zonotopes (9) are used as
approximating sets, the computation of l̄(k) and r̄(k) in (52) requires to solve two linear programs.

7 Numerical examples

In this section, the effectiveness of the threshold adaptation based on (55)-(56) is demonstrated
on numerical examples.

7.1 Case study: double oscillator

We consider the double-spring mechanical system proposed in [39]. The nominal continuous-time
model has been discretized with sampling time 0.1 s. The resulting matrices in (11)-(12) are

A =









0.9021 0.0967 0.0488 0.0016
−1.9177 0.9021 0.9507 0.0488
0.0488 0.0016 0.9508 0.0983
0.9507 0.0488 −0.9671 0.9508









,

G =









0 0
0.1 0
0 0
0 0.1









, C =
[

0 0 1 0
]

.

The discrete-time disturbances w(k) and v(k) are generated as uniformly distributed white pro-
cesses, satisfying (13) and (14), with δw = 0.2 and δv = 0.05. The initial state is generated
randomly within a box of side 5, i.e., x(0) ∈ 5B∞.

In order to test the threshold selection mechanism based on outer approximation of the fea-
sible state sets, illustrated in Section 6, we consider the following recursive set approximation
algorithms.

• Par, that uses the recursive parallelotopic approximation proposed in [30], in which the
intersection step (50) is performed according to the minimum volume criterion devised in [48].

• Zon(oz), employing zonotopes with maximum order equal to oz . The recursive approxi-
mation procedure is the one proposed in [31]. The intersection step in (50) is performed
according to the minimum volume criterion illustrated in [49]. If the number of generators
exceeds ozn, the order reduction procedure proposed in [35] is applied.

• CZ(oc, nc), using constrained zonotopes with maximum order oc and maximum number of
constraints nc. The recursive approximation procedure and the order reduction technique
are those proposed in [35]. The intersection step in (50) is based on the minimization of the
Frobenius norm of the zonotope generator matrix.

All operations involving zonotopes and constrained zonotopes have been performed by using the
CORA toolbox for Matlab [50].

A first set of experiments is carried out using the algorithm Par, with d = 5 thresholds.
Figures 2-3 show the state estimates provided by the center of the parallelotope (dashed) and
the uncertainty interval associated to each state variable (solid). The latter has been obtained by
computing the minimum box containing the current approximating parallelotope and projecting it
on the appropriate dimensions. The evolution of the true state variables is shown in red. In Fig. 2,
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the results obtained by adapting the quantizer thresholds according to (55)-(56) are reported. For
comparison, Fig. 3 shows the same quantities when the quantizer parameters are kept constant
and uniformly distributed in the interval [−5, 5], which is approximately the range of the output
signal z(k). It can be clearly seen that the threshold adaptation mechanism is able to significantly
reduce the uncertainty associated to the estimates, even for a relatively small number of thresholds.
To better appreciate the difference, the uncertainty intervals estimated with adaptive and fixed
thresholds, for a portion of the evolution of state variable x1, are shown on Figure 4. The evolution
of the quantizer parameters (center and resolution) in the case of adaptive thresholds is shown
in Figure 5. It can be observed that the center follows quite closely the behavior of the observed
state variable x3.

In order to evaluate the role of the threshold number d, the volumes of the approximating
parallelotopes and zonotopes are depicted in Fig. 6 as a function of d. Results are averaged over
10 runs. As expected, the zonotopic approximation provides smaller volumes with respect to the
parallelotopic one. The advantage saturates for zonotopes of order 4, which have 16 generators in
R

4.
To compare the performance of the different set approximation techniques, we consider the

average size of the uncertainty associated to the state estimates. Namely, the radius of the uncer-
tainty interval associated to xi(k) is averaged over time k and over the state variables i = 1, . . . , 4,
for 10 runs involving different initial conditions and disturbance realizations. The time average is
performed over the interval k ∈ [50, 200] to remove the effect of the initial transient. The results
concerning the considered approximation techniques are reported in Tables 1-2, for different values
of d. Table 1 refers to the thresholds adapted according to (55)-(56), while Table 2 concerns the
case of fixed thresholds. Table 3 reports the relative times for one iteration of each approximation
algorithm, with respect to one iteration of Par. The average time for one iteration of Par was
0.16ms on a computer equipped with Apple M2 CPU and 24 GB of RAM. Clearly, the compu-
tational burden of Zon and CZ algorithms can be triggered by acting on the zonotope order and,
for CZ, on the number of equality constraints, which in the considered tests has been kept equal
to 10.

The benefit of the threshold selection mechanism is apparent, not only in terms of uncertainty
size, but also for the number of thresholds. Indeed, uncertainty intervals do not significantly
decrease for d > 10 when thresholds are adapted, while they keep decreasing (also for d > 20) when
thresholds are fixed. This suggests that the number of thresholds required to achieve convergence
of the state estimation uncertainty is much higher when thresholds are not adapted.

Concerning the different techniques, constrained zonotopes yield smaller uncertainty intervals,
as expected, at the price of a much higher computational burden. Uncertainties provided by the
parallelotopic and zonotopic approximations are quite close, with the former approach providing
a good trade off between quality of the estimates and required computational effort.

7.2 Randomly generated multivariable systems

The adaptive threshold selection procedure has been tested on randomly generated multi-input
multi-output linear systems, with n = 5 states. The systems are asymptotically stable and fed
with m = 3 input signals w(k) which are generated as sum of sinusoids with randomly chosen
frequencies, corrupted by uniformly distributed white process disturbances satisfying (13) with
δw = 0.1. Quantized measurements of 3 output signals zi(k) = Cix(k) + vi(k), i = 1, 2, 3 are
collected, with uniformly distributed white noise vi(k) satisfying (14) with δv = 0.1. For each
quantized measurement, adaptive thresholds have been selected according to the procedure pro-
posed in Section 6, based on outer approximation of the feasible state sets. In all recursive set
approximation algorithms, quantized measurements are processed sequentially, i.e., step (50) is
repeated for each feasible measurement set Mi(k) corresponding to the quantized measurement
yi(k) = σ(zi(k)).

Tables 4-5 report the results of simulations performed on 100 randomly generated systems, each
one lasting 100 time instants. The radius of the uncertainty interval associated to state estimates
is shown, for different number of thresholds d. Results are averaged with respect to time, state
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Figure 2: State estimates (black) and uncertainty bounds (blue) for the Par algorithm with d = 5
adaptive thresholds. True states are in dashed red.

variables and tested systems. The employed set approximation techniques are the same as in
Section 7.1. The order of zonotopes has been limited to 4 because negligible benefits are obtained
by increasing such value. For similar reasons nc = 5 constraints have been used for constrained
zonotopes. According to the definition of order for constrained zonotopes, this corresponds to 15
generators for CZ(2, 5) and 25 generators for CZ(4, 5).

Table 4 refers to the case of adaptive thresholds, while those in Table 5 concern a scenario
in which thresholds are kept constant. In order to reduce the uncertainty in the latter scenario,
for each randomly generated system the thresholds have been chosen equally spaced in the exact
range of the unaccessible output signal z(k). Nevertheless, it can be seen that adaptive thresholds
outperform constant ones. On average, the size of state uncertainty is about three times smaller
when thresholds are tuned online with respect to when they are fixed. Notice that this happens
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Figure 3: State estimates (black) and uncertainty bounds (blue) for the Par algorithm with d = 5
fixed thresholds. True states are in dashed red.

almost irrespectively of both the number of thresholds and the adopted set approximation tech-
nique. The average relative times taken by one iteration of each algorithm with respect to that
taken by one iteration of Par (equal to 0.2ms), are reported in Table 6. It is confirmed that
constrained zonotopes provide the smallest uncertainty, but they involve a high computational
burden. For this study, zonotopes of order 2 seem to be the best compromise between quality of
the state estimates and required computational effort.
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Figure 4: Estimated uncertainty intervals for state x1, resulting from fixed (azure) and adaptive
(orange) thresholds. The true state value is in red.
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Figure 5: Evolution of the quantizer parameters with d = 5 adaptive thresholds: range center
τc(k) (upper); resolution ∆(k) (lower).
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Figure 6: Log-volumes of approximating regions for different number of thresholds d.

d Par Zon(2) Zon(4) Zon(6)
3 0.93 0.78 0.66 0.62
5 0.76 0.66 0.58 0.54
10 0.69 0.59 0.52 0.49
15 0.67 0.57 0.50 0.48
20 0.66 0.56 0.50 0.47

d CZ(2, 10) CZ(4, 10) CZ(6, 10)
3 0.56 0.5 0.46
5 0.5 0.43 0.41
10 0.41 0.35 0.32
15 0.38 0.32 0.30
20 0.36 0.31 0.29

Table 1: Average uncertainty associated to the state estimates for d adaptive thresholds.

d Par Zon(2) Zon(4) Zon(6)
3 5.68 7.55 6.41 6.37
5 4.54 4.96 5.01 4.94
10 2.87 3.08 3.01 2.93
15 2.27 2.35 2.21 2.15
20 1.93 1.92 1.84 1.77

d CZ(2, 10) CZ(4, 10) CZ(6, 10)
3 2.43 2.28 2.24
5 1.93 1.81 1.75
10 1.46 1.39 1.35
15 1.19 1.11 1.07
20 1.05 0.98 0.96

Table 2: Average uncertainty associated to the state estimates for d fixed thresholds.

Par Zon(2) Zon(4) Zon(6)
1 2.9 17.8 90.5

CZ(2, 10) CZ(4, 10) CZ(6, 10)
1879.9 3313.8 4858.5

Table 3: Average relative times for one iteration of each algorithm, with respect to one iteration
of Par.

8 Conclusions

A new approach to the selection of adaptive thresholds for state estimation with quantized mea-
surements has been proposed. The method relies on the set membership estimation paradigm:
thresholds are chosen in such a way to minimize the size of the feasible state set, and hence the
uncertainty affecting the state estimates. It has been shown that a computationally cheap solution
can be derived by exploiting set approximations based on parallelotopes or zonotopes. Numerical
results show that remarkable uncertainty reductions are achieved with respect of quantizers with
fixed thresholds. Future developments of this research may concern more accurate quantization
schemes for multi-output systems, taking into account the actual shape of the feasible measure-
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d Par Zon(2) Zon(4) CZ(2, 5) CZ(4, 5)
3 1.44 0.75 0.77 0.44 0.42
5 0.97 0.54 0.51 0.36 0.34
10 0.62 0.41 0.39 0.29 0.27
15 0.53 0.37 0.35 0.27 0.25
20 0.48 0.35 0.34 0.26 0.24

Table 4: Randomly generated systems: average uncertainty associated to the state estimates for
d adaptive thresholds.

d Par Zon(2) Zon(4) CZ(2, 5) CZ(4, 5)
3 5.52 1.98 1.36 1.09 0.87
5 3.08 1.62 1.22 0.97 0.81
10 2.01 1.26 1.03 0.82 0.71
15 1.56 1.07 0.93 0.72 0.65
20 1.35 0.97 0.87 0.67 0.61

Table 5: Randomly generated systems: average uncertainty associated to the state estimates for
d fixed thresholds.

Par Zon(2) Zon(4) CZ(2, 5) CZ(4, 5)
1 2.9 4.8 2042.4 3521.8

Table 6: Randomly generated systems: average relative times for one iteration of each approxi-
mation algorithm, with respect to one iteration of Par.

ment set generated by multiple output measurements. Another aspect deserving more insight is
the trade off between the state estimation performance and the complexity of the approximating
sets. In this respect, simple sets like ellipsoids or interval hulls may be considered. The asymptotic
boundedness of the state estimation error provided by recursive set approximation techniques is
a further topic that requires deeper investigations.

.1 Proof of Proposition 1

Let y ∈ S(p, c) and w ∈ R
m such that w ∈ B∞. Set x = Ay + γGw. Then

|p′A−1x− c| = |p′y − c+ γp′A−1Gw|

≤ |p′y − c|+ γ sup
w∈B∞

|p′A−1Gw| ≤ 1 + γ‖p′A−1G‖1.

Conversely, let x be such that

|p′A−1x− c| ≤ 1 + γ‖p′A−1G‖1. (57)

Set y = A−1(x−γGw̄), for some w̄. We need to show that it is always possible to choose w̄ ∈ B∞ so
that y ∈ S(p, c), and hence x = Ay+γGw̄ ∈ AS(p, c)⊕γGB∞. Consider the case p′A−1x− c ≥ 0.
Then choose w̄ such that

w̄i = sign{(p′A−1G)i}
max{p′A−1x− c− 1, 0}

γ‖p′A−1G‖1
.

for i = 1, . . . ,m, with (v)i denoting then i-th entry of vector v. From (57), w̄ ∈ B∞. Moreover,

p′y − c = p′A−1x− c− γp′A−1Gw̄
= p′A−1x− c−max{p′A−1x− c− 1, 0}
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which implies 0 ≤ p′y − c ≤ 1 and hence y ∈ S(p, c). The case in which p′A−1x − c ≤ 0 can be
treated analogously.

.2 Proof of Theorem 4

In order to prove the theorem, we need to introduce some lemmas.

Lemma 1 Let (39)-(40) hold. Then, for any value taken by y(k) one has

rad
(

CΞ(k|k − 1)
⋂

CM(k)
)

=
1

2
∆(k) + δv. (58)

Moreover, the interval CΞ(k|k− 1)
⋂

CM(k) does not change if the feasible measurement set (17)
is rewritten as

M(k) =

{

x ∈ R
n : |Cx− q(k)| ≤

1

2
∆(k) + δv

}

(59)

for some q(k) ∈ R.

Proof: From (38) one has CΞ(k|k − 1) = [l̄(k), r̄(k)]. By substituting (16) into (17), with τc and
∆ given by (39)-(40), one gets

M(k) = {x ∈ R
n :

Cx ≤ l̄(k) + ∆(k) + 2δv if y(k) = 0;

l̄(k) + i∆(k) < Cx ≤ l̄(k) + (i+ 1)∆(k) + 2δv

if y(k) = i, 1 ≤ i ≤ d− 1;

Cx > r̄(k)−∆(k)− 2δv if y(k) = d}.

(60)

Then, (58) follows by noticing that the interval CΞ(k|k− 1)
⋂

CM(k) has always the same length
∆(k)+2δv, for every possible value taken by y(k). It is also easy to check that CΞ(k|k−1)

⋂

CM(k)
does not change if in (60) we add the further constraints Cx ≥ l̄(k) when y(k) = 0 and Cx ≤ r̄(k)
for y(k) = d. Hence, M(k) in (60) can be rewritten as in (59). �

Consider the feasible measurement set M(k − h), for h = 1, 2, . . . . By using (11) iteratively,
one can propagate such a set h steps ahead, thus obtaining the set of states x(k) compatible with
the measurement y(k − h), which we denote by M(k|k − h) and is given by

M(k|k − h) = AhM(k − h)⊕ δw

h−1
∑

i=0

Ah−1−iGB∞. (61)

Lemma 2 Let (39)-(40) hold. Then, the h-step ahead propagated measurement set in (61) takes
on the form

M(k|k − h) = {x ∈ R
n :
∣

∣CA−hx− q(k − h)
∣

∣

≤
1

2
∆(k − h) + δv + δw

h−1
∑

i=0

‖CA−(i+1)G‖1

}

.
(62)

Proof: From Lemma 1, M(k − h) can be written as in (59), i.e. as the strip

M(k − h) = S

(

C
1
2∆(k − h) + δv

,
q(k − h)

1
2∆(k − h) + δv

)

.

Then, (62) follows by applying property (10) to (61). �

Lemma 3 Let the sequence x(k) ∈ R be such that

x(k) ≤ a1x(k − 1) + a2x(k − 2) + . . . anx(k − n) + b (63)
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with ai ≥ 0, i = 1, . . . , n and b ≥ 0. Let the polynomial zn −
∑n

i=1 aiz
n−i be Schur stable. Then,

for any initial values x(−h), h = 1, . . . , n, one has

lim sup
k→+∞

x(k) ≤
b

1−
∑n

i=1 ai
. (64)

Proof: Define the sequence x̄(k) such that

x̄(k) = a1x̄(k − 1) + a2x̄(k − 2) + . . . anx̄(k − n) + b (65)

with x̄(−h) ≥ x(−h), for h = 1, . . . , n. Let ψ(k) = x̄(k)− x(k). From (63) and (65) one has

ψ(k) ≥ a1ψ(k − 1) + a2ψ(k − 2) + . . . anψ(k − n).

Being ψ(−h) ≥ 0, for h = 1, . . . , n, and ai ≥ 0, i = 1, . . . , n, one has ψ(k) ≥ 0, ∀k ≥ 0 and hence
x(k) ≤ x̄(k), ∀k ≥ 0. From asymptotic stability of system (65), one gets

lim
k→+∞

x̄(k) =
b

1−
∑n

i=1 ai

from which the result follows. �

We are now ready to prove Theorem 4. The proof proceeds in three steps: (i) the true feasible
set Ξ(k|k) is bounded by a parallelotope generated by the last n feasible measurement sets, forward
propagated to time k; (ii) by exploiting Lemmas 1 and 2 and observability of the system, it is shown
that such a parallelotope is bounded at every time k; (iii) by using Lemma 3, an asymptotic upper
bound on the quantizer adaptive resolution ∆(k) is derived, which in turn guarantees asymptotic
boundedness of the outer parallelotope, and hence of Ξ(k|k).

The first step relies on the observation that at each time k one has

Ξ(k|k) ⊆

n−1
⋂

h=0

M(k|k − h) (66)

where M(k|k) = M(k) is given by (59). By noticing that both (59) and (62) are strips, the right
hand side in (66) is a parallelotope. Hence,

Ξ(k|k) ⊆ P(k|k) = P(P (k), c(k)), (67)

where the shape matrix P (k) is given by

P (k) = Λ(k)−1Ω (68)

in which Λ(k) = diag([λ(k|k) λ(k|k − 1) . . . λ(k|k − n+ 1)], with

λ(k|k − h) =
1

2
∆(k − h) + δv + δw

h−1
∑

i=0

‖CA−(i+1)G‖1 , (69)

for h = 0, 1, . . . , n− 1. From (43) one has

Ω =











C
CA−1

...
CA−n+1











=











CAn−1

CAn−2

...
C











A−n+1.

Hence, by nonsingularity of A and observability of system (11)-(12), Ω is nonsingular and therefore
the parallelotope P(k|k) is bounded for every finite k. Moreover, by (69), a sufficient condition for

21



P(k|k) to be asymptotically bounded is that the sequence ∆(k) defined by (40) is asymptotically
upper bounded. From (38), by using (19) and (67) one has

l̄(k) ≥ inf
x∈P(k−1|k−1),w∈B∞

CAx+ δwCGw , (70)

r̄(k) ≤ sup
x∈P(k−1|k−1),w∈B∞

CAx+ δwCGw . (71)

Then, from (40), by applying the property (7), one gets

∆(k) ≤
2

d+ 1

{

‖CAΩ−1Λ(k − 1)‖1 + δw‖CG‖1 − δv
}

. (72)

Now, letting α = CAΩ−1 and exploiting (69), one gets

∆(k) ≤

2

d+ 1

{

n−1
∑

h=0

|αh+1|λ(k − 1|k − 1− h) + δw‖CG‖1 − δv

}

=
2

d+ 1

{

n−1
∑

h=0

|αh+1|

[

1

2
∆(k − 1− h) + δv

+δw

h−1
∑

i=0

‖CA−(i+1)G‖1

]

+ δw‖CG‖1 − δv

}

=
1

d+ 1

n
∑

h=1

|αh|∆(k − h) + γ̄

(73)

with

γ̄ =
2

d+ 1

{

δv (‖α‖1 − 1) + δw

(

‖CG‖1 +

n
∑

h=1

|αh|βh

)}

and βh given by (49). If d is chosen so that condition (45) holds, by using Lemma 3 one obtains

lim sup
k→+∞

∆(k) ≤ ∆∞ =
γ̄

1− 1
d+1‖α‖1

which corresponds to (48). Then, from (68)-(69) one gets lim sup
k→+∞

Λ(k) ≤ D∞ given by (47).

Finally, (46) follows from (67) by using (6).
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