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Abstract

Nonconvex feasible parameter sets are encountered in sebenship identification whenever the
regressor vector is affected by bounded uncertainty. Tégsis for example when considering standard
output error models, or when the available measurementpraxéded by binary or quantized sensors.
In this paper, a unifying framework is proposed to deal wetiesal identification problems involving a
nonconvex feasible parameter set and a procedure is prpasapproximating the minimum volume
orthotope containing the feasible set. The procedure @sgldferent relaxations for autoregressive and
input parameters, based on the solution of a sequence @i lpregramming problems. The proposed
technique is shown to provide tight bounds in some specggdsavioreover, it is extended to cope with
bounds not aligned with the parameter coordinates, in daebtain polytopic approximations of the
feasible set. A number of numerical tests on randomly geeeénaodels and data sets demonstrates the

accuracy of the computed set approximations.

. INTRODUCTION

The introduction of the set membership paradigm for the attarization of uncertainty in
system identification dates back to several decades agordiog to this approach, uncertainties
affecting the measured data and the model are unknowndurd®ed. This framework is moti-

vated by the fact that in several contexts a statistical rgggmn may lead to unreliable results,
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either for the limited number of measurements availablegning the safe use of asymptotic
results or because the source of uncertainty doeslauit like a stochastic system, i.e., the
most natural characterization of noises and disturbanaede expressed as hard bounds in an
appropriate norm. In this context, tikeasible Parameter S€EPS), defined as the set of model
parameters consistent with the constraints representethéoynodel equations, the available
measurements and the noise bounds, represents the funtdasetrincluding all the admissible
solutions of the estimation problem. Hence, the structdirthis set retains a great importance
both for the computation of optimal or suboptimal point esties and for useful approximation
of the entire solution set. It is well known that if uncertgifounds on measurements are given
according to a max or an energy norm, the model is linear inpirameters and the regressor
variables are not corrupted by noise, the FPS is a convexquayor an ellipsoid. For this linear
regression model setup, a huge amount of literature isadailfor describing or approximating
the FPS according to different criteria depending on theifipecontext (see e.g., [1]-[6] and
references therein). However, in many realistic contexte oannot do without considering
uncertainty affecting regressors: this is the case for tassecal output error (OE) formulation
or for errors-in-variables (EiV) identification problem&|.[ Moreover, the pervasive diffusion of
digital sensors as binary or quantized devices in commtioita systems, industrial plants or
other technological devices has pushed the developmemt iofeatification research area where
measurements available on the system are binary or qudnt@é&bles (see e.g., [8]-[11] and
references therein). In this case, the nature of regressantigation and the characterization
of noise in terms of deterministic bounds, make the problemersble to the set membership
approach, although important developments have been msdenathe stochastic setting (see
e.g. [9], [12]-[14]) or even in a mixed stochastic/detenstic framework [15], [16]. When
considering ARX models in this quantized information seft{17], or OE and EiV models in
general [18], [19], one is faced with a problem with pertutbbegressors. In these cases, the
nice property of convexity of the FPS is generally lost, sat thimost all of the methods and
techniques proposed for the standard linear regressiomufation do not apply.

Indeed, bounding or approximating general nonconvex s formidable task and very
few results can be found in the literature on set membergsteptification. References [20],
[21] can be recognized as pioneering investigations on thetsre of the FPS for ARMAX

models, while in [22]-[24] tight bounds for EiV models areaiged for the simplified formulation
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in which regressors are not serially correlated. In [25] @& r@odel formulation is considered.
Approximation of the nonconvex FPS through ellipsoidal padallelotopic bounds is performed
by a recursive procedure consisting in processing one mgasmt at a time through a two-step
procedure. The main problem here is to bound at each tiiee parameter set obtained by
intersecting the FPS at the preceding tilme 1 with the admissible parameter set determined
by the measurement at timie Actually, this technique is a direct generalization of teeursive
approximation procedures adopted in the linear equatimr eontext (see e.g., [26], [27]). Still
in an OE context, in [28] a recursive procedure is proposectdonputing an FPS approxima-
tion, by decomposing the nonconvex FPS in the union of cosetg. The main limitation of
both approaches is that the approximation procedure doesxpdicitly account for regressor
sequential correlation, giving rise to quite conservatigsults whenever such correlation is
present. More recently, in [19], [29] an EiV formulation hlasen considered in which all
the regressor variables are subject to bounded noiseshiogeneral setting, a procedure is
provided to derive parameter uncertainty intervals, beynds on the nonconvex FPS, based on
a sequence of problem relaxations leading to linear mategualities and using the sparsity of
the resulting relaxed problems. Finally, it is worth mentig that nonconvex feasible sets are
usually encountered in set membership identification oflinear systems. Within this context,
the interested reader is referred to techniques based emahtinalysis [30], [31], or to a number
of methods tailored to the specific models at hand (see, [82)=[34]).

In this paper, a unifying set membership framework is givendealing with linear models
with perturbed regressors including ARX models with quaedi measurements and OE models
with or without measurement quantization. Although EiV ralsdcan be easily embedded in
this framework, for the sake of clarity of presentation thepgr will explicitly refer to the
ARX/OE context. Within this framework an exact descriptiminthe FPS set is provided. Since
the problem of approximating the FPS turns out in honconyatinozation problems, a batch
procedure for approximating the minimum volume orthotopetaining the FPS is constructed.
For computing bounds on each model parameter, the propdgedtlam requires the solution
of a sequence of linear programming problems obtained byitalbdel relaxation of the original
problem. The parameter bounding procedure converges tdight bounds in some special
cases, while in general it converges to guaranteed essmatee numerical results obtained

on a considerable number of experiments involving systemeeasonable orders generated
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randomly, show more than satisfactory reliability of thgalthm. This can be explained by two
features of the procedure. First, the relaxations exphat gtructure of the original nonconvex
optimization problem, e.g., by adopting different alglonis for approximating bounds on the
autoregressive and on the input moving average model p#&asneéecond, the introduction
of constraints accounting for parameter bounding througpefplanes not aligned with the
parameter coordinates, contributes to reduce the sizeeofdaisible set of the relaxed linear
programs, thus improving the approximation accuracy wabpect to the basic relaxed linear
programs.

The paper is organized as follows. Section Il introducestimt, the unifying framework for
dealing with OE and ARX models with quantized measurementisthe problem formulation.
Section Il illustrates the optimization procedure for gaeter bounds estimation, given as
an iterative sequence of linear programs. Section IV pewignproved linear programming
relaxations on the basis of non axis-aligned parameter dmuSection V illustrates some
structural features of the FPS for the special case of ARX ehatkentification with binary
measurements. Section VI provides several numerical ebenspowing the achievable accuracy
and limitations of the proposed procedure and the relatedpatational burden. Concluding

remarks are drawn in Section VIl together with a perspeativduture work.

[I. PROBLEM FORMULATION

Let RY denote theN-dimensional Euclidean space. A sequence of real numbers, t =

1,..., N}isidentified by a vector € RY. Letq~! be the backward shift operator, i.e7,'z(t) =

x(t —1).
Let us consider the linear time-invariant model
w(t) =Y ax(t —i)+ > bju(t —j+1)+d(t) (1)

i=1 Jj=1
where for eacht = 1,2, ..., d(t) is an unknown disturbance bounded by a known quantity, i.e.

|d(t)| < &, u(t) € R is a known input signal and(¢) belongs to a known interval

x(t) € [z(t), T(1)]. (2)
Parameters; andb, are unknown.

Letd = [ay,...,a,,b1,...,b,] € R*™™™ denote the parameter vector and &gt represent the

prior information available on such a vector. For a givenutaputput realization of lengtiv,
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the feasible parameter set (FPS) is defined as the set of gemanwhich is compatible with

the a priori information and the bounds (2), i.e.
F={0€06y: (1)-(2) hold fort =1,..., N}. 3)

Notice that, since the signal(t) is not exactly known, in general the FPS turns out to be a
nonconvex set. Hereafter, we denote By and F, the projection of the feasible s&t over the
subspacegay,...,a,} and{by,...,b,}, respectively.

It is possible to rewrite (1)-(2) as

A(q) 2(t) = B(q) u(t) + d(t) (4)
(t) € [z(1), Z(1)] (5)
where
AlQ)=1-aiqg ' —...—ang™ (6)
and
B(q)=by +byg '+ ...+ by ™ (7)

Let us state the following technical assumptions which élenforced throughout the paper.
Assumption 1:The prior information on the parametess and b, is such thata; € [q;,a],
b; € [b,.b;], whereg; > —o0 anda; < oo, i =1,...,n.

Assumption 2:Boundsz(t) andz(t) are finite.

Assumption 1 states that a priori finite bounds on parameteraust be available. Notice
that, conversely, a priori bounds on parametgrean be infinite. Assumption 2 requires a finite
bound on the signat(¢).

In the following, it is shown how a number of different modefs the set membership
framework, like OE models, ARX models with quantized measwnts, etc., can be cast in

the general formulation (4)-(5).

A. Output Error
Let us consider the output error model (see Fig. 1)
Alq)z(t) = Blq)ul(t) (8)

y(t) = x(t) +e(t) 9)
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Fig. 1. Structure of the OE model.

wherey(t) is the measured model output(t) denotes the input signal ardt) is an additive
noise on the system output. The disturbangg is assumed to be unknown but bounded, i.e.,
le(t)| < e, t=1,2,.... Notice that the internal signal(¢) is not accessible.

It is easy to show that model (8)-(9) can be rewritten w.l.ingthe form (4)-(5). Indeed, by
choosingd; = 0 (and hencel(t) = 0) for ¢t = 1,2,.. ., one has that (8) coincides with (4), while

from (9) and|e(t)| < &, one gets

x(t) € [y(t) — e, y(t) + &) = [z(t), T(t))- (10)

Notice that for OE models Assumption 2 is always satisfied.

B. Output Error with quantized measurements

Let us define the quantizer operator withthresholds as

;

P if zp < v < 2Zpyq

P—1 ifzpi<v<zp

Qv) = : (11)
1 if 21 <v <z
L 0 if zo<v <2z
wherez, ..., zp denote theP thresholds and, £ —oco, 2p,1 £ +o0.

Let us now consider an OE model whose outputs are measuredjbgrdized sensor wit

thresholds, as depicted in Fig. 2. Such a model can be wigisen

Alq)z(t) = Blq)u(t) (12)
v(t) = x(t) +e(t) (13)
y(t) = Qu(t)). (14)
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Fig. 2. Structure of the OE model with quantized measuresaent

Notice that only signals.(¢) andy(¢) are available at each tinmte By settingd; = 0 one has
that (12) coincides with (4). Let us now show that (13)-(1€8d to a constraint in the form of
(5). From (14), according to (11), one ha&) € [z, zy1)+1)-t By (13), z(t) = v(t) — e(?),
and hence

() € [z — &1, 21 +ed = [z(t), T(L).

Notice that, Assumption 2 requires that suitable finite galinust be available fof, and
zp41. this is not restrictive because finite bounds on the outpuhe system to be identified

are usually known.

C. ARX with quantized measurements
Let us consider an ARX model with quantized output
Alq)z(t) = Blq)u(t)+d(t) (15)
y(t) = Qxz(t)) (16)

wherez(t) is unknown andd(t)| < ¢, denotes an unknown-but-bounded noise. The structure of
this model is depicted in Fig. 3. The knowledge of the quastinutputy(¢) implies thatx(t)

must belong to the interval

2(t) € [z, 2ue1] = 2(t), T(t))-

Thus, (15)-(16) are equivalent to (4)-(5).
Remark 1:The formulation (4)-(5) can cope also with the errors-imiatales identification

setting, in which also the input signalt) is not known. In the bounded error framework, the

with a slight abuse of notation we will always denote feasists by closed intervals.
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Fig. 3. Structure of the ARX model with quantized measuresien

variablesu(t) will belong to an intervalu(t),u(t)] and thus the vectar(t) can be augmented
including the input variables in it, while the parametéjscan be treated in the same way as
the parameters;. The presence of output or input quantized measurementbeatealt with

as in the OE and ARX models shown above.

[1l. FEASIBLE SET APPROXIMATION PROCEDURE

In this section, an algorithm for the construction of an otex approximation of the feasible
set defined in (3) is presented.
From (1)-(2) and Assumptions 1 and 2, the feasible Beis defined by the following

constraints:

—0<z(t)=> ax(t—i)—> bju(t—j+1)<s, t=r+1,...,N
i=1

j=1

p

z(t) € [z(t), z(®)], t=1,...,N (17)

aie[g“EiL i=1,...,n

\bj S [Qj75j] ,7=1....m
wherer = max{n, m — 1}. Notice that the first constraint in (17) is nonlinear in treiables
a; andx(t — i), and so the resulting feasible sgtis in general nonconvex.

Let B* = {0: a; € [a}, @], b; € [b, b,
B* =, B®, whereB® represents any s&® = {¢: o, € [a*,a"], b; € B*,5"]} such

*

|} be the minimum orthotope containing the géti.e.,

=1

that B%%) O F. Clearly, the exact computation & is generally intractable, due to nonconvexity

June 3, 2013 DRAFT



of F. The aim is to find an orthotopg which is an outer approximation of the feasible set, i.e.
B 2 B*, by introducing a suitable convex relaxation of (17).
Thanks to Assumptions 1 and 2, which guarantee finite bounds andxz(t), let us introduce

a set of transformed variables, i = 1,...,n andn(t), t=1,...,N

& = ai—a , i=1,...,n (18)
@& = @-q , i=1,...n (19)
n(t) = x(t)—z(t) , t=1,...,N (20)
A(t) = T(t)—z(t) , t=1,...,N. (21)

Moreover, letF, = F, — a be the projection of the FPS over the subspace of the newblesia
Q.

Let us rewrite (17) as:
4 n

80 <n(t) Fa(t)— 3 (e (t—i) +auz(t—i)+an(t—i)+az(t—i))

i=1
m

—iju(t—j+1)§6t ,t=r+1,...,N
- 22)
nt)e0, 7)), t=1,...,N

Oéi€[07ai] ,1=1,...,n

\bj S [Z_7J-7Z_7j] ,1=1,...,m.

Different procedures for bounding parametersandb; are provided in the following.

A. Bounds on autoregressive parameters

It is worthwhile to recall that Assumptions 1 and 2 hold and astrumental to derive all the
results in the section. The proposed procedure firstly aorfstling bounds on the admissible
autoregressive parameters Let us focus on finding lower bounds @, i = 1,...,n. Similar

reasoning can be easily applied for upper bounds.
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Let us introduce the following LP problem:

(inf (o7
s.t.: n
—6i <n(O)+a(t) =Y (wilt—i) +aizlt—i) +an(t—i) +az(t—)

=Y bjult—j+1) <&, t=r+1,...,N
j=1

n(t) €0, A1), t=1,...,N (23)
a €0, i=1,...,n
bjE[Qj,Ej] ,7=1....m

0<wi(t)<am(t),i=1....,n,t=1,....N

0 <wi(t) <ami(t), i=1,....,n, t=1,...,N.
where the optimization variables argt), w;(t), a;, b;, fort =1,.... N, i =1,...,n, j =
1,...,m.

Theorem 1:For anyf € F, there existw;(t), i = 1,...,n,t =1,..., N such that problem
(23) is feasible. Moreover, if; is the solution of problem (23), one has= a, + &; < a;.

Proof: Let us define
wi(t) = Oém(t)- (24)

By introducing the new variables;(t) in (22), one has

(60 <n(t)+2(6)~ 3" (wilt— )+ asa(t—i) +agn(t—i)+az(t—i))

i=1

=Y bjut—j+1)<é , t=r+1,...,N
j=1
W) € 0,70, t=1,...,N (25)
OéiE[O,ai] ,1=1,...,n

bJE[QJ7EJ] ) j:17...,m

\wi(t) =ain(t),i=1,...,n,t=1,...,N.
By using the bounds on; andn(t), one has that the variables(¢) defined in (24) satisfy

the inequalities
0 < wi(t) < () (26)
0 < wi(t) < ain(t) (27)
foreachi =1,...,n,t =1,..., N. By substituting (26)-(27) for the last equality consttain

in (25), one obtains the same constraint set as in the LP &3)ce, the projection of such a
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constraint set over the subspafe,,...,«,} contains the sef, and the result immediately
follows. [ |

As stated in Theorem 1, due to the relaxationugfy), the solution of (23) provides in general
a lower bound onu} even in the case = 1. Actually, an algorithm able to return the value of
a; within the desired precision when= 1 can be constructed. Afterwards, the same algorithm
will be effectively exploited for the case > 1.

Theorem 1 provides necessary conditions for the feasiblita givend, i.e., if (23) is not
feasible for a give, thend ¢ F. This is the simple key information which will be exploited i
the proposed procedure. For ease of presentation, let usedég following function returning
a lower bound onu; according to (23) and Theorem 1.:

[feas, opt]=INF_A(i, a, @, b, b, u, §, x, T)
where feas can betrue or f al se depending on the feasibility of the problem, whigt

contains the lower bound (in case of feasible problems).

Algorithm 1 Lower bound on parameter;

: function [ feas, bound]=LBOUND_ON_A(i,€q,a,a,b,b,u,0,2,%)

g4 @« a step < (q; — q,)/2;
while (step > €,/2) do
if (gi + step > @;) then
step < a; — gi;
end if
q; < q, + step;
[feas, opt]=INF_A(7, ¢, G, b, b,u, 6, x,T)

if feas then

© o N 2 gk~ w DN R

=
e

step < step/2; q, < opt;

[En
=

ese

[EnY

N
5
T
=l

13: end if
14: end while
150 a; g,
16: bound <+ a;

17: end function

In Algorithm 1 a procedure written in pseudo-code is repbrdich returns a lower bound

a; o a}. The scalastep denotes the size of the interval on parametewhich will be analyzed
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at the current iteration. Throughout Algorithm d = a, 7 = @, except for the-th components
g, andg;, which denote the current estimated bounds on the lowerdayrni.e., g, € [¢,,7;] at
the current iteration. At line 8, the LP (23) is solved witte tbonstrainty; € [0,q, — ¢ ]. If it is
feasible, the lower bound is updated with the solution of the LP, while the valuestfp is
halved. If it is unfeasibleg. is set tog;. The algorithm terminates when the size of the interval
to be analyzed is smaller than a given tolerance

We can now state the following theorem.

Theorem 2:Algorithm 1 converges in a finite number of iterations.

Proof: In Algorithm 1, every time the LP solved at line 8 is feasibllee variablestep

is halved. Hence, being the stopping conditielap < ¢,/2, in order to prove that such a
condition is eventually satisfied, it is sufficient to showvattinfeasibility of the LP cannot occur
indefinitely. This directly follows by the fact that the lomoundg, is increased bytep every
time infeasibility occurs (see lines 12 and 7). [ ]

The next result concerns tightness of the bound returnedlggrithm 1 in the caser = 1.

Theorem 3:Let n = 1 and assume that the toleranggin Algorithm 1 is chosen in such
a way that the functionNF_A returns unfeasible (i.efeas=f al se), wheneverg, — q, < €
and [¢,,q,] N [a7,@;] = 0. Then, the lower bound, returned by Algorithm 1 is tight, i.e.,
ay —

a; < €.
Proof: Whenevera; — q, > €a in Algorithm 1 eitherg1 is increased bytep > ¢,, or the
variablestep is halved. This will eventually lead either to a valuegqfsatisfyingg’{ —q, < €,
or to step < ¢,. In the former case, sincg is not decreasing, Algorithm 1 will return an
such thata} — a, < aj — q, < € Otherwise, ifstep < ¢,, all the subsequent LPs with the
constrainta; € [g,, g, + step] will be unfeasible as long ag + step < aj. Therefore, feasibility
will finally occur only whenaj — g, < step < ¢,. Then,step is halved for the last time ang,
is set equal tay, thus satisfyingu} — a; < ¢,. [ ]
Notice that the assumption in Theorem 3 is not restrictige,aapproaches zero, the size of
the current uncertainty interval an vanishes, and asymptotically infeasibility can be checked
exactly by solving one LP.
Theorem 3 states that for the case- 1, a single run of Algorithm 1 provides tight bounds on
a;. Whenn > 1, Algorithm 1 must be repeated for ai], but in this case tightness of bounds are

not guaranteed due to the relaxation which involves vaemb)(¢) (and consequently parameters
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a;). To this purpose, it is convenient to iterate the previotgcedure with the updated bounds
until convergence. Again, in general, the computed boumdsnat tight, but they are tighter

than those obtained by running Algorithm 1 once for each

B. Bounds on input parameters

Once bounds om; are found, it remains to compute bounds on paraméter$o find such
bounds, let us solvém LP problems with the same constraints as in (23) and withabibge
function inf b; (sup b; for the upper bound oﬁj.), for j =1,...,m. In general, the obtained
bounds are not tight due to conservatism of the proposegatate of the FPS constraints, even
whenn = 1.

Algorithm 2 provides a procedure which permits to improve thounds orb; w.r.t. those
obtained by solving theém LPs mentioned above. Moreover, it will be proved that such a
procedure provides tight bounds on the input paramétershenn = 1. For ease of exposition,

we concentrate on computing lower boundsign

Algorithm 2 Lower bound on parametéy

1: function [bound]=LBOUND_ON_B(j, €a, €, @, @, b, b, u, 8, z, T)
22 qebgeb =7

3 while ((g; — ﬂj) > e/2) do

4 q < (q; +Qj)/2;

5: [feas, bound_a]=LBOUND_ON_A(1,€4,a,a,q,q,u,6,2,T)
6 if feas then

7 q; < qj

8 else

9 q. < qj
10: end if
11: end while
12: b+ gj;

13: bound <+ b;

14: end function

Algorithm 2 follows a logic similar to that of Algorithm 1. Vaablest andg; represent the
current estimated bounds on the lower bodndi.e., b; € [gj,qj] at the current iteration. The

main difference w.r.t. Algorithm 1 is that in Algorithm 2 adeiction procedure is performed on
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the interval[gj,qj], depending on the feasibility of the proceduBOUND_ON_A at line 5, which
ﬁj+gj

5 If LBOUND_ON_A

corresponds to Algorithm 1 with the constrainte g, g;], with ¢; =
returns feas =f al se, the current lower bound can be increased and one has tkalg;, 7,];
otherwise, the current interval is halved and the algorifinoteeds by testing the inter\@, 4]
at the subsequent iteration.

The next result states that the computed bounds on the irgvatr@ters are tight when only
one autoregressive parameter is involved,n.es 1.

Theorem 4:Algorithm 2 converges in a finite number of iterations. Moreg if n = 1, for
eachl < j < m, the lower bound; returned by Algorithm 2 is tight, i.e4; — b; < ¢,

Proof: The first statement follows from a reasoning similar to thahie proof of Theorem 2.

In order to prove the second statement, recall that whea 1, Theorem 3 guarantees that
the procedureLBOUND_ON_A returns tight bounds on the unique autoregressive paramete
irrespectively on the available bounds on the input paramét. This means that if there
is no feasible value ob; in the interval [gj,cjj], the set{ € F: b, € [gj,aj]} is empty and
henceLBOUND_ON_A must returnfeas =f al se when applied to such a set (for a sufficiently
small precisiorg,). Conversely, when there exists a feasibje= [gj,cjj], LBOUND_ON_A will
return feas =t r ue. Therefore, a standard bisection allows one to approxirtteebounds on

each parameter; within the desired precisios,. [ |

IV. POLYTOPIC FEASIBLE SET APPROXIMATION

In this section, an extension of the bounding procedurertegon Section Ill aiming at
reducing the bounds on parametessis described. Moreover, in addition to finding a tighter
box approximation of the feasible set, such an extensionatsm be effectively used to bound
the feasible set through a polytope.

Let us consider the problem of computing the smallest strifyogonal to a given direction,
containing the FPS. Given a direction vectoia relaxation of this problem within the subspace

of autoregressive parametersturns out to be the computation of

n

inf (sup) Z cioy (28)

i=1

over the same set of constraints as in (23).4.ahdg be the optimal values of such optimization
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problems. Then, the strip
g9 < Zciai <9 (29)
i=1

is guaranteed to contain the s&f.

Now, let us assume that one wants to bound the FPS by a polgtmpeosed ofS strips
orthogonal to the vector&, k = 1,...,.S. This can be done recursively in the following way. At
the k-th iteration, letg” andg” be constants such that

=1

Then, one has to solve the two LPs

4 n
inf (sup) Zc?ai
i=1

st N
—0: <n(t) Z wi(t—i)+ouz(t—i)+a,n(t—1i)+a,z(t—1))
i=1
=Y bjut—j+1)<é, t=r+1,...,N
j=1
n(t) €0, )], t=1,...,N (31)
aie[O,m],i:L...,n

bje[bpgj] yJ=1...,m
0<wi(t)<aumt),i=1,....n,t=1,....N

0<wi(t) <am(t),i=1,....,.n,t=1,....,N

QPSZCfociﬁﬁp,p:l ----- k—1.

\

Notice that in (31), the new constraints (30) are added dt stap. Afterk iterations, the feasible
set.F, on parameters; can be approximated by the polytope described by the ingigsal
gpgchazggpupzluak (32)
=1
Remark 2:Notice that a less conservative relaxation can be formdlayeadding to (31) the

constraints
=1

This approach leads in general to a tighter approximatingt@oe, but it is computationally
feasible only for data sets of limited size. In fact, the ¢oaists set grows bg(N+1) inequalities

at each iteration (instead @fas in (31)), thus rapidly leading to intractable problems.
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The polytopic approximation described in (32) can be remalsk improved by exploiting
Algorithm 1. In particular, one can apply the following peature:

Fork=1,...,5:

1) tighten the strip orthogonal td adopting a procedure analogous to Algorithm 1;

2) update the bounds e anda; by applying Algorithm 1, with the functiomNF_A optimizing

over the constraint set (31).

In order to compute polytopic approximations of the feasiilput parameters;, a similar
approach can be taken, following the guidelines provide8euotion IlI-B and the procedure of
Algorithm 2.

V. A SPECIAL CASE ARX MODELS WITH BINARY MEASUREMENTS

In this section, a special instance of the problem descnibegkction 11-C is considered, i.e.

ARX model identification with a binary sensor

0 if x(t) <=z
Q(x(t)) = _ (34)
1 if x(t) > 2
wherez € R denotes the unique sensor threshold.
In particular, it turns out that the FPS shows some pecutraictiral properties.
Theorem 5:For any output sequengec {0, 1}, any input sequence € R and any noise

levelo;,, t =1,..., N, the set
{eé@oiblzbgz"':bmzo; Z?zlaizl} (35)

is always contained in the feasible sEt

Proof: Let ¢ > 0 and set

£(t) = z4+e ify(t)=1 . (36)
z—e ify(t)=0
Then, for everyt, the second constraint in (17) turns out to be
z(t) € (z,+00) if y(t)=1
{ z(t) € (—o0, 2] ify(t)=0
which is satisfied by construction, while the first constrdoails down to
—5tSz:l:e—iai(zzl:e)—ibju(t—jJrl)§5t. (37)

i=1 j=1

June 3, 2013 DRAFT



17

By settingb; = - - - = b,, = 0 anda;+as+- - -+a, = 1, (37) becomes-6; < £e—) """  +a;e < ¢,
which is satisfied for any, > 0, provided that a sufficiently smadlis chosen. [ |
Remark 3: Theorem 5 shows that, in the case of binary sensors, the plgperdefined by the
equality constraints in (35) is always contained in the RiRflgss this is excluded by suitable a
priori information on the system dynamics (i.e., by chogshy so that the set (35) is empty).
Notice that the constraint’; , a; = 1 implies that the system transfer function has a pole in 1,
which corresponds to the fact that the system can “hold” findely the constant value even

with no input signal, thus letting an arbitrarily small n@igenerate any binary output sequence

Y.
Now, let us consider the special case of an ARX(1,1) madel = a,x(t — 1) + byu(t) + d(t),
|d(t)| < 4. The following result holds.
Corollary 1: Let u,y € RY be given andu = min; u(t), u = max; u(t). Define the set
I:{ee@ol 1—é§a1+%b1§1+é
z z z
5 T 5 (38)
1——§a1+—b1§1+—}.
z z z
Then,Z C F.
Proof: As in the proof of Theorem 5, choosé€t) as in (36). The first constraint in (17)
becomes

—i<zdte—ai(zte)—bu(t) <o

which is equivalent to

1—§§a1+@bl+g(e)§1+é (39)
z z z

whereg(e) = £a, < F <. Fore — 0, the inequalities (39) represent a strip in tlg, b,)-plane.
The intersections of such strips foe=1,..., N provides the sef in (38). [ |
Corollary 1 highlights that, for a given data set, there wagls a set of nhonzero measure
contained in the FPS (namely, a parallelogram), which de¢siepend on the output provided
by the binary sensor, but only on the extreme values takenhbyirtput signal. Notice that
for arbitrarily large input signals and arbitrarily smal) the setZ boils down to the point
{6 : b, =0, ay = 1}, in accordance with Theorem 5. The result in Corollary 1 carebsily

generalized to ARX models of arbitrary order.
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VI. EXAMPLES
Example 1:Let us consider the following ARX system of order=1, m =1
z(t) =ax(t—1)+bu(t) +d(t)

y(t) = Q(z(1))

where Q(-) denotes a binary sensor with thresheld= 1. Prior information on the system is

€ [=2; 2], |d(t)] < 0.06, |u(t)] < 1. The true parameter values ate= 0.78, b = 0.95. Let
N = 100 be the length of an identification experiment. The input aigmas been uniformly
generated in [-1;1]. By applying the proposed techniques basa € [0.6895;1.0600], b €
[—0.0641; 1.2700], which coincides with the minimum orthotope containing #RS as stated
by Theorems 3 and 4. In Figure 4, the true feasible set (oddaby gridding), the computed
bounds and the sét defined in Corollary 1 are reported.

The same system has been simulated by halving the noise ieveli(t)| < 0.03, the other
parameters being the same as in the preceding case. In Eigtive new feasible set along with
computed bounds and sétare shown. Notice that in this case the feasible set is natexiad.
Parameter bounds aree [0.7175;1.0300], b € [—0.0320; 1.1496]. Computation for both cases
takes about 13 CPU seconds.

12r

0.8

o 06f

04r

0.2

Fig. 4. Example 1. Feasible set (filled region), 3efstriped region) and computed outer box. The true paranvetetor is
marked by a cross.

2Computations are performed under Matlab by using IBM ILOG_ER for MATLAB toolbox [35] to solve the LPs, on an
Intel Core i7-3770 at 3.40 GHz.
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Fig. 5. Example 1. Feasible set (filled region), 3efstriped region) and computed outer box. The true paranvetetor is

marked by a cross.

L L L L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Sample Sample

Fig. 6. Example 2. Input signal(t) and corresponding output(t), ¢ = 1, ..., 100.

Example 2:Consider the following OE system of order= 2, m = 2
z(t) = —0.56 2(t—1)—0.23 2(t —2) +1.04 u(t) +0.73 u(t—1)
{ y(t) = x(t) +e(t) .

We assume to know that the system is stable and |t{at] < 0.1 for all ¢. Let us apply an
input sequence of lengthv = 100 uniformly distributed in [-5;5]. The output noise has been
generated with a uniform distribution in [-0.1;0.1]. Theput signalu(t) and outputy(t) are
reported in Fig. 6.

Let us apply the procedures described in Section 1l withlerémcee, = ¢, = 10~° to obtain

an orthotope containing the feasible set. The resultingeypmated orthotope and the minimum
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TABLE |

EXAMPLE 2. TIGHT AND COMPUTED BOUNDS FOR THE FEASIBLE SET

tight bounds computed bounds

min max min max

a; | -0.56282| -0.55781 | -0.56303| -0.55778
az | -0.23056 | -0.22665 | -0.23061 | -0.22663
b1 1.03755| 1.04203 | 1.03747| 1.04218
b | 0.72840| 0.73550| 0.72817| 0.73583

orthotope (computed by gridding) are reported in Table le fmojectionsF, and F, of the
feasible set along with the computed bounds are reportedgin7k

The total number of solved LPs is 906, for a computation tirhé seconds.

Example 3:To show the effectiveness of the proposed approach, thedsoahtained by
Algorithm 1 are compared with the tight bounds, for a numbkedifferent simulations. Two
sets of 1000 randomly generated stable Output Error modetsder n = m = 2 have been
simulated by applying input sequences ®f= 100 samples for two different signal-to-noise
ratios. The tolerance, used in Algorithm 1 has been set t6=°. The minimum outer box
including the feasible set has been computed by gridding.

Let a;, @;, i = 1,2, be the computed bounds, whi¢, @}, i = 1,2, denote the tight bounds.
For each simulation, the following indexes have been coetptd evaluate the performance of
the proposed method:

a; — ag

Ry =—— Ry =

—x% *
ay — o

[

ay—a;

So, R; > 1,1 = 1,2, is the ratio between the length of the computed intervakgrand the
length of the tight interval.

Let us define the signal-to-noise ratio as

geeey =l1,...,

In Table Il, the mean value and standard deviationRefR,; and of the computation time are
reported, forSNR = 20 and SNR = 100. In both cases, the computation times are below 4
seconds. Wher NR = 100, the bounds obtained by Algorithm 1 are very close to thettigh
bounds. ForSN R = 20, the computed bounds are larger; this is likely due to thé tfaat the
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Fig. 7. Example 2. Set%, (top) and.F, (bottom), true parameter value (cross), minimum outerataghe (solid) and computed

outer orthotope (dashed).

true feasible interval for each parameter is larger, lepdna more conservative relaxation in
problem (23).

Notice that this comparison cannot be done for parameétersince computing tight bounds
on b; turns out to be a time demanding taskor the same reason, performance evaluation for
systems of order greater than 2 is not feasible.

Example 4:In this example, a number of simulations for different modeders have been
performed to show the computation effort required to bourelgarameters; andb;, by using

the procedures described in Section Ill. Models have berdoraly generated and simulated

3Computing bounds on parametérsby a gridding technique in Example 2 takes several hours.
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TABLE Il

EXAMPLE 3. MEAN VALUE AND STANDARD DEVIATION OF R, Rz, AND COMPUTATION TIME.

SNR =20 SNR =100
mean std mean std
Ry 1.241 0.280 1.047 0.079
R> 1.303 0.354 1.060 0.092
Computation time (s))  3.491 2.518 1.896 1.003

TABLE 11l
EXAMPLE 4. NUMBERS OF SOLVEDLPS AND COMPUTATION TIME

n=m | #trials | mean # solved LP$ mean computation time
1 100 46.85 0.12 sec
2 100 281.62 1.81 sec
3 100 1441.84 22.65 sec
4 100 2539.38 63.05 sec
5 100 4851.57 203.26 sec
6 100 6795.85 594.33 sec

over a time horizonV = 100 with SN R = 100.

In Table Ill, the average number of solved LPs and the avecaggputation times over 100
trials are reported. It is worthwhile to notice that the pysed procedure allows for parameter
bound computation in reasonable times even for models WAtparameters.

Example 5:In this example, the use of a polytopic approximation for Hting the feasible
set is reported. It is also shown how this technique may leaa ierformance improvement for
orthotopic approximation.

Consider the OE model

z(t) = 0.342(t — 1)+0.46 2(t — 2)4+0.25 u(t) —0.53 u(t — 1)
{y(t) =2x(t) +e(t) .
Let us apply a random input sequence of length= 500 and let SNR = 20. By apply-
ing the procedure described in Section Il for finding a boyragimation (with a tolerance
10~°), one obtains the bounds on the autoregressive paramaters$0.33393;0.34409] , a, €
[0.45597; 0.46466]. The computation time is less than 1 minute.

Now, let us apply the polytopic approximation algorithm chésed in Section IV by choosing

200 randomly generated strips in the, as) plane. The computation time turns out to be about
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0.466

0.464|
0462

]

T o4sf

0.458

0456F - —— i m o m !

0.454 L L L L L L L
0.332 0.334 0.336 0.338 0.34 0.342 0.344 0.346 0.348

Fig. 8. Example 5. True feasible set (dark) and its polyt@pproximation (light) on parameters, a>. Boxes denote the
minimum outer orthotope (solid), final outer orthotope (&) and outer orthotope obtained by the procedure of Sedtio
(dashed-dotted).

— Ry
1351 ---RoH

Fig. 9. Example 5. IndexeR; and R» against the number of approximating strips.

15 minutes. In Fig. 8, the true feasible set and the polytapigroximation are depicted. The
same figure shows the minimum outer orthotope, the apprdilamabtained by applying the
procedure of Section Il and the orthotope obtained by bgthe polytopic approximation.
The numerical bounds obtained arge [0.33570;0.34333] , ay € [0.45739;0.46417].

By comparing indexe$; and R, defined in Example 3, one has that reduces from 1.382
to 1.039, while R, goes from 1.307 to 1.020. Fig. 9 show&s and R, as a function of the
processed strips. Notice that the knee of the plot is aboutiZaning that few iterations, i.e.

few approximating strips, are sufficient to provide a coasadble reduction of the initial bounds.
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VIlI. CONCLUSIONS

The approach proposed in the paper has proved to be effestise@mputing orthotopic and
polytopic approximations of nonconvex feasible paramsgts. The main reason lies in the
exploitation of the model structure in the constructionraf telaxations of the original nonconvex
problem, and specifically in treating the autoregressive iaput parameters in different ways.
The proposed techniques have been successfully testedaogeanumber of numerical examples
with randomly generated models and data sets.

The considered problem is far from being completely solvesifar as the polytopic approx-
imation is considered, a heuristic has been proposed teptrekie explosion of the number of
constraints. Nevertheless, alternative relaxations @addvised in order to explicitly trade-off
computational complexity and accuracy of the feasible ppt@imation. Another topic which
deserves further investigation is the construction of rgea procedures for computing online
approximations of the feasible set. Techniques based ovegaelaxations are usually batch in
nature and their use within recursive estimation schemdx ino means straightforward. On
the other hand, classic recursive techniques for the appetion of convex feasible sets can
be adapted to the nonconvex case, but they typically leackty sonservative approximations.
Recursive bounding procedures would also be useful to ¢aokther challenging estimation
problems, such as the simultaneous state and parametantsti for dynamic systems affected
by bounded perturbations. Another direction of future aesle concerns the extension of the
proposed techniques to specific families of nonlinear mgdslich as quantized NARX or

nonlinear output error models.
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