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Abstract

Nonconvex feasible parameter sets are encountered in set membership identification whenever the

regressor vector is affected by bounded uncertainty. This occurs for example when considering standard

output error models, or when the available measurements areprovided by binary or quantized sensors.

In this paper, a unifying framework is proposed to deal with several identification problems involving a

nonconvex feasible parameter set and a procedure is proposed for approximating the minimum volume

orthotope containing the feasible set. The procedure exploits different relaxations for autoregressive and

input parameters, based on the solution of a sequence of linear programming problems. The proposed

technique is shown to provide tight bounds in some special cases. Moreover, it is extended to cope with

bounds not aligned with the parameter coordinates, in orderto obtain polytopic approximations of the

feasible set. A number of numerical tests on randomly generated models and data sets demonstrates the

accuracy of the computed set approximations.

I. INTRODUCTION

The introduction of the set membership paradigm for the characterization of uncertainty in

system identification dates back to several decades ago. According to this approach, uncertainties

affecting the measured data and the model are unknown-but-bounded. This framework is moti-

vated by the fact that in several contexts a statistical description may lead to unreliable results,
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either for the limited number of measurements available preventing the safe use of asymptotic

results or because the source of uncertainty does notlook like a stochastic system, i.e., the

most natural characterization of noises and disturbances can be expressed as hard bounds in an

appropriate norm. In this context, theFeasible Parameter Set(FPS), defined as the set of model

parameters consistent with the constraints represented bythe model equations, the available

measurements and the noise bounds, represents the fundamental set including all the admissible

solutions of the estimation problem. Hence, the structure of this set retains a great importance

both for the computation of optimal or suboptimal point estimates and for useful approximation

of the entire solution set. It is well known that if uncertainty bounds on measurements are given

according to a max or an energy norm, the model is linear in theparameters and the regressor

variables are not corrupted by noise, the FPS is a convex polytope or an ellipsoid. For this linear

regression model setup, a huge amount of literature is available for describing or approximating

the FPS according to different criteria depending on the specific context (see e.g., [1]–[6] and

references therein). However, in many realistic contexts one cannot do without considering

uncertainty affecting regressors: this is the case for the classical output error (OE) formulation

or for errors-in-variables (EiV) identification problems [7]. Moreover, the pervasive diffusion of

digital sensors as binary or quantized devices in communications systems, industrial plants or

other technological devices has pushed the development of an identification research area where

measurements available on the system are binary or quantized variables (see e.g., [8]–[11] and

references therein). In this case, the nature of regressor quantization and the characterization

of noise in terms of deterministic bounds, make the problem amenable to the set membership

approach, although important developments have been made also in the stochastic setting (see

e.g. [9], [12]–[14]) or even in a mixed stochastic/deterministic framework [15], [16]. When

considering ARX models in this quantized information setting [17], or OE and EiV models in

general [18], [19], one is faced with a problem with perturbed regressors. In these cases, the

nice property of convexity of the FPS is generally lost, so that almost all of the methods and

techniques proposed for the standard linear regression formulation do not apply.

Indeed, bounding or approximating general nonconvex sets is a formidable task and very

few results can be found in the literature on set membership identification. References [20],

[21] can be recognized as pioneering investigations on the structure of the FPS for ARMAX

models, while in [22]–[24] tight bounds for EiV models are derived for the simplified formulation
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in which regressors are not serially correlated. In [25] an OE model formulation is considered.

Approximation of the nonconvex FPS through ellipsoidal andparallelotopic bounds is performed

by a recursive procedure consisting in processing one measurement at a time through a two-step

procedure. The main problem here is to bound at each timet the parameter set obtained by

intersecting the FPS at the preceding timet − 1 with the admissible parameter set determined

by the measurement at timet. Actually, this technique is a direct generalization of therecursive

approximation procedures adopted in the linear equation error context (see e.g., [26], [27]). Still

in an OE context, in [28] a recursive procedure is proposed for computing an FPS approxima-

tion, by decomposing the nonconvex FPS in the union of convexsets. The main limitation of

both approaches is that the approximation procedure does not explicitly account for regressor

sequential correlation, giving rise to quite conservativeresults whenever such correlation is

present. More recently, in [19], [29] an EiV formulation hasbeen considered in which all

the regressor variables are subject to bounded noises. For this general setting, a procedure is

provided to derive parameter uncertainty intervals, i.e.,bounds on the nonconvex FPS, based on

a sequence of problem relaxations leading to linear matrix inequalities and using the sparsity of

the resulting relaxed problems. Finally, it is worth mentioning that nonconvex feasible sets are

usually encountered in set membership identification of nonlinear systems. Within this context,

the interested reader is referred to techniques based on interval analysis [30], [31], or to a number

of methods tailored to the specific models at hand (see, e.g.,[32]–[34]).

In this paper, a unifying set membership framework is given for dealing with linear models

with perturbed regressors including ARX models with quantized measurements and OE models

with or without measurement quantization. Although EiV models can be easily embedded in

this framework, for the sake of clarity of presentation the paper will explicitly refer to the

ARX/OE context. Within this framework an exact descriptionof the FPS set is provided. Since

the problem of approximating the FPS turns out in nonconvex optimization problems, a batch

procedure for approximating the minimum volume orthotope containing the FPS is constructed.

For computing bounds on each model parameter, the proposed algorithm requires the solution

of a sequence of linear programming problems obtained by a suitable relaxation of the original

problem. The parameter bounding procedure converges to thetight bounds in some special

cases, while in general it converges to guaranteed estimates. The numerical results obtained

on a considerable number of experiments involving systems of reasonable orders generated
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randomly, show more than satisfactory reliability of the algorithm. This can be explained by two

features of the procedure. First, the relaxations exploit the structure of the original nonconvex

optimization problem, e.g., by adopting different algorithms for approximating bounds on the

autoregressive and on the input moving average model parameters. Second, the introduction

of constraints accounting for parameter bounding through hyperplanes not aligned with the

parameter coordinates, contributes to reduce the size of the feasible set of the relaxed linear

programs, thus improving the approximation accuracy with respect to the basic relaxed linear

programs.

The paper is organized as follows. Section II introduces notation, the unifying framework for

dealing with OE and ARX models with quantized measurements and the problem formulation.

Section III illustrates the optimization procedure for parameter bounds estimation, given as

an iterative sequence of linear programs. Section IV provides improved linear programming

relaxations on the basis of non axis-aligned parameter bounds. Section V illustrates some

structural features of the FPS for the special case of ARX model identification with binary

measurements. Section VI provides several numerical examples showing the achievable accuracy

and limitations of the proposed procedure and the related computational burden. Concluding

remarks are drawn in Section VII together with a perspectiveon future work.

II. PROBLEM FORMULATION

Let RN denote theN-dimensional Euclidean space. A sequence of real numbers{x(t), t =

1, . . . , N} is identified by a vectorx ∈ R
N . Let q−1 be the backward shift operator, i.e.,q−1x(t) =

x(t− 1).

Let us consider the linear time-invariant model

x(t) =
n∑

i=1

ai x(t− i) +
m∑

j=1

bj u(t− j + 1) + d(t) (1)

where for eacht = 1, 2, . . ., d(t) is an unknown disturbance bounded by a known quantity, i.e.

|d(t)| ≤ δt, u(t) ∈ R is a known input signal andx(t) belongs to a known interval

x(t) ∈ [x(t), x(t)]. (2)

Parametersai and bj are unknown.

Let θ = [a1, . . . , an, b1, . . . , bm]
′ ∈ R

n+m denote the parameter vector and letΘ0 represent the

prior information available on such a vector. For a given input-output realization of lengthN ,
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the feasible parameter set (FPS) is defined as the set of parameters which is compatible with

the a priori information and the bounds (2), i.e.

F = {θ ∈ Θ0 : (1)-(2) hold for t = 1, . . . , N}. (3)

Notice that, since the signalx(t) is not exactly known, in general the FPS turns out to be a

nonconvex set. Hereafter, we denote byFa andFb the projection of the feasible setF over the

subspaces{a1, . . . , an} and{b1, . . . , bm}, respectively.

It is possible to rewrite (1)-(2) as

A(q) x(t) = B(q) u(t) + d(t) (4)

x(t) ∈ [x(t), x(t)] (5)

where

A(q) = 1− a1 q
−1 − . . .− an q

−n (6)

and

B(q) = b1 + b2 q
−1 + . . .+ bm q−m+1. (7)

Let us state the following technical assumptions which willbe enforced throughout the paper.

Assumption 1:The prior information on the parametersai and bj is such thatai ∈ [ai, ai],

bj ∈ [bj , bj ], whereai > −∞ andai < ∞, i = 1, . . . , n.

Assumption 2:Boundsx(t) andx(t) are finite.

Assumption 1 states that a priori finite bounds on parametersai must be available. Notice

that, conversely, a priori bounds on parametersbj can be infinite. Assumption 2 requires a finite

bound on the signalx(t).

In the following, it is shown how a number of different modelsin the set membership

framework, like OE models, ARX models with quantized measurements, etc., can be cast in

the general formulation (4)-(5).

A. Output Error

Let us consider the output error model (see Fig. 1)

A(q) x(t) = B(q) u(t) (8)

y(t) = x(t) + e(t) (9)
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B(q)
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Fig. 1. Structure of the OE model.

wherey(t) is the measured model output,u(t) denotes the input signal ande(t) is an additive

noise on the system output. The disturbancee(t) is assumed to be unknown but bounded, i.e.,

|e(t)| ≤ εt, t = 1, 2, . . .. Notice that the internal signalx(t) is not accessible.

It is easy to show that model (8)-(9) can be rewritten w.l.o.g. in the form (4)-(5). Indeed, by

choosingδt = 0 (and henced(t) = 0) for t = 1, 2, . . ., one has that (8) coincides with (4), while

from (9) and|e(t)| ≤ εt one gets

x(t) ∈ [y(t)− εt, y(t) + εt] , [x(t), x(t)]. (10)

Notice that for OE models Assumption 2 is always satisfied.

B. Output Error with quantized measurements

Let us define the quantizer operator withP thresholds as

Q(v) =





P if zP < v ≤ zP+1

P − 1 if zP−1 < v ≤ zP
...

1 if z1 < v ≤ z2

0 if z0 < v ≤ z1

(11)

wherez1, . . . , zP denote theP thresholds andz0 , −∞, zP+1 , +∞.

Let us now consider an OE model whose outputs are measured by aquantized sensor withP

thresholds, as depicted in Fig. 2. Such a model can be writtenas

A(q) x(t) = B(q) u(t) (12)

v(t) = x(t) + e(t) (13)

y(t) = Q(v(t)). (14)
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Fig. 2. Structure of the OE model with quantized measurements.

Notice that only signalsu(t) andy(t) are available at each timet. By settingδt = 0 one has

that (12) coincides with (4). Let us now show that (13)-(14) lead to a constraint in the form of

(5). From (14), according to (11), one hasv(t) ∈ [zy(t), zy(t)+1].1 By (13), x(t) = v(t) − e(t),

and hence

x(t) ∈ [zy(t) − εt, zy(t)+1 + εt] , [x(t), x(t)].

Notice that, Assumption 2 requires that suitable finite values must be available forz0 and

zP+1: this is not restrictive because finite bounds on the output of the system to be identified

are usually known.

C. ARX with quantized measurements

Let us consider an ARX model with quantized output

A(q) x(t) = B(q) u(t) + d(t) (15)

y(t) = Q(x(t)) (16)

wherex(t) is unknown and|d(t)| ≤ δt denotes an unknown-but-bounded noise. The structure of

this model is depicted in Fig. 3. The knowledge of the quantized outputy(t) implies thatx(t)

must belong to the interval

x(t) ∈ [zy(t), zy(t)+1] , [x(t), x(t)].

Thus, (15)-(16) are equivalent to (4)-(5).

Remark 1:The formulation (4)-(5) can cope also with the errors-in-variables identification

setting, in which also the input signalu(t) is not known. In the bounded error framework, the

1With a slight abuse of notation we will always denote feasible sets by closed intervals.
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Fig. 3. Structure of the ARX model with quantized measurements.

variablesu(t) will belong to an interval[u(t), u(t)] and thus the vectorx(t) can be augmented

including the input variables in it, while the parametersbj can be treated in the same way as

the parametersai. The presence of output or input quantized measurements canbe dealt with

as in the OE and ARX models shown above.

III. FEASIBLE SET APPROXIMATION PROCEDURE

In this section, an algorithm for the construction of an outer box approximation of the feasible

set defined in (3) is presented.

From (1)-(2) and Assumptions 1 and 2, the feasible setF is defined by the following

constraints:






−δt≤x(t)−

n∑

i=1

ai x(t− i)−

m∑

j=1

bj u(t− j + 1)≤δt , t=r+1, . . . , N

x(t) ∈ [x(t), x(t)] , t = 1, . . . , N

ai ∈ [ai, ai] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m

(17)

wherer = max{n,m− 1}. Notice that the first constraint in (17) is nonlinear in the variables

ai andx(t− i), and so the resulting feasible setF is in general nonconvex.

Let B∗ = {θ : ai ∈ [a∗i , a
∗

i ], bj ∈ [b∗j , b
∗

j ]} be the minimum orthotope containing the setF , i.e.,

B∗ =
⋂

k B
(k), whereB(k) represents any setB(k) = {θ : ai ∈ [a

(k)
i , a

(k)
i ], bj ∈ [b

(k)
j , b

(k)

j ]} such

thatB(k) ⊇ F . Clearly, the exact computation ofB∗ is generally intractable, due to nonconvexity
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of F . The aim is to find an orthotopeB which is an outer approximation of the feasible set, i.e.

B ⊇ B∗, by introducing a suitable convex relaxation of (17).

Thanks to Assumptions 1 and 2, which guarantee finite bounds on ai andx(t), let us introduce

a set of transformed variablesαi, i = 1, . . . , n andη(t), t = 1, . . . , N

αi = ai − ai , i = 1, . . . , n (18)

αi = ai − ai , i = 1, . . . , n (19)

η(t) = x(t)− x(t) , t = 1, . . . , N (20)

η(t) = x(t)− x(t) , t = 1, . . . , N. (21)

Moreover, letFα = Fa − a be the projection of the FPS over the subspace of the new variables

αi.

Let us rewrite (17) as:




−δt≤η(t)+x(t)−

n∑

i=1

(αiη(t−i)+αix(t−i)+aiη(t−i)+aix(t−i))

−

m∑

j=1

bj u(t− j + 1) ≤ δt , t = r + 1, . . . , N

η(t) ∈ [0, η(t)] , t = 1, . . . , N

αi ∈ [0, αi] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m.

(22)

Different procedures for bounding parametersai andbj are provided in the following.

A. Bounds on autoregressive parameters

It is worthwhile to recall that Assumptions 1 and 2 hold and are instrumental to derive all the

results in the section. The proposed procedure firstly aims to finding bounds on the admissible

autoregressive parametersai. Let us focus on finding lower bounds onai, i = 1, . . . , n. Similar

reasoning can be easily applied for upper bounds.
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Let us introduce the following LP problem:




inf αi

s.t.:

−δt≤η(t)+x(t)−

n∑

i=1

(wi(t−i)+αix(t−i)+aiη(t−i)+aix(t−i))

−

m∑

j=1

bj u(t− j + 1) ≤ δt , t = r + 1, . . . , N

η(t) ∈ [0, η(t)] , t = 1, . . . , N

αi ∈ [0, αi] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m

0 ≤ wi(t) ≤ αiη(t) , i = 1, . . . , n , t = 1, . . . , N

0 ≤ wi(t) ≤ αiη(t) , i = 1, . . . , n , t = 1, . . . , N.

(23)

where the optimization variables areη(t), wi(t), αi, bj , for t = 1, . . . , N , i = 1, . . . , n, j =

1, . . . , m.

Theorem 1:For anyθ ∈ F , there existwi(t), i = 1, . . . , n, t = 1, . . . , N such that problem

(23) is feasible. Moreover, if̂αi is the solution of problem (23), one hasâi = ai + α̂i ≤ a∗i .

Proof: Let us define

wi(t) = αiη(t). (24)

By introducing the new variableswi(t) in (22), one has





−δt≤η(t)+x(t)−

n∑

i=1

(wi(t−i)+αix(t−i)+aiη(t−i)+aix(t−i))

−

m∑

j=1

bj u(t− j + 1) ≤ δt , t = r + 1, . . . , N

η(t) ∈ [0, η(t)] , t = 1, . . . , N

αi ∈ [0, αi] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m

wi(t) = αiη(t) , i = 1, . . . , n , t = 1, . . . , N.

(25)

By using the bounds onαi and η(t), one has that the variableswi(t) defined in (24) satisfy

the inequalities

0 ≤ wi(t) ≤ αiη(t) (26)

0 ≤ wi(t) ≤ αiη(t) (27)

for eachi = 1, . . . , n, t = 1, . . . , N . By substituting (26)-(27) for the last equality constraints

in (25), one obtains the same constraint set as in the LP (23).Hence, the projection of such a
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constraint set over the subspace{α1, . . . , αn} contains the setFα and the result immediately

follows.

As stated in Theorem 1, due to the relaxation onwi(t), the solution of (23) provides in general

a lower bound ona∗i even in the casen = 1. Actually, an algorithm able to return the value of

a∗i within the desired precision whenn = 1 can be constructed. Afterwards, the same algorithm

will be effectively exploited for the casen > 1.

Theorem 1 provides necessary conditions for the feasibility of a givenθ, i.e., if (23) is not

feasible for a givenθ, thenθ /∈ F . This is the simple key information which will be exploited in

the proposed procedure. For ease of presentation, let us define the following function returning

a lower bound onai according to (23) and Theorem 1:

[feas, opt]=INF A(i, a, a, b, b, u, δ, x, x)

where feas can betrue or false depending on the feasibility of the problem, whileopt

contains the lower bound (in case of feasible problems).

Algorithm 1 Lower bound on parameterai
1: function [feas, bound]=LBOUND ON A(i,ǫa,a,a,b,b,u,δ,x,x)

2: q ← a; q ← a; step← (qi − q
i
)/2;

3: while (step ≥ ǫa/2) do

4: if (q
i
+ step > ai) then

5: step← ai − q
i
;

6: end if

7: qi ← q
i
+ step;

8: [feas, opt]=INF A(i, q, q, b, b, u, δ, x, x)

9: if feas then

10: step← step/2; q
i
← opt;

11: else

12: q
i
← qi;

13: end if

14: end while

15: ai ← q
i
;

16: bound← a;

17: end function

In Algorithm 1 a procedure written in pseudo-code is reported which returns a lower bound

ai to a∗i . The scalarstep denotes the size of the interval on parameterai which will be analyzed
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at the current iteration. Throughout Algorithm 1,q = a, q = a, except for thei-th components

q
i

andqi, which denote the current estimated bounds on the lower bound ai, i.e., ai ∈ [q
i
, qi] at

the current iteration. At line 8, the LP (23) is solved with the constraintαi ∈ [0, qi − q
i
]. If it is

feasible, the lower boundq
i

is updated with the solution of the LP, while the value ofstep is

halved. If it is unfeasible,q
i

is set toqi. The algorithm terminates when the size of the interval

to be analyzed is smaller than a given toleranceǫa.

We can now state the following theorem.

Theorem 2:Algorithm 1 converges in a finite number of iterations.

Proof: In Algorithm 1, every time the LP solved at line 8 is feasible,the variablestep

is halved. Hence, being the stopping conditionstep < ǫa/2, in order to prove that such a

condition is eventually satisfied, it is sufficient to show that infeasibility of the LP cannot occur

indefinitely. This directly follows by the fact that the lower boundq
i

is increased bystep every

time infeasibility occurs (see lines 12 and 7).

The next result concerns tightness of the bound returned by Algorithm 1 in the casen = 1.

Theorem 3:Let n = 1 and assume that the toleranceǫa in Algorithm 1 is chosen in such

a way that the functionINF A returns unfeasible (i.e.,feas=false), wheneverq1 − q
1
< ǫa

and [q
1
, q1] ∩ [a∗1, a

∗

1] = ∅. Then, the lower bounda1 returned by Algorithm 1 is tight, i.e.,

a∗1 − a1 ≤ ǫa.

Proof: Whenevera∗1 − q
1
> ǫa, in Algorithm 1 eitherq

1
is increased bystep > ǫa, or the

variablestep is halved. This will eventually lead either to a value ofq
1

satisfyinga∗1 − q
1
≤ ǫa,

or to step ≤ ǫa. In the former case, sinceq
1

is not decreasing, Algorithm 1 will return ana1

such thata∗1 − a1 ≤ a∗1 − q
1
≤ ǫa. Otherwise, ifstep ≤ ǫa, all the subsequent LPs with the

constrainta1 ∈ [q
1
, q

1
+ step] will be unfeasible as long asq

1
+ step < a∗1. Therefore, feasibility

will finally occur only whena∗1 − q
1
≤ step ≤ ǫa. Then,step is halved for the last time anda1

is set equal toq
1
, thus satisfyinga∗1 − a1 ≤ ǫa.

Notice that the assumption in Theorem 3 is not restrictive: as ǫa approaches zero, the size of

the current uncertainty interval ona1 vanishes, and asymptotically infeasibility can be checked

exactly by solving one LP.

Theorem 3 states that for the casen = 1, a single run of Algorithm 1 provides tight bounds on

a1. Whenn > 1, Algorithm 1 must be repeated for allai, but in this case tightness of bounds are

not guaranteed due to the relaxation which involves variableswi(t) (and consequently parameters
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ai). To this purpose, it is convenient to iterate the previous procedure with the updated bounds

until convergence. Again, in general, the computed bounds are not tight, but they are tighter

than those obtained by running Algorithm 1 once for eachai.

B. Bounds on input parameters

Once bounds onai are found, it remains to compute bounds on parametersbj . To find such

bounds, let us solve2m LP problems with the same constraints as in (23) and with objective

function inf bj ( sup bj for the upper bound onb
∗

j ), for j = 1, . . . , m. In general, the obtained

bounds are not tight due to conservatism of the proposed relaxation of the FPS constraints, even

whenn = 1.

Algorithm 2 provides a procedure which permits to improve the bounds onbj w.r.t. those

obtained by solving the2m LPs mentioned above. Moreover, it will be proved that such a

procedure provides tight bounds on the input parametersbj whenn = 1. For ease of exposition,

we concentrate on computing lower bounds onbj .

Algorithm 2 Lower bound on parameterbj
1: function [bound]=LBOUND ON B(j, ǫa, ǫb, a, a, b, b, u, δ, x, x)

2: q ← b; q ← b; q̃ = q;

3: while ((qj − q
j
) ≥ ǫb/2) do

4: q̃j ← (qj + q
j
)/2;

5: [feas, bound a]=LBOUND ON A(1,ǫa,a,a,q,q̃,u,δ,x,x)

6: if feas then

7: qj ← q̃j ;

8: else

9: q
j
← q̃j ;

10: end if

11: end while

12: bj ← q
j
;

13: bound← b;

14: end function

Algorithm 2 follows a logic similar to that of Algorithm 1. Variablesq
j

andqj represent the

current estimated bounds on the lower boundbj , i.e., bj ∈ [q
j
, qj ] at the current iteration. The

main difference w.r.t. Algorithm 1 is that in Algorithm 2 a bisection procedure is performed on
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the interval[q
j
, qj ], depending on the feasibility of the procedureLBOUND ON A at line 5, which

corresponds to Algorithm 1 with the constraintbj ∈ [q
j
, q̃j], with q̃j =

qj+q
j

2
. If LBOUND ON A

returnsfeas =false, the current lower bound can be increased and one has thatbj ∈ [q̃j , qj];

otherwise, the current interval is halved and the algorithmproceeds by testing the interval[q
j
, q̃j ]

at the subsequent iteration.

The next result states that the computed bounds on the input parameters are tight when only

one autoregressive parameter is involved, i.e.n = 1.

Theorem 4:Algorithm 2 converges in a finite number of iterations. Moreover, if n = 1, for

each1 ≤ j ≤ m, the lower boundbj returned by Algorithm 2 is tight, i.e.,b∗j − bj ≤ ǫb.

Proof: The first statement follows from a reasoning similar to that in the proof of Theorem 2.

In order to prove the second statement, recall that whenn = 1, Theorem 3 guarantees that

the procedureLBOUND ON A returns tight bounds on the unique autoregressive parameter,

irrespectively on the available bounds on the input parameters bj . This means that if there

is no feasible value ofbj in the interval[q
j
, q̃j], the set{θ ∈ F : bj ∈ [q

j
, q̃j ]} is empty and

henceLBOUND ON A must returnfeas =false when applied to such a set (for a sufficiently

small precisionǫa). Conversely, when there exists a feasiblebj ∈ [q
j
, q̃j], LBOUND ON A will

return feas =true. Therefore, a standard bisection allows one to approximatethe bounds on

each parameterbj within the desired precisionǫb.

IV. POLYTOPIC FEASIBLE SET APPROXIMATION

In this section, an extension of the bounding procedure reported in Section III aiming at

reducing the bounds on parametersai is described. Moreover, in addition to finding a tighter

box approximation of the feasible set, such an extension canalso be effectively used to bound

the feasible set through a polytope.

Let us consider the problem of computing the smallest strip,orthogonal to a given direction,

containing the FPS. Given a direction vectorc, a relaxation of this problem within the subspace

of autoregressive parametersai turns out to be the computation of

inf (sup)
n∑

i=1

ciαi (28)

over the same set of constraints as in (23). Letg andg be the optimal values of such optimization
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problems. Then, the strip

g ≤
n∑

i=1

ciαi ≤ g (29)

is guaranteed to contain the setFα.

Now, let us assume that one wants to bound the FPS by a polytopecomposed ofS strips

orthogonal to the vectorsck, k = 1, ..., S. This can be done recursively in the following way. At

the k-th iteration, letgp andgp be constants such that

gp ≤
n∑

i=1

cpiαi ≤ gp , p = 1, . . . , k − 1. (30)

Then, one has to solve the two LPs




inf (sup)
n∑

i=1

cki αi

s.t.:

−δt≤η(t)+x(t)−
n∑

i=1

(wi(t−i)+αix(t−i)+aiη(t−i)+aix(t−i))

−

m∑

j=1

bj u(t− j + 1) ≤ δt , t = r + 1, . . . , N

η(t) ∈ [0, η(t)] , t = 1, . . . , N

αi ∈ [0, αi] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m

0 ≤ wi(t) ≤ αiη(t) , i = 1, . . . , n , t = 1, . . . , N

0 ≤ wi(t) ≤ αiη(t) , i = 1, . . . , n , t = 1, . . . , N

gp ≤

n∑

i=1

cpi αi ≤ gp , p = 1, . . . , k − 1.

(31)

Notice that in (31), the new constraints (30) are added at each step. Afterk iterations, the feasible

setFα on parametersαi can be approximated by the polytope described by the inequalities

gp ≤
n∑

i=1

cpiαi ≤ gp , p = 1, . . . , k. (32)

Remark 2:Notice that a less conservative relaxation can be formulated by adding to (31) the

constraints

gpη(t) ≤
n∑

i=1

c
p

iwi(t) ≤ gpη(t) , p = 1, . . . , k − 1, t = 1, . . . , N. (33)

This approach leads in general to a tighter approximating polytope, but it is computationally

feasible only for data sets of limited size. In fact, the constraints set grows by2(N+1) inequalities

at each iteration (instead of2 as in (31)), thus rapidly leading to intractable problems.
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The polytopic approximation described in (32) can be remarkably improved by exploiting

Algorithm 1. In particular, one can apply the following procedure:

For k = 1, . . . , S :

1) tighten the strip orthogonal tocki adopting a procedure analogous to Algorithm 1;

2) update the bounds onai andai by applying Algorithm 1, with the functionINF A optimizing

over the constraint set (31).

In order to compute polytopic approximations of the feasible input parametersbj , a similar

approach can be taken, following the guidelines provided inSection III-B and the procedure of

Algorithm 2.

V. A SPECIAL CASE: ARX MODELS WITH BINARY MEASUREMENTS

In this section, a special instance of the problem describedin Section II-C is considered, i.e.

ARX model identification with a binary sensor

Q(x(t)) =





0 if x(t) ≤ z

1 if x(t) > z
(34)

wherez ∈ R denotes the unique sensor threshold.

In particular, it turns out that the FPS shows some peculiar structural properties.

Theorem 5:For any output sequencey ∈ {0, 1}N , any input sequenceu ∈ R
N and any noise

level δt, t = 1, . . . , N , the set

{θ ∈ Θ0 : b1 = b2 = · · · = bm = 0;
∑n

i=1 ai = 1} (35)

is always contained in the feasible setF .

Proof: Let ǫ > 0 and set

x(t) =





z + ǫ if y(t) = 1

z − ǫ if y(t) = 0
. (36)

Then, for everyt, the second constraint in (17) turns out to be




x(t) ∈ (z,+∞) if y(t) = 1

x(t) ∈ (−∞, z] if y(t) = 0

which is satisfied by construction, while the first constraint boils down to

−δt ≤ z ± ǫ−
n∑

i=1

ai (z ± ǫ)−
m∑

j=1

bj u(t− j +1) ≤ δt. (37)
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By settingb1= · · · = bm = 0 anda1+a2+· · ·+an = 1, (37) becomes−δt ≤ ±ǫ−
∑n

i=1±ai ǫ ≤ δt

which is satisfied for anyδt > 0, provided that a sufficiently smallǫ is chosen.

Remark 3:Theorem 5 shows that, in the case of binary sensors, the hyperplane defined by the

equality constraints in (35) is always contained in the FPS,unless this is excluded by suitable a

priori information on the system dynamics (i.e., by choosing Θ0 so that the set (35) is empty).

Notice that the constraint
∑n

i=1 ai = 1 implies that the system transfer function has a pole in 1,

which corresponds to the fact that the system can “hold” indefinitely the constant valuez even

with no input signal, thus letting an arbitrarily small noise generate any binary output sequence

y.

Now, let us consider the special case of an ARX(1,1) modelx(t) = a1x(t− 1) + b1u(t) + d(t),

|d(t)| ≤ δ. The following result holds.

Corollary 1: Let u, y ∈ R
N be given andu = mint u(t), u = maxt u(t). Define the set

I = {θ ∈ Θ0 : 1−
δ

z
≤ a1 +

u

z
b1 ≤ 1 +

δ

z

1−
δ

z
≤ a1 +

u

z
b1 ≤ 1 +

δ

z

}
.

(38)

Then,I ⊆ F .

Proof: As in the proof of Theorem 5, choosex(t) as in (36). The first constraint in (17)

becomes

−δ ≤ z ± ǫ− a1(z ± ǫ)− b1u(t) ≤ δ

which is equivalent to

1−
δ

z
≤ a1 +

u(t)

z
b1 + g(ǫ) ≤ 1 +

δ

z
(39)

whereg(ǫ) = ±a1
ǫ
z
∓ ǫ

z
. For ǫ → 0, the inequalities (39) represent a strip in the(a1, b1)-plane.

The intersections of such strips fort = 1, . . . , N provides the setI in (38).

Corollary 1 highlights that, for a given data set, there is always a set of nonzero measure

contained in the FPS (namely, a parallelogram), which does not depend on the output provided

by the binary sensor, but only on the extreme values taken by the input signal. Notice that

for arbitrarily large input signals and arbitrarily smallδ, the setI boils down to the point

{θ : b1 = 0, a1 = 1}, in accordance with Theorem 5. The result in Corollary 1 can be easily

generalized to ARX models of arbitrary order.
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VI. EXAMPLES

Example 1:Let us consider the following ARX system of ordern = 1, m = 1




x(t) = a x(t− 1) + b u(t) + d(t)

y(t) = Q(x(t))

whereQ(·) denotes a binary sensor with thresholdz = 1. Prior information on the system is

a ∈ [−2; 2], |d(t)| ≤ 0.06, |u(t)| ≤ 1. The true parameter values area = 0.78, b = 0.95. Let

N = 100 be the length of an identification experiment. The input signal has been uniformly

generated in [-1;1]. By applying the proposed technique, one hasa ∈ [0.6895; 1.0600], b ∈

[−0.0641; 1.2700], which coincides with the minimum orthotope containing theFPS as stated

by Theorems 3 and 4. In Figure 4, the true feasible set (obtained by gridding), the computed

bounds and the setI defined in Corollary 1 are reported.

The same system has been simulated by halving the noise level, i.e. |d(t)| ≤ 0.03, the other

parameters being the same as in the preceding case. In Figure5, the new feasible set along with

computed bounds and setI are shown. Notice that in this case the feasible set is not connected.

Parameter bounds area ∈ [0.7175; 1.0300], b ∈ [−0.0320; 1.1496]. Computation for both cases

takes about 13 CPU seconds.2

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

a

b

Fig. 4. Example 1. Feasible set (filled region), setI (striped region) and computed outer box. The true parametervector is

marked by a cross.

2Computations are performed under Matlab by using IBM ILOG CPLEX for MATLAB toolbox [35] to solve the LPs, on an

Intel Core i7-3770 at 3.40 GHz.
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Fig. 5. Example 1. Feasible set (filled region), setI (striped region) and computed outer box. The true parametervector is

marked by a cross.
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Fig. 6. Example 2. Input signalu(t) and corresponding outputy(t), t = 1, . . . , 100.

Example 2:Consider the following OE system of ordern = 2, m = 2
{

x(t) = −0.56 x(t−1)−0.23 x(t−2)+1.04u(t)+0.73u(t−1)

y(t) = x(t) + e(t) .

We assume to know that the system is stable and that|e(t)| ≤ 0.1 for all t. Let us apply an

input sequence of lengthN = 100 uniformly distributed in [-5;5]. The output noise has been

generated with a uniform distribution in [-0.1;0.1]. The input signalu(t) and outputy(t) are

reported in Fig. 6.

Let us apply the procedures described in Section III with a toleranceǫa = ǫb = 10−5 to obtain

an orthotope containing the feasible set. The resulting approximated orthotope and the minimum
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TABLE I

EXAMPLE 2. TIGHT AND COMPUTED BOUNDS FOR THE FEASIBLE SET.

tight bounds computed bounds

min max min max

a1 -0.56282 -0.55781 -0.56303 -0.55778

a2 -0.23056 -0.22665 -0.23061 -0.22663

b1 1.03755 1.04203 1.03747 1.04218

b2 0.72840 0.73550 0.72817 0.73583

orthotope (computed by gridding) are reported in Table I. The projectionsFa and Fb of the

feasible set along with the computed bounds are reported in Fig. 7.

The total number of solved LPs is 906, for a computation time of 6 seconds.

Example 3:To show the effectiveness of the proposed approach, the bounds obtained by

Algorithm 1 are compared with the tight bounds, for a number of different simulations. Two

sets of 1000 randomly generated stable Output Error models of order n = m = 2 have been

simulated by applying input sequences ofN = 100 samples for two different signal-to-noise

ratios. The toleranceǫa used in Algorithm 1 has been set to10−5. The minimum outer box

including the feasible set has been computed by gridding.

Let ai, ai, i = 1, 2, be the computed bounds, whilea∗i , a
∗

i , i = 1, 2, denote the tight bounds.

For each simulation, the following indexes have been computed to evaluate the performance of

the proposed method:

R1 =
a1 − a1
a∗1 − a∗1

, R2 =
a2 − a2
a∗2 − a∗2

.

So, Ri ≥ 1, i = 1, 2, is the ratio between the length of the computed interval onai, and the

length of the tight interval.

Let us define the signal-to-noise ratio as

SNR =
max

t=1,...,N
{xt} − min

t=1,...,N
{xt}

max
t=1,...,N

{et} − min
t=1,...,N

{et}
.

In Table II, the mean value and standard deviation ofR1,R2 and of the computation time are

reported, forSNR = 20 andSNR = 100. In both cases, the computation times are below 4

seconds. WhenSNR = 100, the bounds obtained by Algorithm 1 are very close to the tight

bounds. ForSNR = 20, the computed bounds are larger; this is likely due to the fact that the
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Fig. 7. Example 2. SetsFa (top) andFb (bottom), true parameter value (cross), minimum outer orthotope (solid) and computed

outer orthotope (dashed).

true feasible interval for each parameter is larger, leading to a more conservative relaxation in

problem (23).

Notice that this comparison cannot be done for parametersbj , since computing tight bounds

on bj turns out to be a time demanding task.3 For the same reason, performance evaluation for

systems of order greater than 2 is not feasible.

Example 4: In this example, a number of simulations for different modelorders have been

performed to show the computation effort required to bound the parametersai andbj , by using

the procedures described in Section III. Models have been randomly generated and simulated

3Computing bounds on parametersbj by a gridding technique in Example 2 takes several hours.
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TABLE II

EXAMPLE 3. MEAN VALUE AND STANDARD DEVIATION OF R1, R2, AND COMPUTATION TIME.

SNR = 20 SNR = 100

mean std mean std

R1 1.241 0.280 1.047 0.079

R2 1.303 0.354 1.060 0.092

Computation time (s) 3.491 2.518 1.896 1.003

TABLE III

EXAMPLE 4. NUMBERS OF SOLVEDLPS AND COMPUTATION TIME

n = m # trials mean # solved LPs mean computation time

1 100 46.85 0.12 sec

2 100 281.62 1.81 sec

3 100 1441.84 22.65 sec

4 100 2539.38 63.05 sec

5 100 4851.57 203.26 sec

6 100 6795.85 594.33 sec

over a time horizonN = 100 with SNR = 100.

In Table III, the average number of solved LPs and the averagecomputation times over 100

trials are reported. It is worthwhile to notice that the proposed procedure allows for parameter

bound computation in reasonable times even for models with 12 parameters.

Example 5: In this example, the use of a polytopic approximation for bounding the feasible

set is reported. It is also shown how this technique may lead to a performance improvement for

orthotopic approximation.

Consider the OE model
{

x(t) = 0.34 x(t− 1)+0.46 x(t− 2)+0.25 u(t)−0.53 u(t− 1)

y(t) = x(t) + e(t) .

Let us apply a random input sequence of lengthN = 500 and let SNR = 20. By apply-

ing the procedure described in Section III for finding a box approximation (with a tolerance

10−5), one obtains the bounds on the autoregressive parametersa1 ∈ [0.33393; 0.34409] , a2 ∈

[0.45597; 0.46466]. The computation time is less than 1 minute.

Now, let us apply the polytopic approximation algorithm described in Section IV by choosing

200 randomly generated strips in the(a1, a2) plane. The computation time turns out to be about
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Fig. 8. Example 5. True feasible set (dark) and its polytopicapproximation (light) on parametersa1, a2. Boxes denote the

minimum outer orthotope (solid), final outer orthotope (dashed) and outer orthotope obtained by the procedure of Section III

(dashed-dotted).
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Fig. 9. Example 5. IndexesR1 andR2 against the number of approximating strips.

15 minutes. In Fig. 8, the true feasible set and the polytopicapproximation are depicted. The

same figure shows the minimum outer orthotope, the approximation obtained by applying the

procedure of Section III and the orthotope obtained by bounding the polytopic approximation.

The numerical bounds obtained area1 ∈ [0.33570; 0.34333] , a2 ∈ [0.45739; 0.46417].

By comparing indexesR1 andR2 defined in Example 3, one has thatR1 reduces from 1.382

to 1.039, whileR2 goes from 1.307 to 1.020. Fig. 9 showsR1 and R2 as a function of the

processed strips. Notice that the knee of the plot is about 20, meaning that few iterations, i.e.

few approximating strips, are sufficient to provide a considerable reduction of the initial bounds.
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VII. CONCLUSIONS

The approach proposed in the paper has proved to be effectivein computing orthotopic and

polytopic approximations of nonconvex feasible parametersets. The main reason lies in the

exploitation of the model structure in the construction of the relaxations of the original nonconvex

problem, and specifically in treating the autoregressive and input parameters in different ways.

The proposed techniques have been successfully tested on a large number of numerical examples

with randomly generated models and data sets.

The considered problem is far from being completely solved.As far as the polytopic approx-

imation is considered, a heuristic has been proposed to prevent the explosion of the number of

constraints. Nevertheless, alternative relaxations can be devised in order to explicitly trade-off

computational complexity and accuracy of the feasible set approximation. Another topic which

deserves further investigation is the construction of recursive procedures for computing online

approximations of the feasible set. Techniques based on convex relaxations are usually batch in

nature and their use within recursive estimation schemes isby no means straightforward. On

the other hand, classic recursive techniques for the approximation of convex feasible sets can

be adapted to the nonconvex case, but they typically lead to very conservative approximations.

Recursive bounding procedures would also be useful to tackle other challenging estimation

problems, such as the simultaneous state and parameter estimation for dynamic systems affected

by bounded perturbations. Another direction of future research concerns the extension of the

proposed techniques to specific families of nonlinear models, such as quantized NARX or

nonlinear output error models.
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