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Input Design in Worst-case System Identification using
Binary Sensors

Marco Casini, Andrea Garulli, Antonio Vicino

Abstract—This paper addresses system identification using binary-
valued sensors in a worst-case set-membership setting. Themain con-
tribution is the solution of the optimal input design problem for
identification of scalar gains, which is instrumental to theconstruction
of suboptimal input signals for identification of FIR models of arbitrary
order. Two different cost functions are considered for input design: the
maximum parametric identification error and the relative un certainty
reduction with respect to the minimum achievable error. It is shown that
in the latter case, the solution enjoys the property of beingindependent
of the length of the identification experiment and as such it can be
implemented as an optimal recursive procedure over a time interval of
arbitrary length.

I. I NTRODUCTION

Recent years have witnessed a considerable amount of work on
identification of systems with binary valued measurements.Binary
sensors are devices characterized by a threshold accordingto which
the output is digitized. The basic reason for the widespreaddiffusion
of binary sensors is mainly related to their relative low cost and
to the fact that, in spite of the simplicity of the control laws
adopted, monitoring and control of industrial plants oftencalls for
measurement of a large number of variables. Binary sensors are also
present in several communication systems, like ATM networks, and
automotive applications.

In their pioneering work, Wang, Zhang and Yin [1] introduced
a general framework to deal with system identification with binary
data. The main difficulty in this problem is to tackle a discontin-
uous nonlinearity present in the sensor, which reduces drastically
the information conveyed by measurements. While in [1] several
important results have been obtained for FIR models either in a
stochastic setting or in a worst-case setting, in [2] further results on
output error models have been pursued in the stochastic framework.
Consistency properties of weighted least-squares algorithms for pa-
rameter estimation based on binary data have been studied in[3].
The stochastic approach introduced in [1] has been applied to cope
with several problems involving binary valued observations, including
identification of Wiener or Hammerstein systems, and of systems with
time-varying parameters (see [4] for an extensive overview). On the
other hand, when the identification problem is cast in a worst-case
deterministic setting, key issues such as optimal input design are still
open problems. Preliminary results in this respect have been presented
in [5]. An attempt to introduce a joint framework taking intoaccount
the features of both the stochastic and the deterministic setting has
been recently made in [6].

The aim of the present paper is to tackle the input design problem
in a worst-case setting, based on the set-membership paradigm of
uncertainty representation (see e.g. [7], [8]). Specifically, for the case
of identification of a scalar gain, an input is devised which minimizes
the worst-case identification error. This result can be fruitfully used
to construct efficient suboptimal procedures for identification of FIR
models of arbitrary order.

Since the optimal input sequence for identification of a scalar
gain derived by minimizing the worst-case error depends on the
length of the sequence itself, the resulting excitation experiment and
related estimation algorithm turn out to be a batch procedure, where
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the input sequence length is a design parameter, which cannot be
tuned during the execution of the experiment. Actually, in several
contexts, one wants to keep the option of increasing the input length,
without running a new identification experiment from the beginning.
In these cases, it is fairly natural to look for an optimal recursive
algorithm, where the parameter estimate updating can be performed
for an arbitrary number of steps, preserving optimality of the solution
achieved. In this perspective, a further contribution of the paper
consists in introducing a new worst-case cost function, such that
the resulting optimal input selection strategy is recursive. Roughly
speaking, this cost function is a normalized error representing the
worst-case relative reduction of the gain uncertainty estimate with
respect to the asymptotic error, i.e., the minimum achievable uncer-
tainty as the input length tends to infinity. Beyond the recursive nature
of the optimal input, numerical experiments show that this algorithm
is quite effective for FIR model identification, providing accuracy
results which outperform the input design algorithm based on the
actual identification error, in several test cases.

The paper is organized as follows. Section II introduces notation
and problem formulation. Section III addresses the problemof opti-
mal input design with respect to the actual worst-case identification
error, while Section IV provides the alternative optimal input design
strategy based on the worst-case normalized identificationerror. A
numerical example highlighting the comparison between thetwo
input design approaches is reported in Section V, while concluding
remarks are reported in Section VI.

II. PROBLEM FORMULATION

Let RN denote theN -dimensional Euclidean space. A sequence of
real numbers{x(t), t = 1, . . . , N} will be identified with a vector
x ∈ R

N and ||x||p will be the standardℓp norm. LetBp(c, r) =
{x ∈ R

N : ||x − c||p ≤ r} be the ball of radiusr ≥ 0 and center
c ∈ R

N in theℓp norm. Let us denote bylog(x) the base 2 logarithm
of x, and by⌈x⌉ the minimum integer greater or equal tox.

Let us consider ann-th order FIR SISO linear time-invariant model

y(t) =

n∑

i=1

θi u(t− i+ 1) + d(t) (1)

whereu(t) is the input signal, bounded in the max norm||u||∞ ≤ U ,
and d(t) represents the output disturbance. The model parameters
{θi, i = 1, . . . n} represent the truncated system impulse response.
The disturbanced(t) is assumed to be bounded by a known quantity,
i.e., |d(t)| ≤ δ, t = 1, 2, . . .. The true system generating the data is
assumed to be exponentially stable. Due to exponential stability of
the system and boundedness of the inputu(t), unmodeled dynamics
(i.e., the system impulse response tail{θi, i = n + 1, . . .}) can be
accounted for by suitably tuning the noise boundδ.

Observations at the system output are taken by a binary sensor
with a known thresholdC, such that

s(t) =

{
1 if y(t) ≤ C
0 if y(t) > C.

(2)

Let θT = [θ1, θ2, . . . , θn] ∈ R
n denote the parameter vector and

φT (t) = [u(t), . . . , u(t−n+1)] the regressor vector. Then, (1) can
be expressed asy(t) = φT (t) θ + d(t).

Let F0 = Bp(c, ε0) represent the prior information available
on the parameter vector. Let us now denote byu, s ∈ R

N the
input signal {u(t), t = 1, . . . , N} and the sequence of binary
measurements{s(t), t = 1, . . . , N}, respectively. For a given input-
output realization{u, s} of lengthN , the feasible parameter set is
defined as:

FN = {θ ∈ F0 : φT (t) θ ≤ C + δ if s(t) = 1;

φT (t) θ > C − δ if s(t) = 0; t = 1, . . . , N}.
(3)
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The worst-case local identification error is defined as

ep(N,u, s) = inf
c∈Rn

sup
θ∈FN

‖θ − c‖p . (4)

For a fixed input sequenceu, let us define the global worst-case
error with respect to the disturbance realization asep(N,u) =
sups∈S0

ep(N, u, s), whereS0 = {s : FN 6= ∅}.
Since we are interested in optimal input design, the aim is to

compute the minimum worst-case identification error [9]

ep(N) = inf
u:‖u‖∞≤U

ep(N,u) . (5)

Let us define

γ , min
i=1,...,n

{|θi| : θ ∈ F0}. (6)

The following assumptions are enforced throughout the paper.
Assumption 1: i)

1) γ > C/U .
2) The signs of the FIR parametersθi are known.

The first assumption is necessary to guarantee that the initial un-
certainty on each parameter can be reduced by using the information
from the binary sensor (see [1, Prop. 1]). The signs of the parameters
θi can be easily detected by performing a suitable preliminary
identification experiment involving at most2n samples.

In [5], [10], a strategy has been proposed for tackling the input
design problem (5). The idea is to select the input samples which
individually excite the parameterθi in order to achieve the maximum
uncertainty reduction for that parameter. Optimal input design for
each scalar parameterθi will result in an effective suboptimal solution
for FIR models of arbitrary order. For this reason, the exactsolution
of the optimal input design problem for scalar gains is provided in
the next section.

III. I NPUT DESIGN FOR IDENTIFICATION OF GAINS

In this section, we address the optimal input design problemfor
the special case of FIR systems of ordern = 1. The following setting
will be considered

y(t) = au(t) + d(t) , s(t) =

{
1 if y(t) ≤ C
0 if y(t) > C,

with |u(t)| ≤ U , |d(t)| ≤ δ anda ∈ F0 = [a0, a0].
Let us denote byFt = [at, at] the feasible parameter set at timet.

The aim is to choose the input signalu(t) at timet as a function of the
available information up to timet− 1, i.e. u(t) = η(Ft−1; t) , t =
1, 2, . . . , N . In order to stress that the set-theoretic information is
exploited in the input choice, the optimal input design problem (5)
is rewritten as

u∗ = arg inf
u: ‖u‖∞≤U

u(t)=η(Ft−1;t)

ep(N,u) . (7)

According to Assumption 1, one hasa0 > C/U . Moreover, let
C > δ > 0 and defineβ , δ/C. The following proposition clarifies
under which conditions, reduction of the feasible parameter set is
possible [1, Thm. 14].

Proposition 1:The following statements hold:

a) At a given timet, uncertainty reduction is possible if and only
if at−1

at−1
> 1+β

1−β
.

b) If a0

a0
> 1+β

1−β
, then there exists an input sequence such that

a∞
a∞

, limN→∞
aN

aN
= 1+β

1−β
.

c) If at−1

at−1
> 1+β

1−β
, then there does not exist any inputu(t) such

that at

at
≤ 1+β

1−β
.

By Proposition 1, it follows that the condition

a0

a0

>
1 + β

1− β
(8)

is necessary in order to reduce the radius of the initial feasible
parameter set, and it is also sufficient to guarantee that uncertainty
reduction is possible at any timet > 0. Hereafter, the assumption
(8) will be enforced. The following result provides the solution to
problem (7).

Theorem 1:Let (8) hold andN be the length of the input signal
to be applied. Then, the optimal input solving problem (7) isgiven
by u∗(t) = C/ãt|N , t = 1, 2, . . . , N where

ãt|N =
at−1 (1 + β)(2

N−t−1) + at−1 (1− β)(2
N−t−1)

(1 + β)(2N−t) + (1− β)(2N−t)
, (9)

with estimate updating laws:
{

at = at−1 , at = ãt|N (1 + β) if s(t) = 1
at = ãt|N (1− β) , at = at−1 if s(t) = 0.

Moreover, the radius of the feasible parameter setFN is

εN = β
a0 (1 + β)(2

N−1) − a0 (1− β)(2
N−1)

(1 + β)(2N ) − (1− β)(2N )
. (10)

Proof: Let us define

PN ,

N−1∏

j=0

[
(1 + β)(2

j ) + (1− β)(2
j)
]
.

First, let us prove that

PN =
(1 + β)(2

N ) − (1− β)(2
N )

2β
. (11)

ForN = 1, (11) holds trivially. Moreover, if (11) holds for a generic
N , then it holds also forN + 1, because

PN+1 = PN ·
[
(1 + β)(2

N ) + (1− β)(2
N )

]

=

[
(1+β)(2

N ) − (1−β)(2
N )

]
·
[
(1+β)(2

N ) + (1−β)(2
N )

]

2β

=
(1 + β)(2

N+1) − (1− β)(2
N+1)

2β
.

Let us now demonstrate (9) and (10) by induction. First, let us show
that ã1|1 =

a0+a0

2
. In fact, by applyingu(1) = C/ã1|1, one obtains

two possible feasible sets at time 1, namelyF(0)
1 = [ã1|1(1−β), a0]

or F(1)
1 = [a0, ã1|1(1 + β)], depending on the value ofs(1) being

respectively 0 or 1. Notice that (8) guarantees the existence of an
ã1|1 such that bothF(0)

1 and F(1)
1 are strictly contained inF0.

The maximum worst-case uncertainty reduction is thus obtained by
choosing ã1|1 so that the size of both intervals is the same, thus
leading toã1|1 =

a0+a0

2
. By substituting this value of̃a1|1 in F(0)

1

or F(1)
1 , one getsε1 =

a0(1+β)−a0(1−β)

4
which corresponds to (10).

It is worth remarking that the resulting inputu(1) = 2C
a0+a0

satisfies
|u(1)| < U thanks to Assumption 1.
Now, let us assume that (9) and (10) hold for a givenN . We want
to show that they hold also for an input of lengthN + 1. By (11),
(10) can be rewritten as

εN =
a0 (1 + β)(2

N−1) − a0 (1− β)(2
N−1)

2PN

. (12)

Observe that the lastN samples of the optimal input of lengthN+1
can be chosen by applying to the feasible set at time 1, i.e.[a1, a1],
the same input selection strategy adopted for computing theoptimal
input of lengthN for the initial feasible set[a0, a0]. In other words,
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the second optimal input sample for an input of lengthN+1 depends
on [a1, a1] in the same way as the first optimal sample of an input of
lengthN depends on[a0, a0], and so on. Indeed, if in (9) the time
indices of the feasible set boundsa and a are suitably rearranged,
one hasãt+1|N+1 = ãt|N for all t = 1, . . . , N . Moreover, since
(10) holds for an input of lengthN , the radius of the final feasible
set FN+1 for the optimal input sequence of lengthN + 1 can be
expressed according to (12) as

εN+1 =
a1 (1 + β)(2

N−1) − a1 (1− β)(2
N−1)

2PN

. (13)

We have now to select the first input sampleu∗(1) = C/ã1|N+1.
The choice of̃a1|N+1 leads to two possibile feasible sets at time 1:
F(0)

1 = [ã1|N+1(1−β), a0] if s(1) = 0, orF(1)
1 = [a0, ã1|N+1(1+

β)] if s(1) = 1. From (13), the two corresponding final radii turn
out to be

ε
(0)
N+1 =

a0(1 + β)(2
N−1) − ã1|N+1(1− β)(2

N )

2PN

ε
(1)
N+1 =

ã1|N+1(1 + β)(2
N ) − a0(1− β)(2

N−1)

2PN

.

The optimal choice of̃a1|N+1 is such thatε(0)N+1 = ε
(1)
N+1, i.e.,

a0(1 + β)(2
N−1) − ã1|N+1(1− β)(2

N )

= ã1|N+1(1 + β)(2
N ) − a0(1− β)(2

N−1)

which leads to

ã1|N+1 =
a0(1 + β)(2

N−1) + a0(1− β)(2
N−1)

(1 + β)(2N ) + (1− β)(2N )

that is in accordance with (9).
Finally, to computeεN+1 one has to substitutẽa1|N+1 in ε

(0)
N+1 (or

in ε
(1)
N+1), thus obtaining

εN+1 =
1

2PN

{
a0(1 + β)(2

N−1)

−a0(1 + β)(2
N−1) + a0(1− β)(2

N−1)

(1 + β)(2N ) + (1− β)(2N )
(1− β)(2

N )

}

=
a0(1 + β)(2

N+1−1) − a0(1− β)(2
N+1−1)

2PN [(1 + β)(2N ) + (1− β)(2N )]

=
a0(1 + β)(2

N+1−1) − a0(1− β)(2
N+1−1)

2PN+1

= β
a0(1 + β)(2

N+1−1) − a0(1− β)(2
N+1−1)

(1 + β)(2N+1) − (1− β)(2N+1)
(14)

which concludes the proof.
Remark 1:In [1], it is proposed as optimal input the signal

u(t) =
2C

at−1 + at−1

. (15)

Such signal actually minimizes the size of the worst-caseFt accord-
ing to the available information up to timet − 1, but it does not
provide the optimal input sequence of lengthN minimizing the size
of FN (and henceep(N,u)) in the worst-case sense (7). In other
words, if one applies the input signal (15), it is always possible to
find a FIR parametera ∈ F0 and a disturbance sequenced such that
the radius of the resultingFN is larger thanεN in (10).

IV. I NPUT DESIGN FOR RELATIVE UNCERTAINTY REDUCTION

So far, the considered input design problem has addressed the
minimization of the actual parameter uncertainty, i.e. thesize of the
feasible set. The exact solution for identification of gains, provided
by Theorem 1, has shown that the optimal input sequence depends on
the lengthN of the sequence itself, which is clearly an undesirable
feature. In fact, one may want to adapt on-line the length of the
identification experiment without loosing optimality. Moreover, it
would be more sensible to measure the performance of the identifi-
cation procedure with respect to the minimum error achievable in the
considered setting, i.e. to optimize the relative uncertainty reduction
instead of the absolute one, with the aim of designing arecursive
optimal input design strategy. This would also give a rationale for
devising a stopping criterion for the identification experiment.

Motivated by the above reasons, in this section a new worst-case
error cost function is introduced and the input signal minimizing such
a functional is derived for the identification of a scalar gain. The same
setting and assumptions as in Section III are adopted.

Let a ∈ F be the true parameter and letF = [a, a] at a given
time instant. Let us denote byDmin(a, a, a) the minimum size of the
worst-case feasible set, obtainable by applying an infinitesequence
of inputs. In other words,Dmin represents the irreducible size of the
worst-case feasible set. The following result holds.

Lemma 1:Let F = [a, a], and leta ∈ F be the true parameter.
One has:

Dmin(a, a, a) =

{
2 β

1−β
a , if a ≤ a ≤ 1−β

1+β
a

2 β

1+β
a , if 1−β

1+β
a < a ≤ a

.

Proof: Let us define as[a∞, a∞] the feasible set obtained after
applying an appropriate infinite sequence of inputs. By the definition
of Dmin and Proposition 1, one can write

Dmin(a, a, a) = sup
a∞,a∞

(a∞ − a∞)

s.t. :
a∞
a∞

≥ 1+β

1−β
; a∞ ≤ a ≤ a∞

a∞ ≥ a ; a∞ ≤ a.

(16)

By exploiting the first constraint and rearranging the others, problem
(16) can be rewritten as

Dmin(a, a, a) = sup
a∞

2β

1− β
a∞

s.t. : a∞ ≤ a ; a∞ ≤ 1−β

1+β
a

(17)

whose solution is achieved ata∞ = min
{
a, 1−β

1+β
a
}

. The result
follows by substitution.

Let us introduce the following cost function:

J(a, a, a) =
a− a

Dmin(a, a, a)
.

At a given time instantt, J(at, at, a) represents the ratio between
the current feasible set size and the minimum size of the worst-case
feasible set, achievable by applying an infinite input sequence starting
at timet+1. Intuition suggests that minimizingJ over a time horizon
of length N corresponds to minimizing the “residual uncertainty”
after the firstN time instants, or equivalently, to maximizing the
performance of the firstN input samples. Unfortunately, the function
J depends on the true value ofa which is unknown. According to
the worst-case approach taken throughout the paper, the objective will
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be to minimize the worst-case value ofJ with respect to all feasible
values ofa. By using Lemma 1, it turns out that

Jmax(a, a) , sup
a∈[a,a]

J(a, a, a) =
a− a

infa∈[a,a] Dmin(a, a, a)

=
a− a

Dmin(a, a, a)
=

a− a
2 β

1−β
a

=
(1− β)(a− a)

2 β a
=

1− β

2β

(
a

a
− 1

)
. (18)

Since by hypothesisa
a
> 1+β

1−β
, one hasJmax(a, a) > 1, as expected.

Moreover, by Proposition 1, there exists an infinite input sequence
such thatlimt→∞

at

at
= 1+β

1−β
, and hencelim

t→∞
Jmax(at, at) = 1.

Remark 2:To clarify the meaning ofJmax(a, a), notice that it
allows one to quantify the worst-case relative reduction ofthe feasible
set w.r.t. the minimum achievable uncertainty. For example, Jmax =
1.2 means that the size of the feasible set is20% greater than that of
the minimum feasible set achievable by any input sequence ofinfinite
length, in worst-case sense. Hence,Jmax can be used to devise a
rationale for stopping the identification experiment. For instance, one
can decide to stop the experiment wheneverJmax < 1.01, because
it will not be possible to further reduce the feasible set by more than
1%.

In the following, the optimal input sequence minimizingJmax is
derived, for the case of a scalar gain. In particular, the aimis to solve
the input design problem

u∗ = arg inf
u: ‖u‖∞≤U

u(t)=η(Ft−1;t)

Jmax(aN , aN ) (19)

Theorem 2:Let N be the length of the input signal to be applied.
Then, the optimal input sequence solving problem (19) is given by
u∗(t) = C/ãt|N , t = 1, 2, . . . , N where

ãt|N =

√
at−1 at−1

1− β2
(20)

with estimate updating laws:




at= at−1 , at= ãt|N (1 + β) =
√

at−1 at−1
1+β

1−β
, if s(t) = 1

at= ãt|N (1− β) =
√

at−1 at−1
1−β

1+β
, at= at−1 , if s(t) = 0.

(21)
Moreover, the value ofJmax afterN input samples is

Jmax|N =
1− β

2β

[
1 + β

1− β
2N

√
a0

a0

1− β

1 + β
− 1

]
. (22)

Proof: Let us prove (20) and (22) by induction, in a similar
way as in the proof of Theorem 1. LetN = 1. By (18) one has
Jmax|0 = 1−β

2 β

(
a0

a0
− 1

)
. By applyingu(1) = C/ã1|1 one obtains

two possible feasible sets at time 1, namelyF(0)
1 = [ã1|1(1−β), a0]

or F(1)
1 = [a0, ã1|1(1 + β)], depending on the value ofs(1) being

respectively 0 or 1. The optimal value ofã1|1 is such that the value
of Jmax|1 for both intervals is the same, i.e.,J(0)

max|1
= J

(1)

max|1
, thus

obtaining

1− β

2β

(
a0

ã1|1(1− β)
− 1

)
=

1− β

2β

(
ã1|1(1 + β)

a0

− 1

)

which leads tõa2
1|1 =

a0 a0

1−β2 . Since0 ≤ a0 ≤ ã1|1 ≤ a0 andβ < 1,

only the positive solution is feasible, and sõa1|1 =
√

a0 a0

1−β2 . By
substitution, one obtainsJmax|1 as in (22).
Now, let us assume that (20) and (22) hold for a givenN . We want to

show that they hold also forN+1. By following the same reasoning
as in the proof of Theorem 1, we can state that

Jmax|N+1 =
1− β

2β

[
1 + β

1− β
2N

√
a1
a1

1− β

1 + β
− 1

]
. (23)

We have now to select the first input sampleu∗(1) = C/ã1|N+1.
The choice of̃a1|N+1 leads to two possibile feasible sets at time 1:
F(0)

1 = [ã1|N+1(1−β), a0] if s(1) = 0, orF(1)
1 = [a0, ã1|N+1(1+

β)] if s(1) = 1. From (23), the two corresponding final values of
Jmax turn out to be

J
(0)
max|N+1 =

1− β

2β

[
1 + β

1− β
2N

√
a0

ã1|N+1

1

1 + β
− 1

]

J
(1)
max|N+1 =

1− β

2β

[
1 + β

1− β
2N

√
ã1|N+1

a0

(1− β)− 1

]
.

The optimal choice of̃a1|N+1 is such thatJ(0)

max|N+1 = J
(1)

max|N+1,

i.e., a0

ã1|N+1

1
1+β

=
ã1|N+1

a0
(1 − β) which leads toã1|N+1 =

√
a0 a0

1−β2 . Finally, to computeJmax|N+1 one has to substitutẽa1|N+1

in J
(0)
max|N+1 (or in J

(1)
max|N+1), thus obtaining, after some algebra

Jmax|N+1 =
1− β

2β

[
1 + β

1− β
2N+1

√
a0

a0

1− β

1 + β
− 1

]

which concludes the proof.
Remark 3:A key feature of Theorem 2 is that the optimal input

sequence solving problem (19) does not depend on the lengthN
of the identification experiment. This means that the lengthof the
experiment can be adapted on-line, without loosing optimality with
respect to the relative uncertainty reductionJmax.

In the following, we will denote by “Optimal Error Procedure”
(OEP) and “Optimal Relative Error Procedure” (OREP) the input
design procedures described in Theorems 1 and 2, respectively. With
the aim of providing a quantitative comparison of the two approaches,
the performance of the OREP will be evaluated in terms of the radius
of the resulting feasible set. Let us now state a lemma which is
instrumental to this purpose.

Lemma 2:Let N be the length of the input signal. Then, the
maximum achievable value ofaN when applying the OREP is

ǎN , sup
s

aN =
1− β

1 + β
a0

2N

√
a0

a0

1 + β

1− β
. (24)

Proof: Since by Proposition 1 one hasat

at
> 1+β

1−β
∀t, by (21)

it follows that the maximum value forat is always obtained when

s(t) = 0, being
√

at−1 at−1
1−β

1+β
> at−1. This condition holds, for

instance, whena = a0. By definingµ , a0
1−β

1+β
, and observing that if

s(t) = 0 ∀t, thenat = a0 ∀t, one haša1 =
√
a0 µ = µ

√
a0

µ
; ǎ2 =

√
a1 µ = µ 4

√
a0

µ
; . . . ; ǎN =

√
aN−1 µ = µ 2N

√
a0

µ
.

Theorem 3:Let N be the length of the OREP input signal. Then,
the worst-case radius of the feasible parameter setFN is

ǫN =
a0

2

[
1− 1− β

1 + β
2N

√
a0

a0

1 + β

1− β

]
(25)

Proof: By (18), one hasJmax|N =
aN−aN
2β

1−β
aN

which can be

rewritten as
aN − aN

2
= Jmax|N · β

1− β
aN . (26)

Since the left-hand side of (26) denotes the radius ofFN , and
Jmax|N is given in (22), by Lemma 2 one hasǫN = supaN

Jmax|N ·
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β

1−β
aN = Jmax|N · β

1−β
ǎN . The result follows by substitution of

Jmax|N and ǎN from (22) and (24), respectively.
Since εN reported in (10) denotes the radius ofFN when the

OEP is applied, by construction one hasεN ≤ ǫN . Figure 1 shows
the comparison between the two radiiεN and ǫN , for the setting
β = 0.1, a0 = 1 and a0 = 100. Note that forN ≥ 12 the two
radii are very close. In fact, from (22) one hasJmax|12 = 1.0059.
The comparison shows that, in a worst-case setting, ifN is small,
i.e., Jmax|N is much greater than 1, it is convenient to use the OEP,
while if Jmax|N ≃ 1, the two procedures are almost equivalent in
terms of size of the final feasible set.
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15
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25

30

35

40

45

50

N

Fig. 1. Plot ofεN (solid) andǫN (dashed) forN = 1, . . . , 15.

A different scenario arises when the true location of the parameter
a is not the worst-case one. In this case, the OREP may lead to
a much better performance than the OEP, in terms of the size of
the actual resulting feasible set. The worst-case identification errors
(with respect to the disturbanced(t)), for different values ofa, are
reported in Figures 2(a) and 2(b), in the casesN = 10 andN = 4,
respectively. In both figures,β = 0.1 and a ∈ [1, 100]. It can be
noticed that the error returned by the OEP does not depend on the
actual value ofa. Conversely, the radius of the feasible set provided
by the OREP is a nondecreasing function of the true value ofa.
Clearly, if the maximum error also with respect toa is considered
(as it is in the nature of the worst-case approach), the valuereturned
by the OEP is smaller, by construction. However, Fig. 2(a) shows that
for almost all values ofa, OREP gives a smaller error than OEP. This
is not the case when a shorter identification experiment is performed,
as in Fig. 2(b) (N = 4).

Remark 4:From a practical point of view, the discussion above
suggests that, ifN is small (and thenJmax|N is significantly larger
than 1) it is convenient to choose the OEP, which gives a guaranteed
value of the worst-case radius, while ifN is large (i.e.,Jmax|N ≃
1), it is convenient to use the OREP, which has almost the same
performance as the OEP for the worst values of the parametera, but
for other values ofa may lead to a much smaller radius. IfN is
not given a priori, it is convenient to use the OREP and chooseN
such thatJmax|N satisfies the desired tolerance on the final radius
reduction.

Remark 5:Notice that the OEP is highly sensitive to the a priori
information, and in particular toa0. In fact, by (10) it follows that
limN→∞ εN = β

1+β
a0, independently of the value of true parameter

a. So, if a priori bounds are chosen in a conservative way, sucha
conservatism will affect the final value of the radius, also if N is
large. Instead, this fact is not true if one uses the OREP. In fact,
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Fig. 2. Worst-case identification error for OREP (solid) andOEP (dashed)
for a ∈ [1, 100], β=0.1, N=10 (a) andN=4 (b).

Dmin(a0, a0, a) is highly sensitive to the true parameter value and
less sensitive to the initial feasible set.

V. NUMERICAL EXAMPLE

Let us consider a system whose transfer function is

G(z) =
38.4 z3 + 28.8 z2 + 35.2 z − 20

3.15 z3 − 0.08 z2 + 1.84 z − 1
.

By observing that the impulse response ofG(z) can be considered
negligible aftern = 30 samples, the aim is to identify the firstn
samples of the impulse response. Let us assume that the bounds on
the impulse response coefficients−Mρi ≤ θi ≤ Mρi, M = 20,
ρ = 0.9, i = 1, . . . , n are known a priori. Moreover, let us set
−500 ≤ u(t) ≤ 500, δ = 3 and C = 20, i.e., β = 0.15.
Let us excite every FIR parameterk = 4 times, by applying the
input design strategy proposed in [5]. This requires a totalinput
length equal toN = 1920 (see [5], [10] for details). Both the
OEP and the OREP are applied. In Fig. 3(a), a comparison between
the resulting radii of the two approaches is reported. Both radii are
computed for the worst-case realization of the disturbanced(t) (i.e.,
the realization that produces the largest feasible set, foreach input
strategy). Since for some parametersJmax|k is quite larger than 1,
the corresponding OREP radii may result considerably bigger than
the OEP radii (depending on the true value of the parameters).

Let us now repeat the experiment fork = 10. In this case, one
needsN = 4710 samples. In Fig. 3(b), a comparison between the
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resulting radii of the two approaches is reported. In this case,Jmax|k

is close to 1, and the OREP strategy leads to better performance, as
expected.
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Fig. 3. Comparison between final radii obtained by using OEP (dark) and
OREP (light), fork = 4 (a) andk = 10 (b).

VI. CONCLUSIONS

System identification based on binary-valued observationsis an
intriguing problem, due to the remarkable information reduction
caused by the binary sensor. When a deterministic set-membership
setting is considered, problems like optimal input design turn out to be
even more challenging. The paper has provided new results for worst-
case identification of systems equipped with binary sensors. The
exact solution of the optimal input design problem for identification
of gains allows one to devise an effective input design strategy
for identification of general FIR systems. Moreover, an undesirable
property of input design based on the worst-case identification error,
namely the dependence of the optimal input sequence on the length
of the identification experiment, has been overcome by introducing a
new cost function. This led to the derivation of an optimal recursive
design procedure, over a time interval of arbitrary length.

Several open issues deserve attention for future investigations.
A key question is whether the input selection strategy basedon
independent excitation of each impulse response sample is optimal
in general. Optimal input design for ARX models is another subject
of ongoing research.
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