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Abstract—This paper addresses system identification using binary-
valued sensors in a worst-case set-membership setting. Theain con-
tribution is the solution of the optimal input design problem for
identification of scalar gains, which is instrumental to the construction
of suboptimal input signals for identification of FIR models of arbitrary
order. Two different cost functions are considered for inpu design: the
maximum parametric identification error and the relative un certainty
reduction with respect to the minimum achievable error. It is shown that
in the latter case, the solution enjoys the property of beingndependent
of the length of the identification experiment and as such it an be
implemented as an optimal recursive procedure over a time iterval of
arbitrary length.

I. INTRODUCTION

the input sequence length is a design parameter, which td®o
tuned during the execution of the experiment. Actually, avesal
contexts, one wants to keep the option of increasing thet iiemgth,
without running a new identification experiment from the ibegng.
In these cases, it is fairly natural to look for an optimalumsive
algorithm, where the parameter estimate updating can Hderped
for an arbitrary number of steps, preserving optimalityhef solution
achieved. In this perspective, a further contribution o thaper
consists in introducing a new worst-case cost functionh stnat
the resulting optimal input selection strategy is rec@siRoughly
speaking, this cost function is a normalized error représgrthe
worst-case relative reduction of the gain uncertaintyneste with
respect to the asymptotic error, i.e., the minimum achilevabcer-
tainty as the input length tends to infinity. Beyond the reiuer nature
of the optimal input, numerical experiments show that tthi@athm
is quite effective for FIR model identification, providing@iracy
results which outperform the input design algorithm basedthe
actual identification error, in several test cases.

The paper is organized as follows. Section Il introducestiar

Recent years have witnessed a considerable amount of work gy problem formulation. Section Il addresses the probbérapti-

identification of systems with binary valued measuremeBtaary
sensors are devices characterized by a threshold accaaliwgich
the output is digitized. The basic reason for the widespuifidsion
of binary sensors is mainly related to their relative low tcaad
to the fact that, in spite of the simplicity of the control law
adopted, monitoring and control of industrial plants oftails for
measurement of a large number of variables. Binary senseralso
present in several communication systems, like ATM netapend
automotive applications.

In their pioneering work, Wang, Zhang and Yin [1] introducedreal numbers{z(t),t = 1,..

a general framework to deal with system identification withaby
data. The main difficulty in this problem is to tackle a diston
uous nonlinearity present in the sensor, which reducesticatg

the information conveyed by measurements. While in [1] ssdve

important results have been obtained for FIR models eithea i
stochastic setting or in a worst-case setting, in [2] furttesults on
output error models have been pursued in the stochastiefari.
Consistency properties of weighted least-squares algositfor pa-
rameter estimation based on binary data have been studigg].in
The stochastic approach introduced in [1] has been apptiezbpe
with several problems involving binary valued observadiancluding
identification of Wiener or Hammerstein systems, and ofesystwith
time-varying parameters (see [4] for an extensive overyi€@w the
other hand, when the identification problem is cast in a wease
deterministic setting, key issues such as optimal inpuigdesre still
open problems. Preliminary results in this respect hava peesented
in [5]. An attempt to introduce a joint framework taking irdecount
the features of both the stochastic and the deterministimgehas
been recently made in [6].

The aim of the present paper is to tackle the input designi@mob
in a worst-case setting, based on the set-membership paracfi
uncertainty representation (see e.g. [7], [8]). Specliic&dr the case
of identification of a scalar gain, an input is devised whidhimizes
the worst-case identification error. This result can betfinlly used
to construct efficient suboptimal procedures for identifaaof FIR
models of arbitrary order.

mal input design with respect to the actual worst-case ifiestion
error, while Section IV provides the alternative optimagbui design
strategy based on the worst-case normalized identificaioor. A
numerical example highlighting the comparison between tthe
input design approaches is reported in Section V, while lcaiity
remarks are reported in Section VI.

Let RY denote theV-dimensional Euclidean space. A sequence of
., N} will be identified with a vector
z € RN and ||z||, will be the standard’,, norm. Let B,(c,r) =
{z € RY : ||z — ¢||, < r} be the ball of radius- > 0 and center
c € RY in the/, norm. Let us denote blg(z) the base 2 logarithm
of z, and by[z] the minimum integer greater or equal o

Let us consider an-th order FIR SISO linear time-invariant model

y(t) = Zem(t — i+ 1) +d(t) @)

PROBLEM FORMULATION

whereu(t) is the input signal, bounded in the max nofim||. < U,
and d(t) represents the output disturbance. The model parameters
{6;,i = 1,... n} represent the truncated system impulse response.
The disturbancel(t) is assumed to be bounded by a known quantity,
i.e., |d(t)] <4, t =1,2,.... The true system generating the data is
assumed to be exponentially stable. Due to exponentiallistatf
the system and boundedness of the inp{if), unmodeled dynamics
(i.e., the system impulse response t@l,i = n + 1,...}) can be
accounted for by suitably tuning the noise bound

Observations at the system output are taken by a binary senso
with a known threshold”, such that

S(t):{ 1 ify@)<C

0 ify(t) >C.
Let 87 = [61,602,...,0,] € R™ denote the parameter vector and
#T(t) = [u(t),...,u(t —n+1)] the regressor vector. Then, (1) can
be expressed ag(t) = ¢” (t) 0 + d(t).
Let 7o = Byp(c,e0) represent the prior information available

)

Since the optimal input sequence for identification of a @calon the parameter vector. Let us now denote by ¢ RY the

gain derived by minimizing the worst-case error depends @ tinput signal {u(t), ¢ = 1,...,N} and the sequence of binary

length of the sequence itself, the resulting excitatioregixpent and measurement§s(t), t = 1,..., N}, respectively. For a given input-

related estimation algorithm turn out to be a batch proegdwhere output realization{u, s} of length IV, the feasible parameter set is
defined as:
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Fn={0€Fo: ¢T ()0 < C+4 if s(t) =1;

dT(t)0>C—6 if s(t)=0; t=1,...,N}. 3



The worst-case local identification error is defined as By Proposition 1, it follows that the condition

ep(N,u,s) = inf sup || —¢||p . 4 o ﬂ
o(Nous) = inf sup 0= cll (4) S (®)
For a fixed input sequence, let us define the global worst-caseis necessary in order to reduce the radius of the initialitiéas
error with respect to the disturbance realization @$/N,u) = parameter set, and it is also sufficient to guarantee thatrtainty
SUPges, ep(N,u,s), whereSy = {s: Fn # 0}. reduction is possible at any time> 0. Hereafter, the assumption
Since we are interested in optimal input design, the aim is {8) will be enforced. The following result provides the s@a to
compute the minimum worst-case identification error [9] problem (7).
. Theorem 1:Let (8) hold andN be the length of the input signal
er(N) = u;||u1\?igue”(N’ u - ®) to be applied. Then, the optimal input solving problem (7yigen
Let us define by u*(t) = C/ayn, t=1,2,...,N where
s N =, 1+ (2N—t71) + 1_ (2N—t71)
v = min {|0i] 2 € Fo}. (6) AL 1(1+5) a,_, (1-5) ©)

AT D 1-pe

The following assumptions are enforced throughout the pape with estimate updating laws:

Assumption 1: i)

1) v>C/U. {at*at 1vat:at\_(‘_|’) !fs(t):l

2) The signs of the FIR parametets are known. g, =ayn (1=P), @ =a1  if s(t) =0.
The first assumption is necessary to guarantee that thaliniti- Moreover, the radius of the feasible parameter&gtis
certainty on each parameter can be reduced by using theriafmn (14 ﬂ)(zwfl) gy (1— ﬁ)@zvfl)

from the binary sensor (see [1, Prop. 1]). The signs of tharpaters en = < = (10)
0; can be easily detected by performing a suitable preliminary (148D = (1-p)CD
identification experiment involving at mo&k samples. Proof: Let us define
In [5], [10], a strategy has been proposed for tackling thauin N_1
design problem (5). The idea is to select the input sampleshwh Py 2 H [(1 +5)(2j) +(1- 5)<2j)] ]
individually excite the parameté; in order to achieve the maximum j=0
uncertainty reduction fo.r that pgrameter. thlmal |n.pu15|g|e fo.r First, let us prove that
each scalar paramet@y will result in an effective suboptimal solution
for FIR models of arbitrary order. For this reason, the exatttion 1+ —(1-pe"
of the optimal input design problem for scalar gains is pledi in Py = 283 (11)

the next section. For N =1, (11) holds trivially. Moreover, if (11) holds for a generic

N, then it holds also forV 4 1, because

. ") _ M

In this section, we address the optimal input design prokiem Py [(1 +5) +(1-5) ]

the special case of FIR systems of order 1. The following setting [(H_ﬂ)(z’v) _ (1_5)(2N)] . [(1+5)(2N) + (1_5)@”)]
will be considered 25

1 ifylt)<C
y(t) = au(t) + d(t) , s(t) = { o orhnse N R
2 ’
Let us now demonstrate (9) and (10) by induction. First, feskiow
thata,; = ““*““ . In fact, by applyingu(1) = C/a,1, one obtains
two p053|ble fea3|ble sets at time 1, namé'lﬁ? (@11 (1—-5), ao]

Il1. I NPUT DESIGN FOR IDENTIFICATION OF GAINS

Py

with |u(t)| < U, |d(t)] < 6 anda € Fo = [ag, Qo).

Let us denote byF; = [a,, a:] the feasible parameter set at tithe
The aim is to choose the input signélt) at timet as a function of the
available information up to time — 1, i.e. u(t) = n(Fe—15t) , t =

1,2,...,N. In order to stress that the set-theoretic information i8" F = lay, ay1(1 + B)], depending on the value 01(_1) being
exploited in the input choice, the optimal input design fieab (5) respectively 0 or 1. I\E(O))tlce that(18) guarantees the existesfcan
is rewritten as ai;p such that both7™ and F;”’ are strictly contained inFo.
The maximum worst-case uncertainty reduction is thus nbthby

u =arg ||iﬂf v ep(N,u) . (7)  choosingdy); so that the size of both intervals is the same, thus
u(t):n(;—jrl;t) leading toa,; = °+—° . By substituting this value of;|; in J—'< )

or 7\, one gets:; = W which corresponds to (10).

. . L O
C > § > 0 and define3 £ §/C. The following proposition clarifies It is worth remarking that the resulting inpu(1) = satisfies

ag +ap
under which conditions, reduction of the feasible paramete is [“(1)| < U thanks to Assumption 1. _
possible [1, Thm. 14]. Now, let us assume that (9) and (10) hold for a givEénWe want

to show that they hold also for an input of length+ 1. By (11),
(10) can be rewritten as

According to Assumption 1, one hag, > C/U. Moreover, let

Proposition 1:The following statements hold:
a) At a given timet, uncertainty reduction is possible if and only

e Ty 1 _ N _ N _
AT U P
b) If & > “5 then there exists an input sequence such that 2Py
Too B thﬁw an _ 148 Observe that the las¥ samples of the optimal input of lengfki + 1

Ematil " ay 167 ) ) can be chosen by applying to the feasible set at time 1[d,ea:],
¢) If 7= > 1=5, then there does not exist any inputt) such  the same input selection strategy adopted for computingphienal

that Z_i < % input of lengthV for the initial feasible sefa,, @o]. In other words,

™



the second optimal input sample for an input of lenith-1 depends IV. INPUT DESIGN FOR RELATIVE UNCERTAINTY REDUCTION
on [a,,a1] in the same way as the first optimal sample of an input of

length N depends orja,, o], and so on. Indeed, if in (9) the time So far, the considered input design problem has addressed th

indices of the feasible set boundsand @ are suitably rearranged,
one hasa;;qnv+1 = ayn forall ¢ = 1,..., N. Moreover, since
(10) holds for an input of lengttiV, the radius of the final feasible
set Fn41 for the optimal input sequence of lengfki + 1 can be

expressed according to (12) as

N N
@ (1+8)% YV —q (1-p* Y
2PN ’

EN41 = (13)
We have now to select the first input sample(1) = C/ayn41-
The choice ofa;| v, leads to two possibile feasible sets at time

FO = [ayn1(1-8), @] if s(1) =0, or FV) = [ag, ayni1(1+

B)] if s(1) = 1. From (13), the two corresponding final radii turn

out to be
N . N
_© _@+B)® Y — Gy (1 -5
N+1 2PN
~ N N _
o ana(1+p)%) —g, (1= Y
EN+1_ .

2PN

(0) (1)

The optimal choice ofiy 1 is such that ., = ey’ 4, i€,

ao(1+8)* 7~y (1 -6
=N (14 8)%7) — (1 )"
which leads to
do(1+8)*" 7Y +ay(1 - BV
(1+8)@" +(1-p)E"
that is in accordance with (9).

Finally, to computezy+1 one has to substitut@, |y, in 55\?)“ (or

in ={!),}), thus obtaining

A1 IN41 =

1 N_
ENt1 = E{%(l—l—ﬂ)@ Y
@1+ D +a,(1—HE Y

T+ A + (1 - A=)

(1- /3)@”)}

60(1 + B)(2N+171) _ go(l _ B)(2N+171)
2Py [(1+8)2) + (1 - )2Y)]
B 60(1 + ﬂ)(2N+171) . 20(1 . ﬂ)(2N+171)
2PN 11
@A a0
(L+B)CT — (1= B)CT
which concludes the proof. [ ]

Remark 1:In [1], it is proposed as optimal input the signal

2C
G-1+a, |

u(t) (15)

Such signal actually minimizes the size of the worst-casaccord-

minimization of the actual parameter uncertainty, i.e. stme of the
feasible set. The exact solution for identification of gajmovided
by Theorem 1, has shown that the optimal input sequence dsmen
the lengthN of the sequence itself, which is clearly an undesirable
feature. In fact, one may want to adapt on-line the lengthhef t
identification experiment without loosing optimality. Maver, it
would be more sensible to measure the performance of théifiden
cation procedure with respect to the minimum error achievabthe
considered setting, i.e. to optimize the relative uncetyareduction
instead of the absolute one, with the aim of designingaursive
optimal input design strategy. This would also give a ratlenfor
devising a stopping criterion for the identification expezit.

Motivated by the above reasons, in this section a new wast-c
error cost function is introduced and the input signal miring such
a functional is derived for the identification of a scalangdihe same
setting and assumptions as in Section Il are adopted.

Let a € F be the true parameter and 1&t = [a, 3] at a given
time instant. Let us denote by,,.;» (a, @, a) the minimum size of the
worst-case feasible set, obtainable by applying an infisitguence
of inputs. In other wordsD,.... represents the irreducible size of the
worst-case feasible set. The following result holds.

Lemma l:Let 7 = [a,qa], and leta € F be the true parameter.
One has:

28 i Lb5g
Dmin(a,@,a) = 5@ »fa<a<izza
min\Q, A, - 28 = ifﬂﬁ<a<a
54 1 TEs -

Proof: Let us define asa__, @] the feasible set obtained after
applying an appropriate infinite sequence of inputs. By tf@ndion
of Dp.:n and Proposition 1, one can write

Din (Qv a, a) = SLIP (Eoo - Qoo)
Qo000
s.t.:
_ 16)
o > 148 . _ (
Z: 2 % ) Qoo S a S Qoo
o 2 @5 Qoo <.

By exploiting the first constraint and rearranging the aheroblem
(16) can be rewritten as

2
sz‘n(&a, a) = sup /B goo
ag 1-8 (7)
. . 1-8 =
st a,<a; gmgma

whose solution is achieved at_ = min{a
follows by substitution.
Let us introduce the following cost function:

1-8 =
' 178 a}. The result

a—a

J(a,a,a) =

- Dmin (Qv 67 a) '

At a given time instant, J(a,,a:,a) represents the ratio between
the current feasible set size and the minimum size of thetvease
feasible set, achievable by applying an infinite input seqaestarting

ing to the available information up to time— 1, but it does not attimet+-1. Intuition suggests that minimizing over a time horizon
provide the optimal input sequence of lengthminimizing the size of length N corresponds to minimizing the “residual uncertainty”
of Fn (and hencee, (N, u)) in the worst-case sense (7). In othemfter the firstV time instants, or equivalently, to maximizing the

words, if one applies the input signal (15), it is always ffassto
find a FIR parametesi € F, and a disturbance sequenésuch that
the radius of the resultingn is larger tharen in (10).

performance of the firslV input samples. Unfortunately, the function
J depends on the true value afwhich is unknown. According to
the worst-case approach taken throughout the paper, teetiigj will



be to minimize the worst-case value Hfwith respect to all feasible show that they hold also faW + 1. By following the same reasoning
values ofa. By using Lemma 1, it turns out that as in the proof of Theorem 1, we can state that

a—a —
Jmaw(g7a) é sup J(Q,E7a): . = — :ﬂ —1+ﬂ 2N ﬂl_ﬂ_
a€la,a) infoc(aa Dmin(a, @, a) Tmaz|N+1 = =5 B |1-8 \a1+8 ! @3)
a—a _a—a ) . -
_ D@70 12 ﬁﬁ a We have now to select the first input sample(1) = C/ayn41.

The choice ofa, x4, leads to two possibile feasible sets at time 1.

_ (0-pf@-g _1-p (_ _ 1) (18) FO = [ n41(1=0), @o] if s(1) =0, or Y = [a,, ayny1(1+
2Ba 26 \a B)] if s(1) = 1. From (23), the two corresponding final values of

Since by hypothe3|§ > }*g, one has/maz(a,a) > 1, as expected. Jmaz WM OUL tO be

Moreover, by Profosm?ﬂﬁ there eX|st an infinite_ianm&mce 7O _1-B8|14+8 ,~/ To 1 1

such thathmHoogZ = 175, and henC%lil“{)loJmaw(gﬁat) =1. mazIN+1 = o3 |T_3 Gines 148
Remark 2:To clarify the meaning of/,..(a, @), notice that it

allows one to quantify the worst-case relative reductiotheffeasible ) 1-08

148 v /aN+1 (1—B)—1
set w.r.t. the minimum achievable uncertainty. For example,. = maz|N+1 — 28 |1-7 a, )

1.2 means that the size of the feasible se2($; greater than that of

the minimum feasible set achievable by any input sequenadioite ~ The optimal choice ofiy |y, is such thaU(,?)L‘NH = Jmax‘NH,
length, in worst-case sense. Hendg,.. can be used to devise aj e, _ % L = N+ (1 — B) which leads t0d|n 11 =
rationale for stopping the identification experiment. Fstance, one a””“ 7 o

can decide to stop the experiment whenevgr.. < 1.01, because /1> 052 Finally, to compute/;,q -1 One has to substitui@ -

it will not be possible to further reduce the feasible set layrenthan in Jfr?)zz\N«kl (orin JS&I‘NH), thus obtaining, after some algebra

1%.
1+/3 oN+1 @1—/3_1
1_5 Qol'f‘ﬂ

_1-8

In the following, the optimal input sequence minimizidg,q. is
Jmaz\N+1 - W

derived, for the case of a scalar gain. In particular, theiaito solve
the input design problem

which concludes the proof. [ ]
u* = arg inf Jmaz(ay,TN) (19) Remark 3:A key feature of Theorem 2 is that the optimal input
u: flulloo<U sequence solving problem (19) does not depend on the leNgth

wO=nFent) of the identification experiment. This means that the lermftithe

Theorem 2:.Let N be the length of the input signal to be appliedexperiment can be adapted on-line, without loosing opfisnalith
Then, the optimal input sequence solving problem (19) i®miy respect to the relative uncertainty reductidn,...

u*(t) = C/ayn, t =1,2,...,N where In the following, we will denote by “Optimal Error Procedlre
(OEP) and “Optimal Relative Error Procedure” (OREP) theuinp

o= Q1 Q1 (20) design procedures described in Theorems 1 and 2, respggciivieh

H 1-2 the aim of providing a quantitative comparison of the tworapphes,

the performance of the OREP will be evaluated in terms of daus
of the resulting feasible set. Let us now state a lemma which i

_ _ - . R _ instrumental to this purpose.
=8y, U= ayn (L+F) = /g @1 575 if s(t) =1 Lemma 2:Let N be the length of the input signal. Then, the
a,=ayn (1—p) = /2157161571 % L Gi=ar_1 , if s(t) = 0. maximum achievable value af,, when applying the OREP is

with estimate updating laws:

(1) N 1-B_ ,Njgy 1+
Moreover, the value off,,., after N input samples is ay = SI;PQN = 118 ao Gol1-4 (24)
T = 1-B 148 ,vfaol-8 22) Proof: Since by Proposition 1 one ha??r > }*g vt, by (21)
maz| 28 |1-5 ap 1+ ' it follows that the maximum value fou, is “always obtained when

/ 18
Proof: Let us prove (20) and (22) by induction, in a similar® s(t) =0, being\/a, , @ 178 = %t-1: This condition holds, for
way as in the proof of Theorem 1. Lé¥ = 1. By (18) one has instance, whem = ao. By definingu £ @o 1;/3, and observing that if

Jmazlo = 27; Z—Z - 1) By applyingu(1) = C/ay; one obtains s(t) = 0 Vt, thena; = @ Vt, one hasi, = 1/—% s ° Gy =
two possible feasible sets at time 1, nam@l89 [@11(1—=45), ao) Vi i = G ay = VAN = ! Lo ™
- K — iV I
EP input signal. Then

or F{ = [a,, @1 (1 + B)], depending on the value 6{1) being  Theorem 3iLet N be the length of the OR
respectively 0 or 1. The optimal value Ot\l is such that the value the worst-case radius of the feasible parametet/etis

of Jimaz1 for both intervals is the same, i. elﬁr?;x‘l = inim, thus
e a 1—-08 ,Nla, 1+ 6
obtaining ev=2 [1 =2 (25)
- 2 1+8 al-p
1-p5 Qo 1 :1—5 a1‘1(1—|—/3)_1
28 \ai(1-8) 21 a, Proof: By (18), one has/,.. v = 252X which can be
. -5 &N
. ~ @ a . ~ _ rewritten as
which leads toa?|, = 7255 Since0 < a, < @y <@ andf < 1, an —ay _ Toesin B . (26)
only the positive solution is feasible, and &g, = /%2 ““ . By 2 met gy
substitution, one obtaing,,,..; as in (22). Since the left-hand side of (26) denotes the radius7af, and

Now, let us assume that (20) and (22) hold for a givénWe wantto  J,,,q.|~ iS given in (22), by Lemma 2 one hag = sup, Imaz|N -



%QN = Jmaz|N - %QN- The result follows by substitution of 10

Jmaziny @Nday from (22) and (24), respectively. [ ]
Sinceen reported in (10) denotes the radius &ty when the

OEP is applied, by construction one has < ex. Figure 1 shows

the comparison between the two radiiy and ex, for the setting

B =0.1,a, =1anday = 100. Note that forvV > 12 the two

radii are very close. In fact, from (22) one hds,q,12 = 1.0059.

The comparison shows that, in a worst-case settingy ifs small, sl

i.e., Jmae|n IS much greater than 1, it is convenient to use the OEP, %V'

while if J,,., )~y =~ 1, the two procedures are almost equivalent in

terms of size of the final feasible set.
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Fig. 1. Plot ofey (solid) ande (dashed) forv =1,...,15.
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A different scenario arises when the true location of thexpeater (b()l
a is not the worst-case one. In this case, the OREP may lead to
a much better performance than the OEP, in terms of the sizemj. 2. Worst-case identification error for OREP (solid) ddEP (dashed)
the actual resulting feasible set. The worst-case ideatifia errors for a € [1,100], 5=0.1, N=10 (a) andN =4 (b).
(with respect to the disturbanc&t)), for different values ofa, are
reported in Figures 2(a) and 2(b), in the casés= 10 and N = 4, o .
respectively. In both figures3 = 0.1 anda € [1,100]. It can be Dmin(ag, @0, a) is highly sensitive to the true parameter value and
noticed that the error returned by the OEP does not depentieon 1SS Sensitive to the initial feasible set.
actual value ofz. Conversely, the radius of the feasible set provided
by the OREP is a nondecreasing function of the true value.of V. NUMERICAL EXAMPLE
Clearly, if the maximum error also with respect d@ois considered

A Let us consider a system whose transfer function is
(as it is in the nature of the worst-case approach), the vatuegned

by the OEP is smaller, by construction. However, Fig. 2(anshthat G(z) = 38.4 z’ +28.82% 4+ 35.22 — 20‘

for almost all values ofi, OREP gives a smaller error than OEP. This 31523 —0.08224+1.84z—1

is not the case when a shorter identification experimentri®peed, By observing that the impulse responsez) can be considered
as in Fig. 2(b) (v = 4). negligible aftern = 30 samples, the aim is to identify the first

Remark 4:From a practical point of view, the discussion abovgamples of the impulse response. Let us assume that the $onnd
suggests that, ifV is small (and then/,,,..|~ is significantly larger the impulse response coefficientsM p® < 6; < Mp', M = 20,
than 1) it is convenient to choose the OEP, which gives a gteed , = 0.9, i = 1,...,n are known a priori. Moreover, let us set
value of the worst-case radius, while f is large (i.e.,.Jpaeiy ~ =500 < u(t) < 500, 6 = 3 andC = 20, i.e.,, 3 = 0.15.

1), it is convenient to use the OREP, which has almost the samet us excite every FIR parametér = 4 times, by applying the
performance as the OEP for the worst values of the parametart  input design strategy proposed in [5]. This requires a toiplt
for other values ofe may lead to a much smaller radius. ¥ is length equal toN = 1920 (see [5], [10] for details). Both the
not given a priori, it is convenient to use the OREP and chad¥se OEP and the OREP are applied. In Fig. 3(a), a comparison ketwe
such thatJ,... |y satisfies the desired tolerance on the final radiuge resulting radii of the two approaches is reported. Battii rare
reduction. computed for the worst-case realization of the disturbatiieg (i.e.,

Remark 5:Notice that the OEP is highly sensitive to the a priorthe realization that produces the largest feasible setedoh input
information, and in particular t@o. In fact, by (10) it follows that strategy). Since for some parametefis,. . is quite larger than 1,
limyosceny = %EO, independently of the value of true parametethe corresponding OREP radii may result considerably bigigan
a. So, if a priori bounds are chosen in a conservative way, suchthe OEP radii (depending on the true value of the parameters)
conservatism will affect the final value of the radius, aléaVi is Let us now repeat the experiment for= 10. In this case, one
large. Instead, this fact is not true if one uses the OREPath, f needsN = 4710 samples. In Fig. 3(b), a comparison between the



resulting radii of the two approaches is reported. In thisecd,,, .|,
is close to 1, and the OREP strategy leads to better perfasnas
expected.
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Fig. 3. Comparison between final radii obtained by using O&#tk) and
OREP (light), fork = 4 (a) andk = 10 (b).

VI. CONCLUSIONS

System identification based on binary-valued observatisnan
intriguing problem, due to the remarkable information rdhn
caused by the binary sensor. When a deterministic set-ntshipe
setting is considered, problems like optimal input design but to be
even more challenging. The paper has provided new resultgdicst-
case identification of systems equipped with binary sensbhe
exact solution of the optimal input design problem for idfécation
of gains allows one to devise an effective input design etrat
for identification of general FIR systems. Moreover, an siddle
property of input design based on the worst-case ideniificarror,
namely the dependence of the optimal input sequence on tig¢hle
of the identification experiment, has been overcome by dhtcong a
new cost function. This led to the derivation of an optimaumsive
design procedure, over a time interval of arbitrary length.

Several open issues deserve attention for future invégtita
A key question is whether the input selection strategy based
independent excitation of each impulse response samplptisal
in general. Optimal input design for ARX models is anotheject
of ongoing research.

REFERENCES

[1] L. Y. Wang, J. F. Zhang, and G. G. Yin, “System identificati using
binary sensors,”IEEE Transactions on Automatic Controlol. 48,
no. 11, pp. 1892-1907, 2003.

[2] L. Y. Wang, G. G. Yin, and J. F. Zhang, “Joint identificatiof plant

rational models and noise distribution functions usingabjrvalued

observations,”’Automatica vol. 42, no. 4, pp. 535-547, 2006.

J. Juillard, K. Jafaridinani, and E. Colinet, “Consistg of weighted

least-square estimators for parameter estimation prablessed on bi-

nary measurements,” ib5th IFAC Symposium on System ldentification

Saint-Malo, France, July 2009, pp. 72-77.

L. Y. Wang, G. G. Yin, J. F. Zhang, and Y. ZhaBystem Identification

with Quantized Observations Springer, 2010.

M. Casini, A. Garulli, and A. Vicino, “Time complexity ahinput design

in worst-case identification using binary sensors,”Proc. 46th IEEE

Conference on Decision and Contrdllew Orleans (USA), December

2007, pp. 5528-5533.

[6] Y. Zhao, L. Wang, J. Zhang, and G. Yin, “Jointly deternstic and
stochastic identification of linear systems using binaajued observa-
tions,” in 15th IFAC Symposium on System Identificati®aint-Malo,
France, July 2009, pp. 60-65.

[7] M. Milanese and A. Vicino, “Optimal estimation theory rfaynamic
systems with set membership uncertainty: an overviedytomatica
vol. 27, no. 6, pp. 997-1009, 1991.

[8] A. Garulli, A. Tesi, and A. Vicino, Eds.Robustness in Identification
and Contro| ser. Lecture Notes in Control and Information Sciences.
London: Springer, 1999.

[9] D. N. C. Tse, M. A. Dahleh, and J. N. Tsitsiklis, “Optimasyanptotic
identification under bounded disturbancd&EE Transactions on Auto-
matic Contro) vol. 38, no. 8, pp. 1176-1190, 1993.

13

—

[4

[l

5

—_

[10] M. Casini, A. Garulli, and A. Vicino, “Worst-case syste
identification using binary sensors: Input design and time
complexity,” Universita di Siena, Tech. Rep. 2010-1, 2010

http://www.dii.unisi.it/priv/ipapers/paperdoc/42.pdf.



