On worst-case approximation of feasible system of complicated min-max optimization problems. Suboptimal

sets via orthonormal basis functions identification algorithms are then introduced, in which eool
selection is performed by optimizing with respect to a singl
M. Casini, A. Garulli, and A. Vicino element related to the feasible set (namely, its Chebyshev

center or a generic element of the set). Tight bounds on the
Abstract—This paper deals with the approximation of sets of worst-case error of these suboptimal algorithms are peakid
linear time-invariant systems via orthonormal basis functons. Finally, illustrative examples for the case of set appraadion

This problem is relevant to conditional set membership idetifi- Vi@ Laguerre basis functions are presented.
cation, where a set of feasible systems is available from cdrved

data, and a reduced-complexity model must be estimated. The || CONDITIONAL SET MEMBERSHIP IDENTIEICATION
basis of the model class is made of impulse responses of linea o . . .
filters. The objective of the paper is to select the basis fution In set membership identification, the uncertainty assediat

poles according to a worst-case optimality criterion. Subptimal  to an identified model is usually measured according to the
conditional identification algorithms are introduced and tight \orst-case error with respect to a set of admissible systems
bounds are provided on the associated identification errors This set, calledfeasible system seaccounts for two main
information sources: i) a priori knowledge on the plant; ii)
|. INTRODUCTION input/output measurements. The former may be represegited b
2 set to which the true system is known a priori to belong; the

A typma_l objective of sgt member§h|p identification is tha]:iltter is typically a finite record of noisy data, and assuons
of estimating models which are suitable for robust contrg .
re made on the nature of the noise.

purposes (see [1] and related references). In this resaecf’],l

; ; - In this paper, LTI discrete-time SISO systems are consid-
fundamental requirement is that model uncertainties need t . .
ered. The impulse response sequence of a system is denoted

be quantified in the estimated model. The set membership dp- " "'~ " .
proach considers the set of feasible systems (those cdun‘qoati%el h = {hi};=,, and belongs to a linear normed spake

with available input/output data and a priori informati@md equpeq with the nory - || A prion knowledge on th_e
: . . . .. “ . system is expressed ase S, whereS is a set contained in
picks a nominal model in a given model class, by minimizin . . .

. . . Data consists ofV input/output pairsZ = {(ug,yx), k =
the worst-case error with respect to the feasible set. Hen N — 1}, related b '
worst-case approximations of a set of systems must be thckle’ " "’ ' y

A well-known problem of several approaches to identifica- y=Twh" +v (1)
tion for control (see papers in [2] and the survey [3]) is the , )
high complexity of the estimated models. On the other hanfin€® ¥ = [yo...yn-1]" is the output vectorT (u) is
robust control design techniques require nominal models HE lower trlangulalr Toeplitz matrix of inputs, ..., un—1,
reduced complexity (low dimensional, linearly parameted), = lho--. hN71_] is the truncated impulse response, and
along with a measure of the associated nonparametric perfur= [vo - --vn—-1]" is the vector of disturbances affecting the
bation. For this reason, it is common to select as nominAasurements. It is assumed thas unknown-but-bounded,
model class the linear combination of impulse responses '&t
suitable linear filters. Typical examples, widely used isteyn lolly < e (@)

identification, are Laguerre functions [4], Kautz func8dB], \yhere||- ||y denotes a suitable norm &Y ande is a known

generalized orthonormal basis functions [6], [7], [8]. Fhipositive scalar. According to (1)-(2), the feasible systehis
choice is motivated by the fact that these expansions peovigefined as

linearly parameterized model classes, which assure goed ap N
proximations of linear time-invariant (LTI) systems by mea F={heS: |ly-T(wh"|y <e}. 3)

Or: few paramet_zrs. _I;stimation of th_eh_mor(]jel :]hat minimizes Following the terminology of the IBC theory (see [12] for a
the worst-case identification error, within the chosen ced thorough treatment), an identification algoritlin's a mapping

complexity model class, is usually addressedaritionalset from i/0 data to the space of models. When the latter coirscide
membership identification, and has been deeply investiga(ﬁith the space of systents, it resultss : RN xRY — . The

in recent years (see €.9. [, [10].)' Special attentl_on reenb worst-case identification erroassociated to the identification
devoted also to the optimal choice of pole locations for thaﬂgorithm turns out to be

basis functions, in order to find the optimal approximating

model for a given LTI system [11]. E[¢] = sup ||h — ¢(2)||n- 4
This paper studies the worst-case approximation of aneentir her

set of feasible systems, via orthonormal basis functiohg T Inidentification for robust control, it is customary to idigy

problem is formulated in the conditional set membership s¢duced-complexity models, that are suitable for robustrod

ting, and optimal pole selection for the chosen basis expansdesign techniques. A typical choice is to select a linearly

is addressed. It is shown that the computation of optimparameterized model class such as

poles with respect to a set of systems, requires the solution M={h: h=M40, 6 cR") )
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Hence, a conditional identification algorithm is a mapping For a given systenk, let us introduce the optimal (with
¢ : RN x RY — M. In system identification theory, it is respect top) projection operatoil,,, such that

common to choose the basis 6 as a collection of impulse .

responses of linear filters, such as Laguerre or Kautz fonsti M = My 10" () ©)
The notationM,, emphasizes the dependence of the modghere ¢*(h) is the parameter vector corresponding to the
class on some variablgse R™ that characterize the choserprojection off onto the linear manifoldt with optimal poles
basis. For example, for Laguerre filtgrds the real Laguerre p*(h), i.e.

pole (m = 1), while for Kautz functiong denotes the pair of
complex conjugate polesr(= 2).

The identification of a model within the clas$1 has
been addressed in the literaturecasiditionalset membership
identification [9], [10], [13]. In particular, the optimal adel
is given by the so-calledonditional central algorithmwhich
minimizes the worst-case error among the elemenisof.e.
¢cc(Z) = Mp0.. where

07(h) = arg if |7 — My 10| (10)

(notice that bothp*(h) and 6*(h) may not be unique; in
these cased], i is equal to one of the possible choices of
M- )0 (h)). Moreover, let us adopt the notati@niZ; p) to
stress the dependence of the identification algorithm on the
choice of pole®. Then, the algorithm providing the minimum
worst-case identification error 8. = ¢c.(Z;p*(F)). In

O = arg inf sup ||k — My0| . (6) the following, the optimal errorE[¢..(Z; p*(F))] will be
9ER™ hEF compared to that of two classes of suboptimal conditional
A procedure for computing...(Z) has been given in [10] for identification algorthms: _
the casé|- ||z = |||y = |||z, while suboptimal identification ~ - central projection algorithm
algorithms have been considered in [13]. In all these result Sep(Z: 1" (he)) = hep 2 Tohe (11)

the model classM is fixed, i.e. the polep were selected a 3
priori on the basis of some knowledge of the true system. In whereh. = arg inf sup || — h|y is the Chebyshev
the next section, optimal choice of the basis poles, based on her her

the available data, will be addressed. f:enter OfF In th? n(_)rm’;'-[; _
- interpolatory projection algorithm

* A
IIl. OPTIMAL CHOICE OF THE MODEL CLASS Gip(Z;p"(hs)) = hip = 1L, Ry (12)

The approximation of LTI stable systems, by means of Whereh; € F.
orthogonal basis expansions, has been studied since loeg tiThese algorithms have been introduced in conditional set
and has witnessed a renewed interest in the last decadey dumémbership identification (see e.g. [14], [9], [13]), bexain
significant applications not only in system identificatitnut several problems it is much easier to compute the cénter
also in signal processing and other fields. Several resaits ha generic elemeni; of F, and then project it onto the model
been provided concerning the approximation of a given LElass. M, rather than solving problem (6). For example,is
system, via different basis expansions (see [8] and redeeneasily obtained every time the s&t has a symmetry center
therein). The optimal choice of pole locations for the bas{g.g., if it is an ellipsoid), while algorithms are availakfior
functions, in order to find the optimal approximating modedomputingh. whenF is a generic polytope [15]. In this case,
for a fixed number of terms in the expansion, is also a widetyh; € F can be obtained via linear programming.
addressed problem (see [11] for a survey on this topic). For awhen also the model clas$81 must be selected via op-
given functionh € H and a model clasdA, the optimal pole timization with respect to poleg, as in the computation of

is provided by (11) or (12), one can first computie. or h;, then exploit
. ) ) conditions to obtaip* (h.) or p*(h;), and hencé,,, or h;, via
p'(h) = arg 1}27@ gaRn 1A = M6l (") the projection operator (9). In the next section, result lve

provided on the suboptimality degree of algorithms (1D}(1

where?P is the_set of admissible pole locations, which usually;iy, respect to the minimum identification error, provided b
rely on a priori knowledge on the true system. boe(Z: p*(F)).

In the context of conditional set membership identification ¢
the selection of the optimal pole must be performed with
respect to all the elements in the feasible set, i.e. via time m
imization of the worst-case error. This leads to the follogvi
optimization problem

IV. SUBOPTIMAL POLE CHOICE AND ERROR BOUNDS

The aim of this section is to derive tight bounds on the
identification error provided by the projection algorithfid)
and (12), i.e. to determine the minimum> 1, such that

“(F) = arg inf inf sup ||h— M,0| - 8 . .
PUE) = e g e W MOl ®) Eloep(Z:p" (he))] < 1 - Eloec(Z:p" (F))]
This is, in general, a very complicated min-max optimizatiofor all possibley and F (and similarly for an interpolatory
problem for which the derivation of simple conditions apeaprojection algorithmy;,).
to be an awkward task. For this reason, suboptimal solutionsBefore proceeding, it is useful to recall that in the condi-
will be pursued in this paper, based on the computation of ttienal set membership identification setting of Sect. IVesal
optimal polep*(h) as in (7), for some suitable related toF. problems of interest can be restricted to the finite dimeradio



spaceR”. In fact, let Ty denote the truncation operator in
H, such thatTxh = A", and Ry be the remainder operator
Rnh = {h}$° 5. Then, under the mild assumption thak S A bound on the identification error can be provided also for
is a balanced set (i.e., i € RxS, then also—h € RxS), interpolatory projection algorithms. Unfortunately, ghiurns

it can be shown that for any, norm, 1 < p < oo, one out to be much larger than that given by Theorem 1.

has E[Tn¢] < E[¢] for any conditional algorithmp, model
classM and feasible seF. Therefore, one can consider onIyTheorem 3. Letr =rad(Fy) andd; = |[h; — hiy|. Then,

Proof. See Appendix B. O

truncated basis expansions such as o Z: p(he))] < mi {2+di 1+27} Elbe(Z:p" (Fx)
03 D T =S min > -5 (° cc\li P N .

M={nN eRN: BN =M,0, 0 €R", n< N}. (13) ? r’ )
Consequently, an identification algorithm turns out to be Broof. See Appendix C 5

mapping fromRY x RN (the i/o data space) to an-
dimensional subspace @&” (the truncated model class).

Moreover, one has In order to obtain the maximum value of the bound in a

" worst-case setting, one has to consider the worst intexpgla
7 ] N . v estimator, i.e. the projection of the wors; € Fy, and

Elp M]={ sup |h —¢’(Z)”p+2ug BN hIG all possible feasible sets. This corresponds to maximizing

TN (F) © (14) (17) with respect to all- > 0, d; > 0, thus obtaining the
(in the following, dependence oM will be omitted to Pound Eloy,(Z;p*(hi))] < 3 - Elce(Z;p*(Fn))], which
simplify notation). The rightmost term in (14) depends onifPllows immediately from Theorem 3 when = d;. Also
on S and can be computed a priori. Hence, in the followin tus bound turns out to be tight, as one can find a feasible
the finite-dimensional feasible s@ty = TwF c RY will be S€t/Fn, an eIe_menthl- € Fy and a family of quel classes
considered, when computing the estimates(Z; p*(Fx)), M(p), depending om, such that the error of the interpolatory

bep(Z:p*(he)), Gip(Z; p*(hs)) introduced in Sect. IIl. projection algorithm is arbitrarily close to three times #rror
In this paper, the/, identification error is considered, i.¢.. Of the optimal algorithmp...
2« = || - || (to simplify notation, the/s norm will be denoted It is interesting to compare the above results to those

by || - ). Let us also denote the Chebyshev radiusFaf by ~©obtained in [13] for the case of a fixed model class,
rad Fy) = sup ||k — he||, whereh, is the Chebyshev centerWith poles p assigned a priori. It has been shown that
" heFw . Elpep) < V/4/3E[pee] and E¢;p] < 2 E[p..]; moreover,
of Fiv in the /> norm. Now, the main result of the paper cagnere exist feasible set&y and model classes! for which
be stated. the equality holds. Obviously, in the context of the present
Theorem 1. Letr = rad(Fx) andd = ||h. — hey|. Then, paper, the ratio between the worst-case identificationr exfro
the projection algorithms and the minimum achievable error

—d)2 . . :
Eléep(Z:p*(he))] < _ % - Elpee(Z;p*(Fy))]. I8 larger, due to t_h_e fact that su_boptlmal algorithms seleet
e+ (15) polesp by optimizing over a single element related foy
Proof. See A dix A - (namelyh, or h;), while the minimum error is achieved by
roof. See Appendix A.

choosingp*(Fy) as in (8), where the whole feasible set is
It is worth remarking that Theorem 1 holds for ady considered. Nevertheless, the bounds provided by thetsesul

(dimension of the feasible set depending on the data sit)this section are usefu“l, as they cl?rify that the maximum
and for anyn (model order);n < N. The maximum bound possﬂ_ale gap between a S(_et-onented chqce of the polds an
with respect to all possible feasible sets (i.e. with respe%Cho'Ce based only on a single element is not very large. This
toalr >0 d > 0)is given by E[¢e,(Z;p*(he))] < is especially true for the central projection algorithm,ieth

= ’ = cp ) c = .. . % .
V3 Elbee(Z; p* (Fn))], which occurs whem = d. The next 1S in turn much easier to compute than.(Z;p*(Fw)), in
theorem shows that the bound on the identification error R@rticular when the feasible set admits a symmetry center.
tight, i.e. it is possible to find a feasible s& and a family
of model classesM (p), depending orp, such that in (15) A. Error bounds for ellipsoidal feasible sets

equality holds. In some identification problems, the feasible set has a

Theorem 2. Let M(p) be a family of orthonormal bases asspecial structure that can be exploited in the computation
in (13), with M,, € RN*", Assume that for somec R”, the of bounds on the identification error. If the noise in (2) is
infimum in (7) is achieved for two distinct pole vectptsp;, bounded in thel; norm, and the a priori sef provides

and letd:, 03 be the corresponding parameter vectors in (10f;0nstraints only on the taikyh of the impulse response (the
so that so calledresidual a priori information, often adopted in the

= . - . - ~ ~ . literature [9]), the feasible system sk is anN-dimensional
1= Mp; 03] = [|h—Mp; 05 || < [|h=DL0]| . Vp, V0 € éliG) ellipsoid. Theorems 1 and 2 guarantee that the error prdvide
- - >) by the central projection algorithm is not greater théhtimes
*\/ *)
M(f)reoybellr, let(h_MPTi}) (h;]ﬁ%e?) = 0. Then, there exists e minimum error. However, for ellipsoidal feasible sétis t
a feasible setFy C R™ such that bound can be further reduced, exploiting the special siract
Ebep(Z;p*(he))] = V2 - El¢ee(Z;p* (Fn))]- of the set.



Theorem 4. Let Fy € RY be an ellipsoid of centet.., and
let Ly, and L,, be the lengths of its maximum and minimum
semi-axis, respectively. Moreover, defihe ||h.—h.,||. Then,

Elpep(Z;p*(he))]
E[¢CC(Z;p* (]:N))] o

2 12
Lyt it d<Zu—LIm

d2 Lm
Ly 1+———%
M + L?u )

Ly +d . L3, — L2 oL
if d>—~—"" andL,, > 0. L
Lm +d - L > -1 08 -06 -04

m

orL,, =0,

infgcgn [lhe — Mpo|

IN

(18) L—;Suerré pore().Z 0.4 0.6 0.8 1
(@)
Proof. See Appendix D. O

25

Observe that, for the ellipsoidal feasible set abadvg, =
rad(Fn). Hence, wherl,,, = 0 one obtains the same bound
as in Theorem 1. Conversely, whdh,, tends toL,,, the
ratio E¢.p]/E[éc.] tends to 1, as expected, because for a
spherical feasible set the conditional center with resfeahy
M coincides with the projection of the center of the sphere
onto M.
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V. EXAMPLES

In the first example reported below, the suboptimal pole %8 s o4 o 0 lo.‘z o 05 08 1
choice performed by the central projection algorithm is eom ag?‘;;e pole
pared to the optimal one (8), in the case of Laguerre basts fun
tions. The optimal modeh.. = ¢..(Z;p*(Fn)) is obtained Fig. 1. (a) Approximation error for the centér. versus Laguerre pole,
by applying the procedure presented in [10] for computirfagf different model orders; (b) Worst-case error for the ditbanal central
L. . . : . gorithm versus Laguerre pole, for different model orders
the conditional central estimate of an ellipsoidal feasitédt,
for each model clasa1 with fixed Laguerre pole, and then
minimizing with respect tg via a one-dimensional gridding

on the interval(—1,1). Conversely, Figure 1b shows the worst-case error (with re-

Example 1 Consider the transfer function spect to Fy) of the conditional Chebyshev center versus
54+ 10.72-1 4+ 5.002 22 the Laguerre pole. The values of the optima_l poles and
H(z) = — = - the corresponding erraE[h..| are also reported in Table I,
1+23271 4206272 +0.72273 together with the ratio between the errors of suboptimal and
and letN = 50 i/o data be available, with the input, being optimal algorithm and the upper bound provided by Theorem
a unitary step. Assume that the truncated feasible systém 4e
is given by Fy = {h"N : |y — T(u)hV| < V/Ne} with
noise{v;,} " being a Gaussian random sequence, satisfyingFrom the above example, it can be observed that the
(1/VN)|lv|| < e, ande = 1. Let h, = T~'(u)y and M suboptimal polep*(h.) selected by the central projection
be the model class given by Laguerre filters. In Figure lalgorithm can be quite far from the optimal onpg(Fy),
the errorinfoegn [|h. — M)0]| is plotted as a function of the due to the presence of local minima whose cost is close to
Laguerre pole, for different model orders= 1,2,3,4. This the global one (in Example 1, this happens for= 1 and
error clearly does not depend on the feasible set, but judt®n » = 4). Nevertheless, the worst-case identification error of
approximation of its centek.. The global minimum of each the suboptimal algorithm turns out to be pretty close to the

curve corresponds to the pgké(h,.) for each model order, minimum achievable erroE[¢..], as shown by Table |I.
which is the one picked by the central projection algorithm : . :
6ep. These values are reported in Table I, together with th The next example shows that there exist conditional iden-

associated worst-case identification errd@g.,); the latter t|?|cat|on problems,.wnh model .C.IaSM given by Laguerre :
. pe . 7.~ expansions, for which the conditions of Theorem 2 are satis-
are obviously larger than the errors at the minima in Fig. 1

which are computed only with respect to the cerfigrand ﬁéd' and hence the upper bound is actually achieved.
not to the whole sefFy. Example 2 Let M be the model class of discrete Laguerre




TABLE |

SELECTED POLES CORRESPONDING WORSTCASE IDENTIFICATION ERRORS ACTUAL ERROR RATIO AND UPPER BOUND PROVIDED BYTHEOREM4, FOR
DIFFERENT MODEL ORDERS

w [ 7" (he) | 7 (FN) | Elhep] | Elhed] | Elhopl/Elhed] | Bound Thm. 4
T [ —0.054 | —0.910 | 25.0408 | 24.5024 1.0220 1.4069
2 [ —0.595 | —0.567 | 20.8556 | 20.7634 1.0044 13573
3 [ —0.380 | —0.361 | 19.6296 | 19.5662 1.0032 1.3223
1 [ —0.244 | —0.491 | 19.1362 | 19.0656 1.0037 1.3045

filters, which are defined as

_ V1P !
1—pz—1

= Z_l_p
1—pz—1

(7]

Lj(zp) = Z{l;(p)}

wherej = 1,2,..., andp € R, |p| < 1 is the Laguerre
pole. Leth = 1;(—0.7746) + 1, (0.7746), and let us setv = [
100 andn = 2. For h = Tyh there are two distinct optimal [10]
Laguerre poles, given by} = —0.5773 andp} = 0.5773. The
corresponding optimal parameter vectors (10) can be casdput
as6j = M,. h and0; = M,. h, whereM,. € RV>2 is the
truncated basis matrix oM, with pole p;. Let us choose
hep = M,:0%. Then, it can be verified thatp andvé € R”

(8]

[12]
1= hepll = I = M0 = 09129 < B2

and(h—hep)’ (h—M,:603) = 0. Therefore, due to Theorem 2,
there exists a feasible set for whidifh.,] = V2 - Elhe.].
Indeed, letFy = {z € RV : ||z — h|| < 0.9129, h'(Mz05 —  [14]
h) = 0}. By applying the procedure in [10] for the com-
putation of the conditional Chebyshev center and miningjzin
with respect top, one getshee = dee(Z;p* (Fn)) = Mp; 05
Moreover, one ha#[h.,] = 1.8258 and E[h..] = 1.291.

[16]

VI. CONCLUSIONS

In this paper the problem of selection of an orthonormal
function basis for the approximation of a set of feasible

systems has been addressed in a worst case identification

setting. Impulse responses of increasing order lineandilte
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APPENDIX

are considered as candidate basis functions and suboptimal

conditional estimators are derived, using the informapom+ A. Proof of Theorem 1

vided by specific optimal or suboptimal point estimators of _ .

the feasible system set. Tight bounds on the worst caseserror!n Order to prove Theorem 1, the following lemma is needed
of these suboptimal algorithms with respect to the optimPr & Proof, see [16]).

estimation error attainable through the optimal functi@sib | ornma 1. Let h. be the Chebyshev center @y in the

are derived. ¢, norm and consider the closed halfspag = {h €

RN : alh >b,, a, € RV b, € R}, such thatal h, = b,.
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Now, let us first consideE[h.p] = E[¢cp(Z; p*(he))]. One
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(4]
(5]
(6]

Elhep|l= sup [[hep=h| < |[hep=hell+ sup [[he=h][ = d+r
heFn heFn
(19)



existsh, € Fn[) Qe such that||h. — h.|| = r. Therefore, D. Proof of Theorem 4

one has In order to prove Theorem 4, the following lemmas are
Elhe? > ke — heol? needed.
= [lhe = hel/® + || he — heol? Lemma 2. Let £ = {z € RY : 2/Qz < 1} be
(he — he) (he — hee) a non-degene_rate axes-oriented ellipsoid, such that=
+2Hh = e e = Frocl] diag{q;} N1, with 0 < ¢1 < g2 < ... < qn. Moreover let
e, e e B={zeRN: 2z2>d, d>0}. Define
> lhe — th2 +d? = r2 42 (20) {z 2z 2 }
_ _ _ 2* = arg inf sup ||z — z||3. (24)
where it has been exploited the fact thiat — .|| > d, which z€B zece
follows from th[i d]eflnltlonj oh, andd.(Thde)r;, from (19) and Then,z; = 0.
20) one hastleel < _rtd  _\ Jo _ (=% \yhich proves
(20) Blhee]l = Vr2td? ri+d? P Proof. W.l.o.g., it can be assumed = 1. Moreover, it is

the theorem.
straightforward to show that the minimum in (24) is reached

on the boundary oB, i.e.||z*|| = 1. From Theorem 2 in [10],

B. Proof of Theorem 2 one has that for any such thatz; # 0
Let Fx = {h € R : h = h+a (h—he), |o| < 1}, where max||z — o = (v = A"Q) '\ Q =%, (25)

hep = My 07 has been chosen as the central projection (this
choice is correct aB = cer(Fy) and (16) holds). Moreover, where \* is the largest real solution of the equation
let d = ||h — hep|. It is easy to show that

Z(In —2MQ)2Qz—1=0. (26)
Elhep] = sup [[hep — Al - . 1 .
heFn Moreover, it is known that\* > —. Hence, using (25) one
1ep = (B +h = hep)| has thatz* is the solution of
12 (hep — B)|| = 24d. (21) N/ rga 2
) , inf Z< @i > : (27)
Now, let h = M,:63. Then, from the assumptions of the z2z=1 L= \1 =X\
theorem, one hagh — k|| = d and (h — h)'(h — hep) = 0. N
Therefore, it follows that Exploiting (26) and substitutingz; = 1 — sz into (27),
Eh]> = sup ||h—h|? one has =
heFn
7 7 7 N * *
= ||(h h) — (h h)” Z( A"q;2; ) ( A q )
= |h=h|?+ |hep — R =2d%  (22) S \1-Ng — M q
N 2 Naq 2
hep) _ 2d  _ -1 2
Hence, from (21) andA(22) one h%ﬁ = 2L = V2 +Z {< > (1 — )\*q1) }Zz'
which means that.. = h (otherwise Theorem 1 would be
violated) and the upper bound is achieved. Since ¢; < ¢;, for i > 2, it is easy to show that; =
. P . 2
1331'%.) — glx‘:’&ql < 0,i=2,...,N and hence the
minimum in (27) is achieved for soms, . .., z3, such that

C. Proof of Theorem 3 (23) + ...+ (z})* = 1. This impliesz} = 0. a

For anyh € Fn one has
A straightforward extension of Lemma 2 is obtained by

lhip — Il < |hip — hell + [[he — B translating the center of the ellipsotd and by rotating the
= |k — Bl + ||he — A ellipsoid semi-axes onto a new reference system spanned by
the orthonormal basigvy,...,vx}. Hence, the next result
< Hthi - hz“ + th - hc” + ”hc - hH holds.
< di+r+|he—nh 23
- | | (23) Lemma 3. LetE = {2z ¢ RN : r = he +

where it has been exploited the fact tHat € Fy. Then, .o, a;v;, L?w + L2 vagag < 1; he € RY; oy =
maximizing both sides of (23) ovérc Fy one getsti[hyy) < 1, i = 1,...,N; viv; = 0, i # j; Ly > Ly, >0} and
d; 4+ 2r. On the other hand, one has that = |[II,h; — B={z: Hz - hc|| >d, d> 0}. Define

hil| = infy infeern ||h; — Mp0|| < infy infpern supj ez, |h— i} . )

M| = Elh.]. Since, by definition,r = radFy) < 2" = arg inf Sup Iz — 2|2

supje . [hee — bl = Elhee], one hasE[he.] > max{d;, r} e

and the result follows immediately. Then,(z* — h.) € span{ve,...,on} and||z* — h.|| = d.



Now Theorem 4 can be proven. Let us first consiff.,| =
E[¢ep(Z;p*(he))]. One has

Elhey) = Sup [[hep = Rl
N

< ||hcp_hc|‘+hselg) ||hc_hH = d+ L. (28)
N

Then, let us analyze the minimum erroE[h.] =
El¢ee(Z;p*(Fn))]. Let Fn be an ellipsoid with the same
center and axes orientation &y, maximum semi-axis of
length L, and all other semi-axes of length,,. By construc-
tion, Fy C Fn. Moreover,F y coincides with€ in Lemma
3 (with vy, ..., vy being the directions of the semi-axes of
Fn)- By definition of ., in (11), one has that the conditional
centerh,. satisfies||hcc — hell > ||hep — hel| = d. Hence
E[hCC] = SUPpery Hhcc - h”_ > SUPr, cFy Hhcc - h” >
nf.. |z h.>a SUPscE, ||z = R||. Then, from Lemma 3 one
gets

Efhe] > sup ||2* — 7| (29)

heF N

for somez* such thatz*—h.) € span{ve,...,vn}and|z*—
he|| = d. W.l.o.g., assuméz*—h.) € span{vy} (a rotation of
the axess, ..., vy can be applied without affecting ) and
setz* = h. —dwvy (the sign ofvy can be chosen arbitrarily).
First, observe that wheh,, = 0 the ellipsoid F 5 collapses
onto a segment with extremal poirfis= h. 4 Ly, v;. Then,
one has|z* — h||2 = L2, + d?, and hence from (28) and (29)

EZP% > LLA;J;—”I as stated in the upper part of (18).

Now, let us examine the cadg,, > 0. A generic point on the
boundary of Fy can be written as = h, + a1 v1 + ... +
ay vy, Where

L2 + 1= Za =1. (30)

Then,
lz* =hl? = ||he —dony —he—a1v) —...—ayox|?
= ad+as+...+ (ay+d)?
L3, — L2
= o {%] +2and+ L2, + d?
M

where the last equality has been obtained by using (30).
Exploiting the above expression, the maximization of —h/|
with respect tch € F v is a straightforward exercise that leads
to

2

Loy J1+ if d < L

sup [|2* 7] = L3, - I3
RN Lo +d it d > Li—Lin,
(31)
Then, (18) is an immediate consequence of (28), (29) and (31)



