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On worst-case approximation of feasible system
sets via orthonormal basis functions

M. Casini, A. Garulli, and A. Vicino

Abstract—This paper deals with the approximation of sets of
linear time-invariant systems via orthonormal basis functions.
This problem is relevant to conditional set membership identifi-
cation, where a set of feasible systems is available from observed
data, and a reduced-complexity model must be estimated. The
basis of the model class is made of impulse responses of linear
filters. The objective of the paper is to select the basis function
poles according to a worst-case optimality criterion. Suboptimal
conditional identification algorithms are introduced and tight
bounds are provided on the associated identification errors.

I. I NTRODUCTION

A typical objective of set membership identification is that
of estimating models which are suitable for robust control
purposes (see [1] and related references). In this respect,a
fundamental requirement is that model uncertainties need to
be quantified in the estimated model. The set membership ap-
proach considers the set of feasible systems (those compatible
with available input/output data and a priori information)and
picks a nominal model in a given model class, by minimizing
the worst-case error with respect to the feasible set. Hence,
worst-case approximations of a set of systems must be tackled.

A well-known problem of several approaches to identifica-
tion for control (see papers in [2] and the survey [3]) is the
high complexity of the estimated models. On the other hand,
robust control design techniques require nominal models of
reduced complexity (low dimensional, linearly parameterized),
along with a measure of the associated nonparametric pertur-
bation. For this reason, it is common to select as nominal
model class the linear combination of impulse responses of
suitable linear filters. Typical examples, widely used in system
identification, are Laguerre functions [4], Kautz functions [5],
generalized orthonormal basis functions [6], [7], [8]. This
choice is motivated by the fact that these expansions provide
linearly parameterized model classes, which assure good ap-
proximations of linear time-invariant (LTI) systems by means
of few parameters. Estimation of the model that minimizes
the worst-case identification error, within the chosen reduced-
complexity model class, is usually addressed asconditionalset
membership identification, and has been deeply investigated
in recent years (see e.g. [9], [10]). Special attention has been
devoted also to the optimal choice of pole locations for the
basis functions, in order to find the optimal approximating
model for a given LTI system [11].

This paper studies the worst-case approximation of an entire
set of feasible systems, via orthonormal basis functions. The
problem is formulated in the conditional set membership set-
ting, and optimal pole selection for the chosen basis expansion
is addressed. It is shown that the computation of optimal
poles with respect to a set of systems, requires the solution
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of complicated min-max optimization problems. Suboptimal
identification algorithms are then introduced, in which pole
selection is performed by optimizing with respect to a single
element related to the feasible set (namely, its Chebyshev
center or a generic element of the set). Tight bounds on the
worst-case error of these suboptimal algorithms are provided.
Finally, illustrative examples for the case of set approximation
via Laguerre basis functions are presented.

II. CONDITIONAL SET MEMBERSHIP IDENTIFICATION

In set membership identification, the uncertainty associated
to an identified model is usually measured according to the
worst-case error with respect to a set of admissible systems.
This set, calledfeasible system set, accounts for two main
information sources: i) a priori knowledge on the plant; ii)
input/output measurements. The former may be represented by
a set to which the true system is known a priori to belong; the
latter is typically a finite record of noisy data, and assumptions
are made on the nature of the noise.

In this paper, LTI discrete-time SISO systems are consid-
ered. The impulse response sequence of a system is denoted
by h = {hi}∞i=0, and belongs to a linear normed spaceH,
equipped with the norm‖ · ‖H. A priori knowledge on the
system is expressed ash ∈ S, whereS is a set contained in
H. Data consists ofN input/output pairsZ = {(uk, yk), k =
0, . . . , N − 1}, related by

y = T (u)hN + v (1)

where y = [y0 . . . yN−1]
′ is the output vector,T (u) is

the lower triangular Toeplitz matrix of inputsu0, . . . , uN−1,
hN = [h0 . . . hN−1]

′ is the truncated impulse response, and
v = [v0 . . . vN−1]

′ is the vector of disturbances affecting the
measurements. It is assumed thatv is unknown-but-bounded,
i.e.

‖v‖Y ≤ ε (2)

where‖ · ‖Y denotes a suitable norm inRN andε is a known
positive scalar. According to (1)-(2), the feasible systemset is
defined as

F = {h ∈ S : ‖y − T (u)hN‖Y ≤ ε}. (3)

Following the terminology of the IBC theory (see [12] for a
thorough treatment), an identification algorithmφ is a mapping
from i/o data to the space of models. When the latter coincides
with the space of systemsH, it resultsφ : RN×R

N → H. The
worst-case identification errorassociated to the identification
algorithm turns out to be

E[φ] = sup
h∈F

‖h− φ(Z)‖H. (4)

In identification for robust control, it is customary to identify
reduced-complexity models, that are suitable for robust control
design techniques. A typical choice is to select a linearly
parameterized model class such as

M = {h : h = Mpθ, θ ∈ R
n} (5)

whereMp is a linear operator,Mp : R
n → H and θ is

the n-dimensional parameter vector to be identified,n < N .
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Hence, a conditional identification algorithm is a mapping
φ : R

N × R
N → M. In system identification theory, it is

common to choose the basis ofM as a collection of impulse
responses of linear filters, such as Laguerre or Kautz functions.
The notationMp emphasizes the dependence of the model
class on some variablesp ∈ R

m that characterize the chosen
basis. For example, for Laguerre filtersp is the real Laguerre
pole (m = 1), while for Kautz functionsp denotes the pair of
complex conjugate poles (m = 2).

The identification of a model within the classM has
been addressed in the literature asconditionalset membership
identification [9], [10], [13]. In particular, the optimal model
is given by the so-calledconditional central algorithm, which
minimizes the worst-case error among the elements ofM, i.e.
φcc(Z) = Mpθcc where

θcc = arg inf
θ∈R

n

sup
h∈F

‖h−Mpθ‖H. (6)

A procedure for computingφcc(Z) has been given in [10] for
the case‖·‖H = ‖·‖Y = ‖·‖2, while suboptimal identification
algorithms have been considered in [13]. In all these results,
the model classM is fixed, i.e. the polesp were selected a
priori on the basis of some knowledge of the true system. In
the next section, optimal choice of the basis poles, based on
the available data, will be addressed.

III. O PTIMAL CHOICE OF THE MODEL CLASS

The approximation of LTI stable systems, by means of
orthogonal basis expansions, has been studied since long time,
and has witnessed a renewed interest in the last decade, due to
significant applications not only in system identification,but
also in signal processing and other fields. Several results have
been provided concerning the approximation of a given LTI
system, via different basis expansions (see [8] and references
therein). The optimal choice of pole locations for the basis
functions, in order to find the optimal approximating model
for a fixed number of terms in the expansion, is also a widely
addressed problem (see [11] for a survey on this topic). For a
given functionh ∈ H and a model classM, the optimal pole
is provided by

p∗(h) = arg inf
p∈P

inf
θ∈Rn

‖h−Mpθ‖H (7)

whereP is the set of admissible pole locations, which usually
rely on a priori knowledge on the true system.

In the context of conditional set membership identification,
the selection of the optimal pole must be performed with
respect to all the elements in the feasible set, i.e. via the min-
imization of the worst-case error. This leads to the following
optimization problem

p∗(F) = arg inf
p∈P

inf
θ∈R

n

sup
h∈F

‖h−Mpθ‖H. (8)

This is, in general, a very complicated min-max optimization
problem for which the derivation of simple conditions appears
to be an awkward task. For this reason, suboptimal solutions
will be pursued in this paper, based on the computation of the
optimal polep∗(h) as in (7), for some suitableh related toF .

For a given systemh, let us introduce the optimal (with
respect top) projection operatorΠn, such that

Πnh = Mp∗(h)θ
∗(h) (9)

where θ∗(h) is the parameter vector corresponding to the
projection ofh onto the linear manifoldM with optimal poles
p∗(h), i.e.

θ∗(h) = arg inf
θ∈Rn

‖h−Mp∗(h)θ‖H (10)

(notice that bothp∗(h) and θ∗(h) may not be unique; in
these cases,Πnh is equal to one of the possible choices of
Mp∗(h)θ

∗(h)). Moreover, let us adopt the notationφ(Z; p) to
stress the dependence of the identification algorithm on the
choice of polesp. Then, the algorithm providing the minimum
worst-case identification error ishcc = φcc(Z; p∗(F)). In
the following, the optimal errorE[φcc(Z; p∗(F))] will be
compared to that of two classes of suboptimal conditional
identification algorithms:

- central projection algorithm

φcp(Z; p∗(hc)) = hcp , Πnhc (11)

wherehc = arg inf
h∈H

sup
h̃∈F

‖h− h̃‖H is the Chebyshev

center ofF in the normH;
- interpolatory projection algorithm

φip(Z; p∗(hi)) = hip , Πnhi (12)

wherehi ∈ F .
These algorithms have been introduced in conditional set
membership identification (see e.g. [14], [9], [13]), because in
several problems it is much easier to compute the centerhc or
a generic elementhi of F , and then project it onto the model
classM, rather than solving problem (6). For example,hc is
easily obtained every time the setF has a symmetry center
(e.g., if it is an ellipsoid), while algorithms are available for
computinghc whenF is a generic polytope [15]. In this case,
a hi ∈ F can be obtained via linear programming.

When also the model classM must be selected via op-
timization with respect to polesp, as in the computation of
(11) or (12), one can first computehc or hi, then exploit
conditions to obtainp∗(hc) or p∗(hi), and hencehcp or hip via
the projection operator (9). In the next section, results will be
provided on the suboptimality degree of algorithms (11)-(12),
with respect to the minimum identification error, provided by
φcc(Z; p∗(F)).

IV. SUBOPTIMAL POLE CHOICE AND ERROR BOUNDS

The aim of this section is to derive tight bounds on the
identification error provided by the projection algorithms(11)
and (12), i.e. to determine the minimumκ ≥ 1, such that

E[φcp(Z; p∗(hc))] ≤ κ ·E[φcc(Z; p∗(F))]

for all possibley and F (and similarly for an interpolatory
projection algorithmφip).

Before proceeding, it is useful to recall that in the condi-
tional set membership identification setting of Sect. II, several
problems of interest can be restricted to the finite dimensional
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spaceRN . In fact, let TN denote the truncation operator in
H, such thatTNh = hN , andRN be the remainder operator
RNh = {h}∞i=N . Then, under the mild assumption thatRNS
is a balanced set (i.e., ifh ∈ RNS, then also−h ∈ RNS),
it can be shown that for anyℓp norm, 1 ≤ p < ∞, one
hasE[TNφ] ≤ E[φ] for any conditional algorithmφ, model
classM and feasible setF . Therefore, one can consider only
truncated basis expansions such as

M = {hN ∈ R
N : hN = Mpθ, θ ∈ R

n, n < N}. (13)

Consequently, an identification algorithm turns out to be a
mapping from R

N × R
N (the i/o data space) to ann-

dimensional subspace ofRN (the truncated model class).
Moreover, one has

E[φ,M] =

(

sup
hN∈TN (F)

‖hN − φ(Z)‖pp + sup
h∈S

‖RNh‖pp

)1/p

(14)
(in the following, dependence onM will be omitted to
simplify notation). The rightmost term in (14) depends only
on S and can be computed a priori. Hence, in the following,
the finite-dimensional feasible setFN = TNF ⊂ R

N will be
considered, when computing the estimatesφcc(Z; p∗(FN )),
φcp(Z; p∗(hc)), φip(Z; p∗(hi)) introduced in Sect. III.
In this paper, theℓ2 identification error is considered, i.e.‖ ·
‖H = ‖ · ‖2 (to simplify notation, theℓ2 norm will be denoted
by ‖ · ‖). Let us also denote the Chebyshev radius ofFN by
rad(FN ) = sup

h∈FN

‖h− hc‖, wherehc is the Chebyshev center

of FN in the ℓ2 norm. Now, the main result of the paper can
be stated.

Theorem 1. Let r = rad(FN ) and d = ‖hc − hcp‖. Then,

E[φcp(Z; p∗(hc))] ≤
√

2− (r − d)2

r2 + d2
· E[φcc(Z; p∗(FN ))].

(15)

Proof. See Appendix A. �

It is worth remarking that Theorem 1 holds for anyN
(dimension of the feasible set depending on the data set)
and for anyn (model order),n < N . The maximum bound
with respect to all possible feasible sets (i.e. with respect
to all r ≥ 0, d ≥ 0) is given by E[φcp(Z; p∗(hc))] ≤√
2 ·E[φcc(Z; p∗(FN ))], which occurs whenr = d. The next

theorem shows that the bound on the identification error is
tight, i.e. it is possible to find a feasible setFN and a family
of model classesM(p), depending onp, such that in (15)
equality holds.

Theorem 2. Let M(p) be a family of orthonormal bases as
in (13), withMp ∈ R

N×n. Assume that for somēh ∈ R
N , the

infimum in (7) is achieved for two distinct pole vectorsp∗1, p
∗
2,

and letθ∗1 , θ
∗
2 be the corresponding parameter vectors in (10),

so that

‖h̄−Mp∗
1
θ∗1‖ = ‖h̄−Mp∗

2
θ∗2‖ ≤ ‖h̄−Mpθ̃‖ , ∀p , ∀θ̃ ∈ R

n.
(16)

Moreover, let(h̄−Mp∗
1
θ∗1)

′(h̄−Mp∗
2
θ∗2) = 0. Then, there exists

a feasible setFN ⊂ R
N such that

E[φcp(Z; p∗(hc))] =
√
2 ·E[φcc(Z; p∗(FN ))].

Proof. See Appendix B. �

A bound on the identification error can be provided also for
interpolatory projection algorithms. Unfortunately, this turns
out to be much larger than that given by Theorem 1.

Theorem 3. Let r = rad(FN ) and di = ‖hi − hip‖. Then,

E[φip(Z; p∗(hi))]≤ min

{

2+
di
r
, 1+

2r

di

}

·E[φcc(Z; p∗(FN ))].

(17)

Proof. See Appendix C. �

In order to obtain the maximum value of the bound in a
worst-case setting, one has to consider the worst interpolatory
estimator, i.e. the projection of the worsthi ∈ FN , and
all possible feasible sets. This corresponds to maximizing
(17) with respect to allr ≥ 0, di ≥ 0, thus obtaining the
bound E[φip(Z; p∗(hi))] ≤ 3 · E[φcc(Z; p∗(FN ))], which
follows immediately from Theorem 3 whenr = di. Also
this bound turns out to be tight, as one can find a feasible
setFN , an elementhi ∈ FN and a family of model classes
M(p), depending onp, such that the error of the interpolatory
projection algorithm is arbitrarily close to three times the error
of the optimal algorithmφcc.

It is interesting to compare the above results to those
obtained in [13] for the case of a fixed model classM,
with poles p assigned a priori. It has been shown that
E[φcp] ≤

√

4/3E[φcc] and E[φip] ≤ 2E[φcc]; moreover,
there exist feasible setsFN and model classesM for which
the equality holds. Obviously, in the context of the present
paper, the ratio between the worst-case identification error of
the projection algorithms and the minimum achievable error
is larger, due to the fact that suboptimal algorithms selectthe
poles p by optimizing over a single element related toFN

(namelyhc or hi), while the minimum error is achieved by
choosingp∗(FN ) as in (8), where the whole feasible set is
considered. Nevertheless, the bounds provided by the results
in this section are useful, as they clarify that the maximum
possible gap between a “set-oriented” choice of the poles and
a choice based only on a single element is not very large. This
is especially true for the central projection algorithm, which
is in turn much easier to compute thanφcc(Z; p∗(FN )), in
particular when the feasible set admits a symmetry center.

A. Error bounds for ellipsoidal feasible sets

In some identification problems, the feasible set has a
special structure that can be exploited in the computation
of bounds on the identification error. If the noise in (2) is
bounded in theℓ2 norm, and the a priori setS provides
constraints only on the tailRNh of the impulse response (the
so calledresidual a priori information, often adopted in the
literature [9]), the feasible system setFN is anN -dimensional
ellipsoid. Theorems 1 and 2 guarantee that the error provided
by the central projection algorithm is not greater than

√
2 times

the minimum error. However, for ellipsoidal feasible sets this
bound can be further reduced, exploiting the special structure
of the set.
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Theorem 4. Let FN ⊂ R
N be an ellipsoid of centerhc, and

let LM andLm be the lengths of its maximum and minimum
semi-axis, respectively. Moreover, defined = ‖hc−hcp‖. Then,

E[φcp(Z; p∗(hc))]

E[φcc(Z; p∗(FN ))]
≤

≤



































LM + d

LM

√

1+
d2

L2
M−L2

m

if d <
L2
M − L2

m

Lm
or Lm = 0,

LM + d

Lm + d
if d ≥ L2

M − L2
m

Lm
andLm > 0.

(18)

Proof. See Appendix D. �

Observe that, for the ellipsoidal feasible set above,LM =
rad(FN ). Hence, whenLm = 0 one obtains the same bound
as in Theorem 1. Conversely, whenLm tends toLM , the
ratio E[φcp]/E[φcc] tends to 1, as expected, because for a
spherical feasible set the conditional center with respectto any
M coincides with the projection of the center of the sphere
ontoM.

V. EXAMPLES

In the first example reported below, the suboptimal pole
choice performed by the central projection algorithm is com-
pared to the optimal one (8), in the case of Laguerre basis func-
tions. The optimal modelhcc = φcc(Z; p∗(FN)) is obtained
by applying the procedure presented in [10] for computing
the conditional central estimate of an ellipsoidal feasible set,
for each model classM with fixed Laguerre polep, and then
minimizing with respect top via a one-dimensional gridding
on the interval(−1, 1).

Example 1. Consider the transfer function

H(z) =
5 + 10.7 z−1 + 5.002 z−2

1 + 2.3 z−1 + 2.06 z−2 + 0.72 z−3

and letN = 50 i/o data be available, with the inputuk being
a unitary step. Assume that the truncated feasible system set
is given byFN = {hN : ‖y − T (u)hN‖ ≤

√
N ε} with

noise{vk}N−1
k=0 being a Gaussian random sequence, satisfying

(1/
√
N)‖v‖ ≤ ε, and ε = 1. Let hc = T−1(u) y and M

be the model class given by Laguerre filters. In Figure 1a,
the errorinfθ∈Rn ‖hc −Mpθ‖ is plotted as a function of the
Laguerre pole, for different model ordersn = 1, 2, 3, 4. This
error clearly does not depend on the feasible set, but just onthe
approximation of its centerhc. The global minimum of each
curve corresponds to the polep∗(hc) for each model ordern,
which is the one picked by the central projection algorithm
φcp. These values are reported in Table I, together with the
associated worst-case identification errorsE[hcp]; the latter
are obviously larger than the errors at the minima in Fig. 1a,
which are computed only with respect to the centerhc and
not to the whole setFN .
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Fig. 1. (a) Approximation error for the centerhc versus Laguerre pole,
for different model orders; (b) Worst-case error for the conditional central
algorithm versus Laguerre pole, for different model orders.

Conversely, Figure 1b shows the worst-case error (with re-
spect toFN ) of the conditional Chebyshev center versus
the Laguerre pole. The values of the optimal poles and
the corresponding errorE[hcc] are also reported in Table I,
together with the ratio between the errors of suboptimal and
optimal algorithm and the upper bound provided by Theorem
4.

From the above example, it can be observed that the
suboptimal polep∗(hc) selected by the central projection
algorithm can be quite far from the optimal onep∗(FN ),
due to the presence of local minima whose cost is close to
the global one (in Example 1, this happens forn = 1 and
n = 4). Nevertheless, the worst-case identification error of
the suboptimal algorithm turns out to be pretty close to the
minimum achievable errorE[φcc], as shown by Table I.

The next example shows that there exist conditional iden-
tification problems, with model classM given by Laguerre
expansions, for which the conditions of Theorem 2 are satis-
fied, and hence the upper bound is actually achieved.

Example 2. Let M be the model class of discrete Laguerre
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TABLE I
SELECTED POLES, CORRESPONDING WORST-CASE IDENTIFICATION ERRORS, ACTUAL ERROR RATIO AND UPPER BOUND PROVIDED BYTHEOREM 4, FOR

DIFFERENT MODEL ORDERS.

n p∗(hc) p∗(FN ) E[hcp] E[hcc] E[hcp]/E[hcc] Bound Thm. 4
1 −0.054 −0.910 25.0408 24.5024 1.0220 1.4069
2 −0.595 −0.567 20.8556 20.7634 1.0044 1.3573
3 −0.389 −0.361 19.6296 19.5662 1.0032 1.3223
4 −0.244 −0.491 19.1362 19.0656 1.0037 1.3045

filters, which are defined as

Lj(z; p) = Z{lj(p)} =

√

1− p2

1− p z−1

(

z−1 − p

1− p z−1

)j−1

where j = 1, 2, . . . , and p ∈ R, |p| < 1 is the Laguerre
pole. Leth = l1(−0.7746) + l1(0.7746), and let us setN =
100 andn = 2. For h̄ = TNh there are two distinct optimal
Laguerre poles, given byp∗1 = −0.5773 andp∗2 = 0.5773. The
corresponding optimal parameter vectors (10) can be computed
as θ∗1 = M

′

p∗
1
h̄ and θ∗2 = M

′

p∗
2
h̄, whereMp∗

i
∈ R

N×2 is the
truncated basis matrix ofM, with pole p∗i . Let us choose
hcp = Mp∗

1
θ∗1 . Then, it can be verified that∀p and∀θ̃ ∈ R

n

‖h̄− hcp‖ = ‖h̄−Mp∗
2
θ∗2‖ = 0.9129 < ‖h̄−Mpθ̃‖

and(h̄−hcp)
′ (h̄−Mp∗

2
θ∗2) = 0. Therefore, due to Theorem 2,

there exists a feasible set for whichE[hcp] =
√
2 · E[hcc].

Indeed, letFN = {x ∈ R
N : ‖x− h̄‖ ≤ 0.9129, h′(Mp∗

2
θ∗2 −

h̄) = 0}. By applying the procedure in [10] for the com-
putation of the conditional Chebyshev center and minimizing
with respect top, one getshcc = φcc(Z; p∗(FN )) = Mp∗

2
θ∗2 .

Moreover, one hasE[hcp] = 1.8258 andE[hcc] = 1.291.

VI. CONCLUSIONS

In this paper the problem of selection of an orthonormal
function basis for the approximation of a set of feasible
systems has been addressed in a worst case identification
setting. Impulse responses of increasing order linear filters
are considered as candidate basis functions and suboptimal
conditional estimators are derived, using the informationpro-
vided by specific optimal or suboptimal point estimators of
the feasible system set. Tight bounds on the worst case errors
of these suboptimal algorithms with respect to the optimal
estimation error attainable through the optimal function basis
are derived.
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APPENDIX

A. Proof of Theorem 1

In order to prove Theorem 1, the following lemma is needed
(for a proof, see [16]).

Lemma 1. Let hc be the Chebyshev center ofFN in the
ℓ2 norm and consider the closed halfspaceQ = {h ∈
R

N : aTq h ≥ bq, aq ∈ R
N , bq ∈ R}, such thataTq hc = bq.

Then, there existshe ∈ FN

⋂Q such that‖he − hc‖2 =
rad(FN ).

Now, let us first considerE[hcp] = E[φcp(Z; p∗(hc))]. One
has

E[hcp]= sup
h∈FN

‖hcp−h‖ ≤ ‖hcp−hc‖+ sup
h∈FN

‖hc−h‖ = d+r

(19)
with d andr defined as in the statement of Theorem 1.
Then, let us analyze the minimum errorE[hcc] =
E[φcc(Z; p∗(FN ))]. Consider the halfspaceQcc = {h ∈
R

N : (h−hc)
′(hc−hcc) ≥ 0}. Lemma 1 guarantees that there



6

existshe ∈ FN

⋂Qcc such that‖he − hc‖ = r. Therefore,
one has

E[hcc]
2 ≥ ‖he − hcc‖2

= ‖he − hc‖2 + ‖hc − hcc‖2

+2
(he − hc)

′(hc − hcc)

‖he − hc‖‖hc − hcc‖
≥ ‖he − hc‖2 + d2 = r2 + d2 (20)

where it has been exploited the fact that‖hc−hcc‖ ≥ d, which
follows from the definitions ofhcp andd. Then, from (19) and

(20) one hasE[hcp]
E[hcc]

≤ r+d√
r2+d2

=
√

2− (r−d)2

r2+d2 which proves
the theorem.

B. Proof of Theorem 2

Let FN = {h ∈ R
N : h = h̄+α (h̄−hcp), |α| ≤ 1}, where

hcp = Mp∗
1
θ∗1 has been chosen as the central projection (this

choice is correct, as̄h = cen(FN ) and (16) holds). Moreover,
let d = ‖h̄− hcp‖. It is easy to show that

E[hcp] = sup
h∈FN

‖hcp − h‖

= ‖hcp − (h̄+ h̄− hcp)‖
= ‖2 (hcp − h̄)‖ = 2 d. (21)

Now, let ĥ = Mp∗
2
θ∗2 . Then, from the assumptions of the

theorem, one has‖h̄ − ĥ‖ = d and (h̄ − ĥ)′(h̄ − hcp) = 0.
Therefore, it follows that

E[ĥ]2 = sup
h∈FN

‖ĥ− h‖2

= ‖(ĥ− h̄)− (hcp − h̄)‖2

= ‖ĥ− h̄‖2 + ‖hcp − h̄‖2 = 2 d2. (22)

Hence, from (21) and (22) one hasE[hcp]

E[ĥ]
= 2 d√

2 d
=

√
2

which means thathcc = ĥ (otherwise Theorem 1 would be
violated) and the upper bound is achieved.

C. Proof of Theorem 3

For anyh ∈ FN one has

‖hip − h‖ ≤ ‖hip − hc‖+ ‖hc − h‖
= ‖Πnhi − hc‖+ ‖hc − h‖
≤ ‖Πnhi − hi‖+ ‖hi − hc‖+ ‖hc − h‖
≤ di + r + ‖hc − h‖ (23)

where it has been exploited the fact thathi ∈ FN . Then,
maximizing both sides of (23) overh ∈ FN one getsE[hip] ≤
di + 2r. On the other hand, one has thatdi = ‖Πnhi −
hi‖ = infp infθ∈Rn ‖hi−Mpθ‖ ≤ infp infθ∈Rn suph̃∈FN

‖h̃−
Mpθ‖ = E[hcc]. Since, by definition,r = rad(FN ) ≤
suph̃∈FN

‖hcc − h̃‖ = E[hcc], one hasE[hcc] ≥ max{di, r}
and the result follows immediately.

D. Proof of Theorem 4

In order to prove Theorem 4, the following lemmas are
needed.

Lemma 2. Let ε = {x ∈ R
N : x′Qx ≤ 1} be

a non-degenerate axes-oriented ellipsoid, such thatQ =
diag{qi}Ni=1, with 0 < q1 ≤ q2 ≤ . . . ≤ qN . Moreover let
B = {z ∈ R

N : z′z ≥ d , d > 0}. Define

z∗ = arg inf
z∈B

sup
x∈ε

‖z − x‖22. (24)

Then,z∗1 = 0.

Proof. W.l.o.g., it can be assumedd = 1. Moreover, it is
straightforward to show that the minimum in (24) is reached
on the boundary ofB, i.e. ‖z∗‖ = 1. From Theorem 2 in [10],
one has that for anyz such thatz1 6= 0

max
x∈ε

‖z − x‖ = ‖(IN − λ∗Q)−1 λ∗Qz‖2, (25)

whereλ∗ is the largest real solution of the equation

z′(IN − λQ)−2Qz − 1 = 0. (26)

Moreover, it is known thatλ∗ >
1

q1
. Hence, using (25) one

has thatz∗ is the solution of

inf
z: z′z=1

N
∑

i=1

(

λ∗qizi
1− λ∗qi

)2

. (27)

Exploiting (26) and substitutingz21 = 1−
N
∑

i=2

z2i into (27),

one has

N
∑

i=1

(

λ∗qizi
1− λ∗qi

)2

=

(

λ∗q1
1− λ∗q1

)2

+

N
∑

i=2

{

(

λ∗qi
1− λ∗qi

)2

−
(

λ∗q1
1− λ∗q1

)2
}

z2i .

Since q1 ≤ qi, for i ≥ 2, it is easy to show thatγi ,
(

λ∗qi
1−λ∗qi

)2

−
(

λ∗q1
1−λ∗q1

)2

< 0, i = 2, . . . , N and hence the
minimum in (27) is achieved for somez∗2 , . . . , z

∗
N such that

(z∗2)
2 + . . .+ (z∗N )2 = 1. This impliesz∗1 = 0. �

A straightforward extension of Lemma 2 is obtained by
translating the center of the ellipsoidε and by rotating the
ellipsoid semi-axes onto a new reference system spanned by
the orthonormal basis{v1, . . . , vN}. Hence, the next result
holds.

Lemma 3. Let ε = {x ∈ R
N : x = hc +

∑N
i=1 αi vi,

α2
1

L2
M

+ 1
L2

m

∑N
i=2 α

2
i ≤ 1; hc ∈ R

N ; ‖vi‖ =

1, i = 1, . . . , N ; v′ivj = 0, i 6= j; LM > Lm > 0} and
B = {z : ‖z − hc‖ ≥ d , d > 0}. Define

z∗ = arg inf
z∈B

sup
x∈ε

‖z − x‖22.

Then,(z∗ − hc) ∈ span{v2, . . . , vN} and ‖z∗ − hc‖ = d.



7

Now Theorem 4 can be proven. Let us first considerE[hcp] =
E[φcp(Z; p∗(hc))]. One has

E[hcp] = sup
h∈FN

‖hcp − h‖

≤ ‖hcp − hc‖+ sup
h∈FN

‖hc − h‖ = d+ LM . (28)

Then, let us analyze the minimum errorE[hcc] =
E[φcc(Z; p∗(FN ))]. Let FN be an ellipsoid with the same
center and axes orientation asFN , maximum semi-axis of
lengthLM and all other semi-axes of lengthLm. By construc-
tion, FN ⊆ FN . Moreover,FN coincides withε in Lemma
3 (with v1, . . . , vN being the directions of the semi-axes of
FN ). By definition ofhcp in (11), one has that the conditional
centerhcc satisfies‖hcc − hc‖ ≥ ‖hcp − hc‖ = d. Hence
E[hcc] = suph∈FN

‖hcc − h‖ ≥ suph∈FN
‖hcc − h‖ ≥

infz: ‖z−hc‖≥d suph∈FN
‖z − h‖. Then, from Lemma 3 one

gets
E[hcc] ≥ sup

h∈FN

‖z∗ − h‖ (29)

for somez∗ such that(z∗−hc) ∈ span{v2, . . . , vN} and‖z∗−
hc‖ = d. W.l.o.g., assume(z∗−hc) ∈ span{vN} (a rotation of
the axesv2, . . . , vN can be applied without affectingFN ) and
setz∗ = hc− d vN (the sign ofvN can be chosen arbitrarily).
First, observe that whenLm = 0 the ellipsoidFN collapses
onto a segment with extremal pointsh = hc ± LM v1. Then,
one has‖z∗− h‖2 = L2

M + d2, and hence from (28) and (29)
E[hcp]
E[hcc]

≥ LM+d√
L2

M
+d2

as stated in the upper part of (18).

Now, let us examine the caseLm > 0. A generic point on the
boundary ofFN can be written ash = hc + α1 v1 + . . . +
αN vN , where

α2
1

L2
M

+
1

L2
m

N
∑

i=2

α2
i = 1. (30)

Then,

‖z∗ − h‖2 = ‖hc − d vN − hc − α1 v1 − . . .− αN vN‖2

= α2
1 + α2

2 + . . .+ (αN + d)2

= α2
1

[

L2
M − L2

m

L2
M

]

+ 2αN d+ L2
m + d2

where the last equality has been obtained by using (30).
Exploiting the above expression, the maximization of‖z∗−h‖
with respect toh ∈ FN is a straightforward exercise that leads
to

sup
h∈FN

‖z∗−h‖ =















LM

√

1 +
d2

L2
M − L2

m

if d <
L2

M−L2
m

Lm
,

Lm + d if d ≥ L2
M−L2

m

Lm
.

(31)
Then, (18) is an immediate consequence of (28), (29) and (31).


