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Abstract: The problem of state estimation with quantized measurements is addressed in the
set membership estimation setting. The main contribution concerns the optimal selection of
the quantizer thresholds in order to minimize the worst-case radius of the feasible state set.
This allows one to design adaptive quantizers reducing the uncertainty associated to the state
estimates. The proposed solution is applied to several outer approximations of the feasible sets,
based on parallelotopes, zonotopes and constrained zonotopes. The benefits of the threshold
selection mechanism are assessed on a numerical example, highlighting the trade off between
computational burden and uncertainty reduction.
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1. INTRODUCTION

System identification and state estimation based on quan-
tized measurements have been the subject of an intense
research activity in recent years. See, e.g., Wang et al.
(2010); Godoy et al. (2011); Casini et al. (2012); Cerone
et al. (2013); Bottegal et al. (2017) for system identifi-
cation; Wong and Brockett (1997); Sviestins and Wigren
(2000); Fu and de Souza (2009); Zhang et al. (2016) for
state estimation. In control systems involving quantized
measurements, it is well known that the adaptation of the
quantizer thresholds can lead to a dramatic improvement
of the control performance (Brockett and Liberzon (2000);
Elia and Mitter (2001); Azuma and Sugie (2008)). The
possibility of suitably tuning the quantizer thresholds in
wireless sensor networks and industrial control networks
has motivated the investigation of adaptive quantizers also
for system identification (Aguero et al. (2007); Wang et al.
(2008); Tsumura (2009); Marelli et al. (2013); You (2015))
and distributed sensing (Papadopoulos et al. (2001); Fang
and Li (2008)).

State estimation with quantized measurements has been
mainly studied in a stochastic framework. In the seminal
work by Wong and Brockett (1997), the quantizer is
designed in order to bound the covariance of the estimation
error. Sviestins and Wigren (2000) derive the propagation
of the state probability density function for a system of
cascaded integrators. The joint design of the quantizer and
the state observer is addressed by Fu and de Souza (2009).
A variance-constrained state estimator with quantized
measurements and probabilistic sensor failures is presented
in Zhang et al. (2016).

* This work has been (partially) supported by the Italian Ministry
for Research in the framework of the 2017 Program for Research
Projects of National Interest (PRIN), Grant no. 2017YKXYXJ.

An alternative approach can be envisaged by observing
that the information provided by quantized sensor mea-
surements is inherently set theoretic. This motivates the
formulation of the state estimation problem in a deter-
ministic setting. For example, Battistelli et al. (2017) pro-
pose a state observer based on binary measurements, for
systems affected by unknown-but-bounded (UBB) distur-
bances. Set membership state estimators for linear sys-
tems with quantized measurements have been presented
in Haimovich et al. (2004) and Zanma et al. (2018). Tt
is worth recalling that the idea of tackling the problem
in a set membership setting was already mentioned in
Sviestins and Wigren (2000). However, in all these works
the quantizer parameters are fixed a priori. Recently, the
problem of suitably adapting the threshold of a binary
sensor in set membership state estimation has been studied
in Casini et al. (2024).

This paper addresses the problem of designing an adaptive
quantizer for linear discrete-time systems affected by UBB
disturbances. The problem is cast in the set membership
estimation framework. The main contribution concerns the
optimal design of the quantizer parameters (range and
resolution) in order to minimize the uncertainty associated
to the state estimates. To the best of our knowledge,
this problem has never been studied in a set-theoretic
framework. First, a complete solution is provided for first-
order systems. Then, such a result is exploited to design
adaptive quantizers for general n-th order systems. The
threshold adaptation mechanism is also applied to outer
approximations of the feasible state sets, provided by re-
cursive approximation algorithms based on parallelotopes,
zonotopes and constrained zonotopes. The effectiveness of
the proposed techniques for adapting the quantizer param-
eters is demonstrated on a numerical example, analyzing
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the trade off between the resulting estimation uncertainty
and the required computational load.

The rest of the paper is organized as follows. Section 2
introduces some basic set definitions and operations. The
quantizer design problem is formulated in Section 3; its
solution is given in Section 4 for first-order systems, and
in Section 5 for general systems. Quantizer adaptations
based on outer approximations of the feasible state set are
devised in Section 6. A numerical example is presented in
Section 7 and some final remarks are given in Section 8.
Due to space limitations, the proofs of the technical results
are reported in Casini et al. (2023).

2. SET DEFINITIONS AND OPERATIONS

Let us denote by ||v||, the p-norm of v € R™ (we omit the
subscript when p = 2). By, is the unit ball in the infinity
norm, i.e. Boo = {2 : ||2]lcc < 1}. For a generic set V, its
radius is defined as

rad(V) = inf sup ||z — v]|. (1)

Z vey

The argument £ of the infimum in (1) is the center of V.
Given p € R™ and v € R, a strip is defined as

S(p,v)={z eR": |plz—| <1} (2)
A non-degenerate parallelotope is the intersection of n lin-
early independent strips. Given ¢ € R"™ and a nonsingular
matrix P € R™ " it is defined as

P(P,c) = {x e R": ||Px — ¢||oo < 1}

— {2 eR": z—ax.+Ta, |aw <1} O
where T = P! and x, = P~ 'c. Its radius is given by
rad(P(P,c)) = max [P~ ). (4)
weEBoo

A zonotope is an extension of a parallelotope defined as
Z(T,x.)={zeR": z=z.+Ta, ||alo <1} (5)
where T € R"*™ and o € R™. The columns of T are the
generators of the zonotope and its order is 0o = .
A constrained zonotope is an extension of a zonotope
defined as
CZ(T,x., A,b)={x eR": x =z.+ Ta, (6)
lalloo <1, A = b}

where A € R™*"™ and b € R™<. The order of a constrained
zonotope is defined as 0 = ="¢  where n. is the number
of equality constraints in (6).

Given sets V, W and a matrix A, we define the set
operations

V+W={z: z=v+w, vEV, weW}, (7)
AV ={z: z=Av, v e V}. (8)

3. PROBLEM FORMULATION

Consider the discrete-time linear system

z(k + 1) = Az(k) + Gw(k) 9)
z(k) =Cux(k) +v(k) (10)

where z(k) € R™ is the state vector, z(k) € RP is
the (inaccessible) output, w(k) € R™ is the process
disturbance and v(k) € RP? is the output noise. The process

disturbance w(k) and the output noise v(k) are unknown-
but-bounded (UBB) sequences, i.e. they satisfy

[w(k)|loo < 0w (11)
lo(R)Il < 6y (12)
for all k£ > 0. To simplify the presentation, in the following
a single output will be considered (i.e., p = 1). All the
results presented in the paper can be applied to multi-

output systems, by processing the quantized measure-
ments sequentially.

Observations of the output signal are obtained from a
quantized sensor with d thresholds 74, ..., 74, such that

0 if Z(k’) S T1

1 ifm <z(k)<m

y(k) = o(z(k)) = (13)

d if z(k) > 14

The quantization is assumed to be uniform in the range
[71,74], i-e., the sensor thresholds satisfy 7,11 — 7, = A,
it = 1,...,d — 1, for some A > 0. For simplicity of
exposition, we assume d is odd (hence, the number of
possible outcomes of y(k) is even). Therefore, 7. with
¢ = (d+1)/2 is the center of the quantization range and
the thresholds can be expressed as

d+1

Hence, the quantizer is completely defined by the param-
eters 0 = [r. A]'.

According to the set membership estimation paradigm, the
information provided by the quantized measurement y(k)
is captured by the feasible measurement set, i.e., the set of
states (k) which are compatible with y(k). By using (10)
and (12), this is given by !

M(E)={zeR" : Cx <11+ 4, if y(k) =0;
L

71— 0, <Cx <1+, ifylk)=
Czx > 14—y if y(k) = d}.
(15)

The set M (k) is a strip in the state space when 1 < y(k) <
d — 1, and a half-space when y(k) = 0 or y(k) = d (notice
that this occurs even in the noiseless case J, = 0).

The feasible state set Z(k|k), i.e. the set of all the state
vectors x(k) which are compatible with the quantized
measurements collected up to time k, is defined by the
recursion

2(k|k) = E(k|k — 1) (Y M(k) (16)

E(k + 1|k) = AZ(k|k) + 0, GBoo (17)

which is initialized by the set Z(0| — 1), containing all

the feasible initial states z(0). Hereafter, we will denote

p(k) = rad(Z(k|k)). By choosing the center of E(k|k) as

a pointwise estimate of the state xz(k), p(k) represents the
maximum uncertainty associated to the estimate.

If the parameter vector 6 of the quantizer is constant,
the resulting state estimation uncertainty may be large,
or even grow unbounded as in the following example.

1 With a slight abuse of notation, strict inequalities are transformed
in nonstrict ones, in order to deal only with closed feasible sets.
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Example 1. Let n = 1, A =G =C =1, 4, = 1,
5, = 0. Assume z(0) = J and w(k) = 1, Vk > 0, so

that z(k) = z(k) = § + k. Consider the quantizer in (13)
with d =3, 71 = —1, 72 = 0, 73 = 1. Then, y(k) = 3,
Vk > 1, and hence M(k) = {x : x > 1}. By choosing
=(0]—1) = [0, 1] and applying the recursion (16)-(17), one
gets the sequence of feasible state sets Z(k|k) = [1, k + 1]
which is asymptotically unbounded.

Example 1 suggests that, in order to reduce the estimation
uncertainty (namely, the size of the feasible state set), it
may be useful to adapt online the quantizer parameters.
Let us assume that at each time k it is possible to select
the parameters of the quantizer 0(k) = [1.(k) A(k)]’. The
aim is to choose (k) in order to minimize the size of
the resulting feasible set Z(k|k). Since M (k) depends on
the actual value taken by the output y(k), which in turn
depends on the feasible predicted states Z(k|k—1) and the
realization of the measurement noise v(k), a meaningful
objective is to minimize the radius of Z(k|k) with respect
to the worst-case value taken by y(k), i.e., to select

0* (k) = arginf sup p(k; 0, y(k))
0 y(k)

where p(k;0,y(k)) = rad (E(klk — 1) M(k)), in which
the dependence of the radius on both 6 and y(k), through
M(k) in (15), has been made explicit. Notice that in the
information-based complexity framework, this corresponds
to trigger the quantizer in order to minimize the so-called
radius of information (see Milanese and Vicino (1991)).
In the next section, the solution of problem (18) is derived
for first-order systems.

(18)

4. FIRST-ORDER SYSTEMS

Let n = m = 1. Without loss of generality, consider the
system

(k4 1) = ax(k) + w(k) (19)

(k) = (k) + v(k) (20)

with |w(k)| < 0w, |v(k)] < dy, V& > 0. Moreover, let
us assume a > 0. If Z(0] — 1) CRisan interval, then

all feasible sets E(k|k) and Z(k + 1|k) are also intervals.
Hence, let us adopt the notation Z(k|k) = [I(k),r(k)],
whose radius is p(k) = (r(k) — I(k))/2.

The next theorem provides a solution of problem (18).
Theorem 1. Consider system (19)-(20) with the quantized

sensor (13). If ap(k — 1) + §, > &y, a solution of problem
(18) is given by
(k-1 k—1
Te(k)=a ( ) ;T( ), (21)
A(k) = P (ap(k —1) 4 6y — &y) - (22)

When ap(k — 1) + 6, < 0y, any 6(k) with 7.(k) given by
(21) and A(k) > 0 is an optimal solution of (18).

Proof. See (Casini et al., 2023, Theorem 1). a

The rational behind the quantizer adaptation (21)-(22) is
clarified by the following example.

Example 2. Let a = 2, 6, = 1, §, = 2. Assume that at
time k—1 one has Z(k — 1|k — 1) = [-5, 5]. Then, one
gets Z(k|k — 1) = [-11, 11]. By applying (21)-(22) with

d = 5, one has 7.(k) = 0 and A(k) = 3. The resulting
thresholds 7;(k) in (14) are equal to —6,—3,0,3,6. It is
worth stressing that such thresholds do not partition the
predicted feasible set Z(k|k — 1) in equal parts. Rather,
they are selected in such a way that the corrected feasible
set 2(klk) = E(k|k — 1)ﬂ./\/l( ) has always the same
radius, equal to JA(k) + 6, = ;, irrespectively of the
sensor output y(k), thus achieving the optimal solution
of problem (18).

By using the result in Theorem 1 it is possible to establish
conditions for the asymptotic boundedness of the feasible
set Z(klk).

Theorem 2. By choosing the quantizer parameters as in
(21)-(22), the radius of information p(k) = sup, ) p(k)
evolves according to

aplk—1)+6,  ifpk—1)< 20
a
p(k) = di - (ap(k = 1) + 6, + d5,)
if ok — 1) > 20w
a
(23)
Moreover, if d > a — 1, one has
1
T(S if (Sw S (1 — a)év,
klirf plk) = 1
—+o00 .
m (510 + d(sy) if 571) > (1 - a)(sv
(24)
and if 6, > (1 — a)dy,
2
G sup AMR) = g Gu (@ = 1)3). - (25)
Proof. See (Casini et al., 2023, Theorem 2). O

Theorem 2 states that in order to guarantee asymptotic
boundedness of the feasible state set, the number of
thresholds of a uniform quantizer must exceed a — 1.
Notice that if system (19) is stable, this condition is always
satisfied. Conversely, in the special case of a binary sensor
(d = 1), asymptotic boundedness holds if and only if a < 2.

Remark 1. If a < 0, Theorems 1 and 2 still hold by
replacing a with |a| in (22) and (23)-(25). If d is even,
the results do not change, except that there will be no
threshold coinciding with the center of E(klk — 1). In
particular, the optimal A in (22) remains the same.

Remark 2. The result (24) in Theorem 2 can be seen as the
set-theoretic counterpart of that in (Wong and Brockett,
1997, Th. 3) for a stochastic estimation framework. In fact,
the cited result provides the minimum number n of bits for
a coder-estimator guaranteeing asymptotic boundedness of
the covariance of the state estimation error. Specifically,
under the assumption that all the involved stochastic
disturbances have a finite-support density function, it is
shown that 2" > @ implies asymptotic stability of a
coder estimator for a first-order system with pole a. By
observing that an n-bit coder corresponds to a quantizer
with d = 2™ — 1 thresholds, the condition d > a —
1 is recovered. In addition, Theorem 2 provides exact
asymptotic expressions for the estimation uncertainty p(k)
and the quantizer resolution A(k), in the considered set-
theoretic framework.
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5. GENERAL CASE

The solution of problem (18) in the general case of n-
th order systems is intractable, because it involves a
nonconvex min-max optimization over n-dimensional sets.
Nevertheless, we can leverage the solution for first-order
systems, in order to solve an alternative formulation of the
problem, which is both meaningful and computationally
feasible.

Instead of minimizing the radius of the feasible state set
at time k, the aim is to minimize the radius of the feasible
output signal set, i.e., the set of feasible values that the
nominal output Z(k) = Cz(k) can take at time k. This is
given by

CE(klk) = C (E(k|k ~1) ﬂM(k))
= CE(klk — 1)) CM(k)

where the last equality follows from the definition of M (k)
in (15). Then, one can design the quantizer parameters
according to
0* (k) = arginf suprad(CE(k|k))
o y(x)
= arginfsuprad (CE(k|k -1 CM(k:)) .

9 y(k)
Since CE(k|k) in (26) is a one-dimensional interval, one
can solve problem (27) by adopting the same strategy as
in the case of first-order systems. In particular, the optimal
quantizer parameters in Theorem 1 can be rewritten as

(26)

(27)

I(klk -1 klk—1
SPGB R
k|l — 1) — I(k]k — 1) — 25,
B d+1 ’
where I(k|k — 1) and r(k|k — 1) are, respectively, the
infimum and the supremum of the interval Z(k|k — 1).

Similarly to (28)-(29), for an n-th oder system one can
choose the quantizer parameters as

(28)

A(k) (29)

_ I(k) +7(k)

(k) = *H LIS, (30)
P(k) — 1(k) — 26,
A(k)= 1
(=" = Cy
where
(k) = inf Cx, 7(k)= su Cx. 32
() x€2(k|k—1) () meE(k\Il)c—l) ( )

In words, this choice corresponds to selecting the sensor
thresholds in such a way that the feasible output signal set
in (26) turns out to have the same radius, irrespectively
of the value taken by the output y(k), thus leading to the
optimal solution of problem (27).

6. THRESHOLD SELECTION BASED ON SET
APPROXIMATIONS

The main drawback of the threshold selection mechanism
(30)-(32) is that it requires the propagation of the true fea-
sible state set Z(k|k) according to the recursion (16)-(17).
Unfortunately, this is not computationally feasible, even
for low state dimensions n. This is a well-known problem in
the set membership estimation literature, which led to the

development of a number of set approximation techniques.
A popular approach is based on the choice of a class of
approximating sets I, from which an outer approximation
of the true feasible set is selected at each time k through
the recursion

T(k|k) D T(k|k — 1) | M(k) (33)

II(k + 1|k) D AIL(k|k) + 6, GBoo (34)

which is initialized by picking a II(0|—1) 2 Z(0|]—1). Many

different set classes have been considered in the literature,

including ellipsoids (Gollamudi et al. (1996); Durieu et al.

(2001); El Ghaoui and Calafiore (2001)), parallelotopes

(Chisci et al. (1996)), zonotopes (Alamo et al. (2005);

Combastel (2015); Wang et al. (2019); Althoff and Rath
(2021)) and constrained zonotopes (Scott et al. (2016)).

When an outer approximation of the feasible set is avail-
able, one can design the quantizer thresholds by applying
the ideas developed in Section 5 to the approximating set
II(k|k—1). In particular, 7.(k) and A(k) can still be chosen

according to (30)-(31), where [(k) and 7(k) are computed
as

I(k)= inf

Cz ,
well(klk—1)

7(k)= sup Cz. (35)

w€ll(k|k—1)

Notice that [(k) and 7(k) are easy to compute when
the approximating sets II are parallelotopes or zonotopes.
If z.(klk — 1) and T(k|k — 1) denote respectively the
center and the generator matrix associated to II(k|k — 1),
according to the notation in (3) and (5), one gets

[(k) = Cac(klk — 1) = [CT(klk = )], (36)
(k) = Crc(klk — 1) + |CT (k[k = D)1 (37)
and hence (30)-(31) boil down to
Te(k) = Cx(klk — 1), (38)
2
A(k) = 7 (ICT (k[ — Dl — 6v), (39)

which can be easily computed at each time step. When
constrained zonotopes (6) are used as approximating sets,
the computation of [(k) and 7(k) in (35) requires to solve
two linear programs.

7. NUMERICAL EXAMPLE

The proposed threshold selection strategy technique is val-
idated on a numerical example presented in Althoff (2021)
as a benchmark for set membership state estimation. It is
a six-tank system, whose dynamics have been linearized
and discretized. A constant input flow is considered in the
first tank and water levels are measured in the third and
sixth tank. The resulting system matrices are

(0939 0 0 0 0 0

0061098 0 0 0 0

Ao 0002095 0 0 0

- 0 000450875 0 0]’

0 0 00125092 0

.0 0 0  00.080.969
G=[100000],
(001000
“=looo0001
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The input flow is equal to 0.2 [m?/s] and is corrupted by
a process disturbance satisfying (11) with d,, = 0.01. The
output measurements are affected by a UBB noise satisfy-
ing (12) with J, = 0.2. Both the process disturbance and
the output noise are generated as uniformly distributed
white processes, within the given bounds.

The threshold selection mechanism presented in Section 6
has been tested on different families of approximating sets
II. The following recursive approximation algorithms have
been considered:

(a) the parallelotopic algorithm proposed in Chisci et al.
(1996) (hereafter referred to as Par), with minimum
volume intersection step (33) performed according to
Vicino and Zappa (1996);

(b) the zonotopic algorithm presented in Alamo et al.
(2005), denoted as Zon(o,) (where o, is the maxi-
mum order of the zonotope), with minimum volume
intersection step (33) performed according to Bravo
et al. (2006);

(c) the technique based on constrained zonotopes pro-
posed in Scott et al. (2016), denoted as CZ(oc,n.)
(where o, is the maximum order of the constrained
zonotope and n.. its maximum number of constraints),
with intersection step (33) based on the minimization
of the Frobenius norm of the zonotope generator
matrix.

For both zonotopes and constrained zonotopes, the order
reduction procedure is the one proposed in Scott et al.
(2016). The Zon(o,) and CZ(o.,n.) have been imple-
mented by using the CORA toolbox for Matlab (Althoff
(2021)). In all algorithms, at each time & the two output
measurements are processed sequentially, assuming that
it is possible to adapt the quantizer parameters indepen-
dently for each measurement channel.

In order to compare the performance of the different ap-
proximating techniques, the radius of the resulting uncer-
tainty interval associated to each state variable has been
considered, namely r;(k) = rad(e/II(k|k)), i« = 1,...,6,
where e; denotes the i-th column of the identity matrix.
The values of 7;(k) have been collected for 10 runs of 200
samples each, with different realizations of w(k) and v(k).
The average values of r; (k) with respect to variables ¢, time
k and multiple runs are provided in Table 1, for different
number of thresholds d. In order to assess the benefit of
employing time-varying thresholds, Table 2 reports the
same values in the case of fixed thresholds, equally dis-
tributed in the range of the output signals z(k). Table
3 shows the average relative computation times for one
iteration of the algorithms, with respect to one iteration of
Par. It can be seen that the threshold selection mechanism
leads to a remarkable reduction of the uncertainty affecting
the state estimates (on average, by approximately a factor
2.5). Another nice feature of the adaptive quantization is
that the minimum uncertainty level compatible with each
set approximation technique is achieved with a very small
number of thresholds. In fact, in Table 1 uncertainty values
do not significantly change for d > 5, while they keep
reducing even for d > 20 when a fixed quantizer is em-
ployed. The comparison between set approximation tech-
niques shows that constrained zonotopes provide smaller
uncertainties, as expected, especially in the case of few

fixed thresholds. On the other hand, their much higher
computational complexity may prevent their application in
online estimation schemes. Conversely, parallelotopic and
zonotopic algorithms provide a good compromise between
quality of the approximation and required computational
burden, this being more evident in the case of an adaptive
quantizer.

d Par | Zon(2) | Zon(4) | CZ(2,5) | CZ(4,5)
3 0.542 0.483 0.42 0.361 0.305
5 0.485 0.441 0.381 0.361 0.304
10 | 0.464 0.420 0.364 0.358 0.302
15 | 0.468 0.417 0.361 0.366 0.300
20 | 0.475 0.415 0.357 0.363 0.302

Table 1. Average uncertainty intervals in the
case of adaptive thresholds.

d Par | Zon(2) | Zon(4) | CZ(2,5) | CZ(4,5)
3 8.854 2.951 1.502 0.684 0.501
5 2.137 1.243 0.860 0.534 0.427
10 | 0.895 0.807 0.652 0.422 0.345
15 | 0.664 0.687 0.596 0.373 0.321
20 | 0.570 0.658 0.542 0.339 0.289

Table 2. Average uncertainty intervals in the
case of fixed thresholds.

Par | Zon(2) | Zon(4) | CZ(2,5) | CZ(4,5)
1 3.2 5.3 1587.9 2127.1
Table 3. Average relative computation times.

8. CONCLUSIONS

The design of adaptive quantizers for set membership state
estimation has been addressed. The quantizer parameters
are selected in such a way to minimize the size of the worst-
case feasible state set. As it is common in set membership
estimation, the problem presents a trade off between the
computational load associated to the approximation of the
feasible sets and the uncertainty associated to the state es-
timates. The adaptation of the quantizer parameters based
on parallelotopic and zonotopic approximations turns out
to be computationally feasible for online implementation
and provides a remarkable uncertainty reduction with re-
spect to quantizers with fixed thresholds. Ongoing research
concerns the asymptotic behavior of the set theoretic
observer and the extension of the proposed approach to
nonlinear systems.
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