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A B S T R A C T

In the current context of growing electrification of the transport sector, offering rental and sharing programs for
electric vehicles is considered one of the strategies to achieve decarbonization targets. Such programs should
be supported by suitable optimization tools to manage the vehicle fleet, and make rental provision profitable
for its operator. In this paper, we consider a rental system having a single station for electric vehicle pickup
and delivery. For this system, we address the operational problem of simultaneously assigning rental requests
to vehicles and determining the charging policies during inactivity intervals. The objective is to maximize
the profit for the operator by minimizing the costs for electricity. The considered problem is complicated
by uncertainty regarding the battery energy level when a vehicle returns to the station. This leads to a
chance-constrained programming formulation, where the request-to-vehicle assignment and charging policies
are determined by minimizing electricity costs while ensuring that the energy demand of the served requests
is met with a prescribed high probability. Since the formulated mixed-integer problem with probabilistic
constraints is hard to solve, a suboptimal approach is proposed, consisting of two sequential steps. In the
first step, request-to-vehicle assignment is accomplished via a suitably designed heuristic procedure. Then, for
a given assignment, the charging policy of each vehicle is determined by solving a relaxed chance-constrained
problem. Numerical results are presented to assess the performance of both the assignment procedure and the
optimization problem which determines the electric vehicle charging policies.
1. Introduction

Transport electrification is one of the main solutions to tackle
climate change by lowering carbon emissions [1]. It has been estimated
that 16.2% of global greenhouse gas emissions in 2016 came from
the transportation sector, with road transport (mostly passenger travel)
accounting for three quarters of the total transportation emissions [2].
Vehicle electrification is thus regarded as a key pathway towards
global sustainable energy transition. It involves replacing fossil-fueled
personal cars, commercial fleets of cars and trucks, and public transport
like buses and trains, with ones powered by electricity. This process
has accelerated over the past decade [3], with a growing number of
countries worldwide making commitments to electrify their fleets of
vehicles, and adapting their legislation to foster increased use of electric
vehicles (EVs). Combined with advancement in battery technology,
these supportive government efforts have made EVs more and more
popular. Recent projections estimate that EVs will account for 29%
to 54% of global new vehicle sales by 2050, reaching cumulative
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sales between 465 million and 832 million battery EVs, as well as
between 218 million and 241 million plug-in hybrid EVs over the
period 2022–2050 [4].

In this context of growing EV penetration, offering EV rental and
sharing programs is considered among the strategies to promote EV
adoption [5]. This calls for suitable optimization tools to manage
the EV fleet, and to make the EV rental provision profitable for its
operator. Just to mention a specific issue addressed in this paper, EVs
require significant charging times. This implies forced inactivity before
a vehicle becomes again available. Optimizing inactivity intervals be-
comes crucial to maximize vehicles utilization, and to ensure economic
sustainability of the rental business, also in view of the high purchase
cost of EVs. On the other hand, EVs could be advantageous to car rental
companies because they require lower maintenance costs, and they
could have a marketing effect associated with improved sustainability
of urban mobility [6].
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Car-rental and sharing systems have been extensively studied in
the operations research literature, since they offer a wide range of
ecision problems and challenges to cope with. The interested reader

is referred to [7,8] for comprehensive reviews on optimization of car-
sharing systems, with particular focus on how the related decision
problems are mathematically formulated and solved. Since the con-
sidered problems often involve discrete decisions, a large number of
contributions propose mixed-integer programming (MIP) formulations,
that are then tackled via suitable solution techniques, such as Benders
or Dantzig–Wolfe decomposition and branch-and-cut algorithms.

While most of the literature on car-sharing systems considers fleets
f conventional vehicles, recent years have witnessed an increasing

number of contributions where EVs come into play. This is needed
to understand the impact that the special characteristics of EVs, in
particular the usually limited driving range and, consequently, the
need of being recharged, might have on car-sharing planning and
peration. Most of the contributions addressing EV fleets focus on fleet
ize and station location optimization [9–11], vehicle relocation opti-
ization [12–17], or several of the aforementioned decision problems

imultaneously [18–20]. Some papers consider mixed fleets of electric
and conventional vehicles [6] or heterogeneous EVs [21].

Lots of contributions in the literature on car-sharing systems assume
a deterministic setting, where all the problem parameters are known.
However, several uncertainties affect the EV sharing decision problems
in practice, for instance stochastic demand, car imbalance, parking
hortage, and battery state-of-charge (SOC). This motivates the devel-
pment of stochastic approaches, where uncertainty is accounted for
nd managed in the formulated problems. In [20], the authors present
 method to determine the deployment of one-way electric car-sharing
ervices within a designated region with the objective to maximize the
otal profit for the operator. Uncertainty on the SOC of EVs parked
t one station at a given time is modeled by a continuous probability
istribution whose mean changes over time. The deployment of a one-
ay EV sharing system that serves an urban area is considered also

n [22]. Long-term infrastructure planning (charging station location
nd fleet distribution) and real-time fleet operations (relocation and

charging decisions) are jointly optimized under time-varying uncertain
demand. To this aim, a multistage stochastic model is proposed. The
optimal allocation of a fleet of plug-in EVs to the stations of an EV-
sharing system is addressed in [10]. The objective is to maximize
the profit of the system operator. A multi-layer time-space network
low technique is adopted to describe the movement of EVs in the

system. The study applies robust optimization and chance-constrained
techniques to deal with the fleet deployment problem under uncer-
tain, stochastic demand. Optimal placement and type selection of EV
charging stations is addressed in [11], considering routing selection
nd charging management of an EV fleet in a car-sharing business.

A stochastic programming framework is exploited to incorporate a
ariety of operating scenarios, which reflect uncertainties on drivers’

itineraries, traffic flow information, and electricity prices. A two-stage
stochastic programming formulation is adopted in [15] to tackle the
vehicle deployment and relocation problem for hybrid one-way station-
based and free-floating EV sharing systems, considering demand and
arking space stochasticity. All these examples witness the wide variety
f decision problems affected by different types of uncertainties in the
ontext of EV rental and sharing systems, and highlight the potential
f stochastic programming techniques [23] to cope successfully with

those uncertainties.
In this paper, we consider a rental system hosting a fleet of EVs.

The rental system has a single station, and it offers a round-trip service,
i.e. the station of pickup and that of delivery coincide. The focus of the
proposed study is to address the optimal operation problem for the EV
rental system. To achieve this goal, two key objectives are identified:

1. Minimize the electricity cost by assigning rental requests to
vehicles and determining the charging policy for each EV during
inactivity intervals;
2 
2. Handle the uncertainty on rental demand within a stochastic
framework.

Although the considered setting might appear oversimplified (single
station, round-trip service), it allows one to get valuable insights into
the impact of demand uncertainty combined with the peculiar char-
acteristics of EVs. These refer to the need of being recharged and the
temporal and operational constraints of the charging process. In this
work, we consider uncertainty on the battery energy level when an EV
returns to the station. More in detail, we assume that the operator re-
ceives rental requests for the next day. Each request is characterized by
the pickup time and the delivery time, which are considered to be fixed,
and by a number of parameters (e.g., expected mileage, road type, etc.)
that, from the modeling point of view, are translated into a probability
distribution for the energy required by the request. Given a set of re-
quests, the operator has to determine the request-to-vehicle assignment
and the charging policy for each EV on a day-ahead basis. To take
into account energy demand uncertainty, this problem is formulated in
a chance-constrained programming framework. The request-to-vehicle
assignment and the EV charging policies are computed by minimizing
he costs for electricity, while guaranteeing that the energy demand

of the served requests is met with high probability. This probability is
omputed with respect to the energy demand probability distributions.
he formulated problem turns out to be hard to solve, being a MIP
roblem (due to integer variables needed for the request-to-vehicle
ssignment) with probabilistic constraints. For this reason, to cope with
he computational burden, a two-step suboptimal approach is proposed,
nspired by the inner two-stage structure of the problem. The main
aper contributions can therefore be summarized as follows.

1. An efficient heuristic procedure exploiting the problem structure
is designed to accomplish the request-to-vehicle assignment. This
is the first step of the proposed two-step approach. Necessary
and sufficient conditions to quickly check that a given assign-
ment is feasible, are also presented. An assignment is said to be
feasible if it ensures feasibility of the problem to be solved at the
second step.

2. For a given feasible request-to-vehicle assignment, a chance-
constrained problem is formulated to determine the charging
policy of each EV. This is the second step of the proposed two-
step approach. The problem complexity is managed by means
of the Bonferroni inequality, making it possible to approxi-
mate a joint chance constraint with a set of individual chance
constraints. Then, it is shown that the obtained stochastic for-
mulation can be converted into a linear program by exploiting
the Value at Risk (VaR) indicator.

3. Extensive numerical results are reported to assess the good per-
formance of both the assignment procedure and the optimization
problem that determines the EV charging policies, thus making
the proposed approach suitable for real-world applications.

It is worth highlighting that a similar two-step approach is taken in [20]
to tackle a planning problem related to car-sharing services. There, a
large-scale MIP model is built, which is then split into two subproblems
o handle the computational burden: a strategic planning level that
ecides the fleet size and the station capacity, and an operational level

that decides the required relocation operations.
The paper is structured as follows. Section 2 introduces the notation

nd the problem formulation. Section 3 describes the optimization
problem to determine the EV charging policies given a feasible request-
to-vehicle assignment, both in a deterministic and stochastic setting. A
heuristic assignment procedure is then presented in Section 4, together

ith necessary and sufficient conditions to check the feasibility of a
iven assignment. Numerical results are illustrated in Section 5, and

conclusions are drawn in Section 6.
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2. Notation and problem formulation

We consider an EV rental system (EVRS) having a single charging
tation, whose charging units are used to charge a set  of EVs available
or rental. The EVRS offers a round-trip service. Every day the EVRS

receives a set  of vehicle requests for the next day. For each request
∈ , the pickup time 𝑡𝑝ℎ and the delivery time 𝑡𝑑ℎ are specified. Let
ℎ denote the (uncertain) amount of energy needed by the request. As
escribed in Section 1, the operational problem for the EV rental system

is split into two subproblems.
First, a request-to-vehicle assignment is determined (if possible),

enabling the fulfillment of the whole set of requests. If request ℎ is
assigned to vehicle 𝑣, it is considered fulfilled if the amount of energy
stored in the battery of vehicle 𝑣 at time 𝑡𝑝ℎ is greater than or equal to
𝐸ℎ.

Second, for a given request-to-vehicle assignment, the EV charging
olicies are computed to minimize the electricity cost, while guaran-
eeing that the energy demand of the whole set of requests is met with
igh probability.

In the following, (𝐴) denotes the probability of event 𝐴. We
onsider a discrete-time setting, where each day is divided into 𝑇 time

intervals. Let  = {0,… , 𝑇 − 1} be the set of time intervals for one
ay. The set of requests assigned to vehicle 𝑣 ∈  is denoted by 𝑣.
oreover, we refer to ℎ𝑣𝑖 ∈ 𝑣 as the 𝑖th request assigned to vehicle
sorted by pickup time, i.e., 𝑡𝑝ℎ𝑣1

< 𝑡𝑝ℎ𝑣2 < ⋯ < 𝑡𝑝ℎ𝑣𝑚𝑣 , where 𝑚𝑣 is the
ardinality of 𝑣. To streamline the presentation, we will drop the
ependency of ℎ𝑣𝑖 on 𝑣 when it is clear from the context. The following
able contains the list of main symbols used throughout the paper.

Symbol Description
𝛥𝑇 Sampling time
 Set of time instants of the day
𝜀 Probability level of constraint violation
 Set of electric vehicles
 Set of requests
𝑣 Set of requests assigned to vehicle 𝑣
ℎ𝑣𝑖 𝑖th request assigned to vehicle 𝑣
𝑡𝑝ℎ𝑣𝑖

Pickup time of request ℎ𝑣𝑖
𝑡𝑑ℎ𝑣𝑖

Delivery time of request ℎ𝑣𝑖
𝐸ℎ𝑣𝑖

Energy required by request ℎ𝑣𝑖
𝐸ℎ𝑣𝑖

Estimated energy required by request ℎ𝑣𝑖
𝑆𝑣(𝑡) Battery energy level of vehicle 𝑣 at time 𝑡
𝑃𝑣(𝑡) Average charging power of vehicle 𝑣 over

[𝑡, 𝑡 + 1)
𝜂𝑣 Battery charging efficiency of vehicle 𝑣
𝑆𝑣 Battery capacity of vehicle 𝑣
𝑃 𝑣 Maximum charging power of vehicle 𝑣
𝜆ℎ𝑣𝑖 Energy charged into vehicle 𝑣 from 𝑡𝑑ℎ𝑣𝑖−1

to 𝑡𝑝ℎ𝑣𝑖
𝛾ℎ𝑣𝑖 Maximum between 𝐸ℎ𝑣𝑖

and 𝜆ℎ𝑣𝑖
𝐸ℎ𝑣𝑖

(𝛼) Value at Risk for ∑𝑖−1
𝑗=1 𝐸ℎ𝑣𝑗

of level 1 − 𝛼

𝐸ℎ𝑣𝑖
(𝛼) Value at Risk for −

∑𝑖−1
𝑗=1 𝐸ℎ𝑣𝑗

of level 1 − 𝛼

𝜋(𝑡) Electricity price at time 𝑡
𝜋 Peak power price

3. EV charging policies

In this section, we describe the optimization problem to compute
the EV charging policies for a given request-to-vehicle assignment, both
in a deterministic setting where the energy demand of each request is
assumed to be known, and in a stochastic setting where it is described

by a random variable with known probability distribution.

3 
3.1. Deterministic case

To model the EV battery dynamics, for a given vehicle 𝑣 ∈  , let
𝑣(𝑡) denote the battery energy level at time 𝑡 ∈  ∪ {𝑇 }, and 𝑃𝑣(𝑡) the
verage charging power between time 𝑡 and 𝑡 + 1 for 𝑡 ∈  . Moreover,
or each request ℎ ∈  let us define the following binary coefficient:

𝜎ℎ(𝑡) =
{

1 if 𝑡 = 𝑡𝑑ℎ
0 ot her wise, (1)

being equal to 1 only at the delivery time of request ℎ. Thus, for each
∈  and 𝑡 ∈  , the battery energy level satisfies

𝑆𝑣(𝑡 + 1) = 𝑆𝑣(𝑡) + 𝛥𝑇 𝜂𝑣𝑃𝑣(𝑡) −
∑

ℎ𝑖∈𝑣

𝜎ℎ𝑖 (𝑡 + 1)𝐸ℎ𝑖 , (2)

where 𝛥𝑇 is the time step and 𝜂𝑣 denotes the battery charging efficiency.
In (2), if request ℎ𝑖 is assigned to vehicle 𝑣, the energy level of the
battery of vehicle 𝑣 is reduced by 𝐸ℎ𝑖 at time 𝑡𝑑ℎ𝑖 , when the vehicle
returns to the charging station.

Concerning technical specifications for the battery of vehicle 𝑣,
he battery energy level and charging power must not exceed the
attery capacity 𝑆𝑣 and the maximum power 𝑃 𝑣, respectively. Thus,

the following constraints are enforced for all 𝑡 ∈  :

0 ≤ 𝑆𝑣(𝑡) ≤ 𝑆𝑣 (3)

0 ≤ 𝑃𝑣(𝑡) ≤ 𝑃 𝑣. (4)

In addition, at the end of the day it is further imposed that the battery
nergy level for each vehicle 𝑣 must be at least a specified quantity 𝑆𝑓

𝑣 .
ence,

𝑆𝑓
𝑣 ≤ 𝑆𝑣(𝑇 ) ≤ 𝑆𝑣. (5)

Finally, to satisfy a request ℎ𝑖, two conditions must be met:

• the battery energy level for vehicle 𝑣 must be at least 𝐸ℎ𝑖 at time
𝑡𝑝ℎ𝑖 ;

• the battery of vehicle 𝑣 cannot be charged when the vehicle is out
of the station, i.e., during the time interval from 𝑡𝑝ℎ𝑖 to 𝑡𝑑ℎ𝑖 − 1.

Such conditions are ensured by considering the following constraints
or all ℎ𝑖 ∈ 𝑣:

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≥ 𝐸ℎ𝑖 (6)

𝑃𝑣(𝑡) = 0, ∀𝑡 ∈ {𝑡𝑝ℎ𝑖 ,… , 𝑡𝑑ℎ𝑖 − 1}. (7)

3.2. Stochastic case

Assume now that the energy demand 𝐸ℎ𝑖 of each request is un-
ertain, and described by a random variable with known probability
istribution. Random variables corresponding to different requests are
ssumed to be independent.

Due to the stochasticity of 𝐸ℎ𝑖 , which translates into the stochastic-
ity of 𝑆𝑣(𝑡) through (2), constraints (3) and (6) can be satisfied only
n probability. For this reason, the following chance constraints are
mposed for all ℎ𝑖 ∈ 𝑣, 𝑣 ∈  :



⎛

⎜

⎜

⎜

⎜

⎝

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≥ 𝐸ℎ𝑖

𝑆𝑣(𝑡) ≥ 0 ∀𝑡 = 𝑡𝑑ℎ𝑖−1 ,… , 𝑡𝑝ℎ𝑖
𝑆𝑣(𝑡) ≤ 𝑆𝑣 ∀𝑡 = 𝑡𝑑ℎ𝑖−1 ,… , 𝑡𝑝ℎ𝑖

⎞

⎟

⎟

⎟

⎟

⎠

≥ 1 − 𝜀, (8)

where 𝜀 > 0 is a given probability level, 𝑡𝑝ℎ0 , 𝑡
𝑑
ℎ0

and 𝐸ℎ0 are set to 0,
𝑆𝑣(𝑡) evolves according to (2), and 𝐸ℎ𝑖 is the percentile of rank 1 − 𝛽
f the probability distribution of 𝐸ℎ𝑖 , i.e., the minimum value 𝐸ℎ𝑖 such
hat


(

𝐸ℎ𝑖 ≤ 𝐸ℎ𝑖

)

≥ 1 − 𝛽 , (9)

with 𝛽 > 0 a given probability level.
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Concerning (5), for each vehicle 𝑣 a chance-constraint on the final
battery energy level is further imposed:



⎛

⎜

⎜

⎜

⎜

⎝

𝑆𝑣(𝑇 ) ≥ 𝑆𝑓
𝑣

𝑆𝑣(𝑡) ≥ 0 𝑡 = 𝑡𝑑ℎ𝑚𝑣
,… , 𝑇

𝑆𝑣(𝑡) ≤ 𝑆𝑣 𝑡 = 𝑡𝑑ℎ𝑚𝑣
,… , 𝑇

⎞

⎟

⎟

⎟

⎟

⎠

≥ 1 − 𝜀. (10)

Note that by adding to each vehicle a final fictitious request ℎ𝑚𝑣+1
here 𝑡𝑑ℎ𝑚𝑣+1

= 𝑡𝑝ℎ𝑚𝑣+1
= 𝑇 and 𝐸ℎ𝑚𝑣+1

= 𝑆𝑓
𝑣 , (10) can be reformulated

as (8). Hence, from now on, for each vehicle 𝑣 we will consider an
xtended set of requests composed of 𝑣 ∪ {ℎ𝑚𝑣+1}, where the last
equest represents the final condition.

Constraints defined in (8) are joint chance-constraints, that are
typically hard to handle. In order to derive a tractable formulation,
ote that a vehicle can be only charged during inactivity intervals,
.e., when it is plugged-in at the charging station. This implies that
he battery energy level cannot decrease over an inactivity interval,

and it is sufficient to check the left-hand inequality of (3) only at the
beginning of the interval, and the right-hand inequality only at the end.

ence, (8) is equivalent to:



⎛

⎜

⎜

⎜

⎜

⎝

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≥ 𝐸ℎ𝑖

𝑆𝑣(𝑡𝑑ℎ𝑖−1 ) ≥ 0

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≤ 𝑆𝑣

⎞

⎟

⎟

⎟

⎟

⎠

≥ 1 − 𝜀 ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  . (11)

Let 𝜆ℎ𝑖 be the energy charged into vehicle 𝑣 between two consecutive
requests ℎ𝑖−1 and ℎ𝑖, i.e.

𝜆ℎ𝑖 =
𝑡𝑝ℎ𝑖

−1
∑

𝑡=𝑡𝑑ℎ𝑖−1

𝛥𝑇 𝜂𝑣𝑃𝑣(𝑡) ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  . (12)

Then, when a vehicle leaves the charging station, the battery energy
level can be written as

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) = 𝜆ℎ𝑖 + 𝑆𝑣(𝑡𝑑ℎ𝑖−1 ) ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  , (13)

and hence the second inequality in (11) can be written as

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≥ 𝜆ℎ𝑖 . (14)

Let us now define 𝛾ℎ𝑖 as

𝛾ℎ𝑖 = max
{

𝐸ℎ𝑖 , 𝜆ℎ𝑖
}

∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  . (15)

Then, by exploiting (14)–(15), (11) can be rearranged as follows


⎛

⎜

⎜

⎝

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≥ 𝛾ℎ𝑖

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≤ 𝑆𝑣

⎞

⎟

⎟

⎠

≥ 1 − 𝜀 ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  . (16)

Since the probability in (16) involves two joint events, the Bonferroni
inequality [24] can be exploited to derive the final formulation. In
particular, (16), and hence (8), is satisfied if the following inequalities
old:


(

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≥ 𝛾ℎ𝑖

)

≥ 1 − 𝜀1 ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  , (17)
(

𝑆𝑣(𝑡
𝑝
ℎ𝑖
) ≤ 𝑆𝑣

)

≥ 1 − 𝜀2 ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  , (18)

where 𝜀1, 𝜀2 are chosen positive parameters such that 𝜀1 + 𝜀2 = 𝜀.

3.3. Chance-constraint feasible set

In order to characterize the charging power profiles 𝑃𝑣(𝑡) satisfying
17)–(18), let us introduce the following two quantities for each request
ℎ𝑖 assigned to vehicle 𝑣:
𝐸ℎ𝑖 (𝛼) = min𝐸

s.t. 

( 𝑖−1
∑

𝐸ℎ𝑗 ≤ 𝐸

)

≥ 1 − 𝛼
(19)
𝑗=1

4 
𝐸ℎ𝑖
(𝛼) = max𝐸

s.t. 

( 𝑖−1
∑

𝑗=1
𝐸ℎ𝑗 ≥ 𝐸

)

≥ 1 − 𝛼 ,
(20)

where 𝛼 is a given probability level. The quantities in (19)–(20) are
commonly known as VaR of level 1 − 𝛼 [25]. It is stressed that the
probability distribution of ∑𝑖−1

𝑗=1 𝐸ℎ𝑗 can be computed by performing
the convolution of the distributions of the single 𝐸ℎ𝑗 , since these are
assumed to be independent.

To derive an equivalent formulation of (17)–(18), it is worthwhile
o show that (13) can be written as
𝑆𝑣(𝑡

𝑝
ℎ𝑖
) = 𝜆ℎ𝑖 + 𝑆𝑣(𝑡𝑑ℎ𝑖−1 )

= 𝜆ℎ𝑖 − 𝐸ℎ𝑖−1 + 𝑆𝑣(𝑡
𝑝
ℎ𝑖−1

)

…

=
𝑖

∑

𝑗=1
𝜆ℎ𝑗 −

𝑖−1
∑

𝑗=1
𝐸ℎ𝑗 + 𝑆𝑣(0) ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  .

Using the above expression for 𝑆𝑣(𝑡
𝑝
ℎ𝑖
) and after some straightforward

manipulations, (17) and (18) are equivalent to the following set of
constraints:



( 𝑖
∑

𝑗=1
𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝛾ℎ𝑖 ≥

𝑖−1
∑

𝑗=1
𝐸ℎ𝑗

)

≥ 1 − 𝜀1 ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  ,



( 𝑖
∑

𝑗=1
𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝑆𝑣 ≤

𝑖−1
∑

𝑗=1
𝐸ℎ𝑗

)

≥ 1 − 𝜀2 ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  ,

where 𝜆ℎ𝑗 and 𝛾ℎ𝑖 are values computed from 𝑃𝑣(𝑡) according to (12) and
(15). Now notice that, if 

(

∑𝑖
𝑗=1 𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝛾ℎ𝑖 ≥

∑𝑖−1
𝑗=1 𝐸ℎ𝑗

)

≥ 1 −𝜀1,
hen ∑𝑖

𝑗=1 𝜆ℎ𝑗 +𝑆𝑣(0) −𝛾ℎ𝑖 ≥ 𝐸ℎ𝑖 (𝜀1) by definition of 𝐸ℎ𝑖 (𝜀1) in (19). Vice
ersa, if ∑𝑖

𝑗=1 𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝛾ℎ𝑖 ≥ 𝐸ℎ𝑖 (𝜀1), then exploiting the fact that a
probability distribution is nondecreasing and (19), one gets:



( 𝑖
∑

𝑗=1
𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝛾ℎ𝑖 ≥

𝑖−1
∑

𝑗=1
𝐸ℎ𝑗

)

≥ 
(

𝐸ℎ𝑖 (𝜀1) ≥
𝑖−1
∑

𝑗=1
𝐸ℎ𝑗

)

≥ 1 − 𝜀1.

Using similar arguments and (20), one also obtains that ∑𝑖
𝑗=1 𝜆ℎ𝑗 +

𝑆𝑣(0) − 𝑆𝑣 ≤ 𝐸ℎ𝑖
(𝜀2) and 

(

∑𝑖
𝑗=1 𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝑆𝑣 ≤

∑𝑖−1
𝑗=1 𝐸ℎ𝑗

)

≥
 − 𝜀2 are equivalent conditions. Hence, constraints (17)–(18) can be

equivalently reformulated as follows:
𝑖

∑

𝑗=1
𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝛾ℎ𝑖 ≥ 𝐸ℎ𝑖 (𝜀1) ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  , (21)

𝑖
∑

𝑗=1
𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝑆𝑣 ≤ 𝐸ℎ𝑖

(𝜀2) ∀ℎ𝑖 ∈ 𝑣 ∪ {ℎ𝑚𝑣+1},∀𝑣 ∈  . (22)

3.4. Optimization problem

For a given request-to-vehicle assignment, the optimal EV charging
profiles 𝑃𝑣(𝑡) need to be computed. We assume that the cost incurred by
the charging station is composed of two terms, i.e., the electricity cost
and the peak power cost. Then, the objective function of the formulated
problem can be defined as follows:
∑

𝑡∈

∑

𝑣∈
𝛥𝑇 𝑃𝑣(𝑡)𝜋(𝑡) + max

𝑡∈

{

∑

𝑣∈
𝑃𝑣(𝑡)

}

𝜋 , (23)

where 𝜋(𝑡) and 𝜋 are the electricity and the peak power prices, re-
spectively. To get rid of the max operator in (23), we replace max𝑡∈
∑

𝑣∈ 𝑃𝑣(𝑡)
}

with a new variable 𝛹 , defined by the constraints:

𝛹 ≥
∑

𝑣∈
𝑃𝑣(𝑡), ∀𝑡 ∈  . (24)

Then, the optimization problem providing the optimal EV charging
profiles is the following linear program:
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Problem 1.
min
𝑷 ,𝛹

∑

𝑡∈

∑

𝑣∈
𝛥𝑇 𝑃𝑣(𝑡)𝜋(𝑡) + 𝛹𝜋

s.t. (4),(12),(15),(21),(22),
𝛹 ≥

∑

𝑣∈
𝑃𝑣(𝑡), ∀𝑡 ∈  .

In this formulation, 𝑷 is a matrix collecting the charging powers
𝑣(𝑡), where 𝑃𝑣(𝑡) is the entry in position (𝑣, 𝑡) of 𝑷 .

4. Assignment procedure

All the models presented in the previous section have been obtained
by considering a given request-to-vehicle assignment. However, in real-
world scenarios the EVRS has to choose which vehicle should be
ssigned to each request. If one considers a deterministic setup, then

it is possible to formulate a mixed-integer linear program to compute
the optimal assignment [26]. On the other hand, adopting the same
kind of approach in a stochastic framework is intractable, since one has
to compute 𝐸ℎ𝑣𝑖

(𝜀1) and 𝐸ℎ𝑣𝑖
(𝜀2) for all the possible request-to-vehicle

assignments. Clearly, this is a combinatorial problem that becomes
prohibitive to solve even for a small number of EVs and requests.

hus, in this section we present a heuristic solution to the problem of
ssigning an EV to each request.

First, the requests are sorted by their pickup time and they are pro-
essed sequentially in that order. Then, the proposed heuristic builds

the final assignment incrementally for all ℎ, 𝑣. At a given iteration,
 new request ℎ is assigned to a vehicle 𝑣. In doing so, it must
e guaranteed that the resulting assignment is a feasible assignment.
pecifically, two conditions must be met. First, the request ℎ must not
verlap in time with the previous requests already assigned to vehicle
. Second, there must exist a feasible charging profile 𝑃𝑣(𝑡) such that
onditions (4), (7), (21) and (22) are satisfied.

In general, at a given iteration there exist multiple EVs that can be
assigned to request ℎ without violating any of the above conditions
(candidate vehicles). In this case, the proposed method attempts to
assign ℎ to the most promising candidate vehicle, by maximizing the
time that a vehicle has at its disposal to recharge its battery before
request ℎ begins. For each candidate vehicle, the availability time is
computed as the maximum of the delivery times of the requests already
assigned to that vehicle. Then, request ℎ is assigned to the candidate
vehicle having the earliest availability time. Intuitively, this heuristic
tries to maximize the time between two consecutive requests that must
be served by the same vehicle. This choice aims at introducing more
flexibility in the charging schedule problem to be solved afterwards,
thus obtaining better results.

However, checking that (4), (7), (21) and (22) are feasible for the
ehicle 𝑣 with a given request set 𝑣 requires the solution of a linear
rogram. To speed up such computation, in the next section, necessary
nd sufficient conditions to quickly check the feasibility of a given
ssignment will be introduced.

4.1. Assignment feasibility

Suppose that a request-to-vehicle assignment is given. The feasibil-
ity of the assignment is defined as follows.

Definition 1. A request-to-vehicle assignment is said feasible if there
xists an EV power schedule such that (4), (7), (21) and (22) are

satisfied.
Since no coupling constraints between vehicles are present, the con-

itions establishing the feasibility of the assignment will be provided by
onsidering a given vehicle 𝑣, and then one can extend the reasoning

for the whole set of vehicles.
5 
Proposition 1. If 0 ≤ 𝜆ℎ𝑖 ≤ 𝛥𝑇 𝜂𝑣𝑃 𝑣𝜏ℎ𝑖 , where 𝜏ℎ𝑖 = 𝑡𝑝ℎ𝑖 − 𝑡𝑑ℎ𝑖−1 , 𝑡
𝑑
0 = 0,

then there exist 𝑃𝑣(𝑡) satisfying (4) and (7).

Proof. Define

𝑃𝑣(𝑡) =
{

𝜆ℎ𝑖∕𝜏ℎ𝑖 if 𝑡 = 𝑡𝑑ℎ𝑖−1 ,… , 𝑡𝑝ℎ𝑖 − 1
0 else.

Clearly, 𝑃𝑣(𝑡) satisfies (7). Moreover, from 0 ≤ 𝜆ℎ𝑖 ≤ 𝛥𝑇 𝜂𝑣𝑃 𝑣𝜏ℎ𝑖 , 𝑃𝑣(𝑡)
satisfies (4) as well. □

From the feasibility point of view, constraints (4), (7), (21) and (22)
are equivalent to the following set of inequalities:

𝜆ℎ𝑖 ≥ 0 (25)

𝜆ℎ𝑖 ≤ 𝛥𝑇 𝜂𝑣𝑃 𝑣𝜏ℎ𝑖 (26)
𝑖

∑

𝑗=1
𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝛾ℎ𝑖 ≥ 𝐸ℎ𝑖 (𝜀1) (27)

𝑖
∑

𝑗=1
𝜆ℎ𝑗 + 𝑆𝑣(0) − 𝑆𝑣 ≤ 𝐸ℎ𝑖

(𝜀2) (28)

where (27) and (28) coincide with (21),(22) and are rewritten here
for convenience. From (15), the previous constraints can be rewritten
as:

𝜆ℎ𝑖 ≥ 0 (29)

𝜆ℎ𝑖 ≤ 𝛥𝑇 𝜂𝑣𝑃 𝑣𝜏ℎ𝑖 (30)

𝜆ℎ𝑖 ≥ 𝐸ℎ𝑖 (𝜀1) −
𝑖−1
∑

𝑗=1
𝜆ℎ𝑗 − 𝑆𝑣(0) + 𝐸ℎ𝑖 (31)

𝑖−1
∑

𝑗=1
𝜆ℎ𝑗 ≥ 𝐸ℎ𝑖 (𝜀1) − 𝑆𝑣(0) (32)

ℎ𝑖 ≤ 𝐸ℎ𝑖
(𝜀2) −

𝑖−1
∑

𝑗=1
𝜆ℎ𝑗 − 𝑆𝑣(0) + 𝑆𝑣, (33)

where (27) is equivalent to (31)–(32), and (28) is equivalent to (33).
t is worthwhile to note that if there exists a sequence of 𝜆ℎ𝑖 satisfying
29)–(33), then according to Proposition 1 there exists a power sched-

ule satisfying (4), (7), (21) and (22). Now, let us introduce the following
quantities:

𝑥ℎ𝑖 =
𝑖

∑

𝑗=1
𝜆ℎ𝑗 𝑖 ∈ {1,… , 𝑚𝑣 + 1} (34)

𝑐ℎ𝑖−1 = 𝛥𝑇 𝜂𝑣𝑃 𝑣𝜏ℎ𝑖 𝑖 ∈ {1,… , 𝑚𝑣 + 1} (35)

𝑥ℎ𝑖 = max
{

𝐸ℎ𝑖 (𝜀1) − 𝑆𝑣(0) + 𝐸ℎ𝑖 , 𝐸ℎ𝑖+1 (𝜀1) − 𝑆𝑣(0)
}

𝑖 ∈ {1,… , 𝑚𝑣} (36)

𝑥ℎ𝑖 = 𝐸ℎ𝑖
(𝜀2) − 𝑆𝑣(0) + 𝑆𝑣 𝑖 ∈ {1,… , 𝑚𝑣 + 1} (37)

𝑥ℎ0 = 𝑥ℎ0 = 𝑥ℎ0 = 0 (38)

ℎ𝑚𝑣+1
= 𝐸ℎ𝑚𝑣+1

(𝜀1) − 𝑆𝑣(0) + 𝐸ℎ𝑚𝑣+1
. (39)

The above quantities are instrumental to streamline the mathematical
erivations. In particular, for the battery of vehicle 𝑣, 𝑥ℎ𝑖 represents the
nergy charged up to time 𝑡𝑝ℎ𝑖 and 𝑐ℎ𝑖−1 denotes the maximum energy
hat can be charged from 𝑡𝑑ℎ𝑖−1 to 𝑡𝑝ℎ𝑖 , while 𝑥ℎ𝑖 and 𝑥ℎ𝑖 are lower and

upper bounds to 𝑥ℎ𝑖 , respectively. Using the quantities defined in (34)–
39), the system of inequalities (29)–(33) can be reformulated as stated

in the following lemma.

Lemma 1. Let 𝑐ℎ𝑖 , 𝑥ℎ𝑖 , 𝑥ℎ𝑖 and 𝑥ℎ𝑖 be defined as in (34)–(39), then
29)–(33) can be written in the following equivalent form:

𝑥ℎ𝑖 ≤ 𝑥ℎ𝑖 ≤ 𝑥ℎ𝑖 ∀𝑖 ∈ {0,… , 𝑚𝑣 + 1} (40)

𝑥ℎ𝑖 ≤ 𝑥ℎ𝑖+1 ≤ 𝑥ℎ𝑖 + 𝑐ℎ𝑖 ∀𝑖 ∈ {0,… , 𝑚𝑣}. (41)
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The proof of Lemma 1 is reported in the appendix. In order to certify
the feasibility of a given assignment, let us first introduce the next
Lemma.

Lemma 2. Consider the system of inequalities:

𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 ∀𝑖 ∈ {1,… , 𝑚}
𝑥𝑖 ≤ 𝑥𝑖+1 ≤ 𝑥𝑖 + 𝑐𝑖 ∀𝑖 ∈ {1,… , 𝑚 − 1},
where 𝑥𝑖, 𝑥𝑖, 𝑐𝑖 ≥ 0 and 𝑚 ≥ 1 are given parameters, and define the
quantities:

𝑤𝑖 = max
{

max
1≤𝑘≤𝑖

𝑥𝑘, 𝑤𝑖+1 − 𝑐𝑖

}

(42)

𝑤𝑖 = min
{

min
𝑖≤𝑘≤𝑚

𝑥𝑘, 𝑤𝑖−1 + 𝑐𝑖−1

}

, (43)

where 𝑤1 = min1≤𝑘≤𝑚 𝑥𝑘 and 𝑤𝑚 = max1≤𝑘≤𝑚 𝑥𝑘. Then, the system has
nonempty intersection if and only if
𝑤𝑖 ≤ 𝑤𝑖 ∀𝑖 ∈ {1,… , 𝑚}.

The proof of Lemma 2 is given in the appendix. Thanks to Lemma 2,
necessary and sufficient conditions to check the feasibility of a given
assignment are provided by the following theorem.

Theorem 1. Let an assignment 𝑧ℎ,𝑣 be given and consider the parameters
defined in (34)–(39). Moreover, define

𝑤ℎ𝑖
= max

{

max
0≤𝑘≤𝑖

𝑥ℎ𝑘 , 𝑤ℎ𝑖+1
− 𝑐ℎ𝑖

}

𝑤ℎ𝑖 = min
{

min
𝑖≤𝑘≤𝑚𝑣+1

𝑥ℎ𝑘 , 𝑤ℎ𝑖−1 + 𝑐ℎ𝑖−1

}

,

where 𝑤ℎ1 = min0≤𝑘≤𝑚𝑣+1 𝑥ℎ𝑘 and 𝑤ℎ𝑚𝑣+1
= max0≤𝑘≤𝑚𝑣+1 𝑥ℎ𝑘 . Then, the

assignment is feasible if and only if

𝑤ℎ𝑖
≤ 𝑤ℎ𝑖 ∀𝑖 ∈ {0,… , 𝑚𝑣 + 1}, ∀𝑣 ∈  .

Proof of Theorem 1. Since there is no constraint that couples EV
harging, in order to check the feasibility of the assignment it is suf-
icient to check that (29)–(33) are satisfied for each vehicle separately.
hanks to Lemma 1, one can write the constraints for each EV in

the form (40)–(41). Then, note that the constraint structure (40)–(41)
its the one introduced in Lemma 2. Hence, application of Lemma 2

concludes the proof. □

Remark 1. Theorem 1 allows one to efficiently check the feasibility of
a new request. In fact, instead of solving an LP problem every time that
a new request is assigned, the problem feasibility can be checked by
exploiting an algorithm whose complexity grows linearly with respect
to the total number of requests.

5. Numerical results

To assess the performance of the proposed approach, three setups
re considered. First, the fulfillment of chance-constraints is validated
y considering a system configuration where the charging station is

equipped with only one vehicle. Second, the sensitivity of the assign-
ment procedure is evaluated in a scenario involving different request-
o-vehicle ratios. Third, the role of 𝜀 to trade-off cost performance and
onstraint violation is investigated in a setting where the number of
equests and the number of vehicles are fixed. For all the simulations,
arameters concerning the EV charging process are chosen as estimated
verage values of current technologies. Specifically, EV battery capacity

is 𝑆𝑣 = 50 kWh, battery efficiency is 𝜂𝑣 = 0.9, and maximum charging
power is 𝑃 𝑣 = 22 kW. The sampling time is set to 10 min and the
peak price is set to 0.15 e/kW, while the electricity prices are taken
from the Italian electricity market [27]. Concerning probability levels,
 h

6 
Fig. 1. Battery energy level profile for a simulation which satisfies all the constraints
(blue solid), envelope of all the battery energy level profiles over 𝑁 = 104 simulations
(green dashed), capacity constraints (red solid), and request constraints (red dots). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

values 𝜀1 = 𝜀2 = 𝜀∕2 and 𝛽 = 0.01 are chosen. For each request ℎ, the
distribution of 𝐸ℎ is supposed to be a truncated Gaussian with mean
3.3𝛥𝑇 (𝑡𝑑ℎ − 𝑡𝑝ℎ) kWh and standard deviation set at 10% of its mean.

5.1. Chance-constraint validation

In this test, 𝜀 is set to 0.1 and five requests arranged in ten different
configurations are designed. To generate the configurations, the pickup
time of a request is supposed to be uniformly distributed over the set
of values ranging from 3 to 12 time steps after the delivery time of the
previous request, whereas the request length is sampled from a uniform
distribution ranging from 2 hours to 4 hours. For each configuration,
the EV charging profiles are computed a priori by solving Problem 1.
Then, 𝑁 = 104 simulations are run by applying the predetermined EV
charging profiles under different realizations of energy demand for each
request. The performance of the proposed approach is finally assessed
y evaluating, for each request, the percentage of simulations in which
he bounds on the battery energy level at pickup or delivery time are
iolated (percentage of violation). The largest percentage of violation

over the considered requests and configurations is 5.49%, well below
the 10% probability level of violation set by 𝜀.

Figs. 1 and 2 refer to one of the configurations of the test. In both
figures, the black dot-dashed lines represent the pickup times of the
five requests, the red solid lines represent the energy bounds in (3), and
the red dots represent the estimated energy required by each request,
denoted 𝐸ℎ𝑖 for request ℎ𝑖. In Fig. 1, the blue solid line is a simulation
for which the battery energy level stays always within the capacity
bounds and is capable of satisfying all the requests and the terminal
constraint (5). The figure also shows (green dashed lines) the maximum
and minimum battery energy level for each time instant 𝑡 ∈  over the

simulations. Consistently with the probabilistic setting of this work,
aiming at satisfying the constraints on the battery energy level with
high probability, it happens that constraints are violated in a limited
number of simulations, in particular around 3PM and at the end of the
day. Two of these simulations are shown in Fig. 2. The magenta dashed
ine is the simulation which features the worst violation of the battery
apacity limit (around 3PM), while the blue solid line is the simulation
ith the worst violation of the terminal constraint (5). In both cases,
owever, violations can be considered acceptable.
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Fig. 2. Battery energy level profiles for a simulation which violates the terminal
constraint (blue solid) and for another which violates the capacity constraint (magenta
dashed), capacity constraints (red solid), and request constraints (red dots). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Fraction of infeasible assignments.

# EVs
# Requests 10 20 30 40 50

10 0 0.04 0.71 1 1
20 0 0 0 0.01 0.06
30 0 0 0 0 0
40 0 0 0 0 0
50 0 0 0 0 0

5.2. Assignment feasibility

To assess the performance of the assignment procedure, several se-
tups with different request-to-vehicle ratios are analyzed. In particular,
combinations of number of requests ranging from 0 to 100 and number
f vehicles in the set {10, 20,… , 50} are considered. For a fixed number
f requests, 𝑀 = 104 different request scenarios are generated. This is
one by drawing the pickup time of each request (expressed in time

steps) from a discrete uniform distribution over the set {0, 1,… , 102},
whereas the request duration is fixed and equal to 4 hours.

reports the fraction of times that the heuristic procedure of Section 4
returns an infeasible assignment (checked via Theorem 1) for several
combinations of number of requests and numbers of vehicles. Plots of
the number of infeasible assignments out of 𝑀 = 104 scenarios versus
he number of requests are shown in Fig. 3 for three different values

of the number of vehicles. As expected, when the number of vehicles
s greater than or equal to the number of requests, all the assignments
re trivially feasible.

In the setup of this section, the proposed heuristic procedure may
not provide a feasible assignment for two reasons. It may happen either
hat the heuristic procedure cannot find a solution even though at least
ne exists, or the request set does not admit a solution (e.g., when
he number of requests that must be simultaneously satisfied is greater
han the available number of EVs). In order to properly assess the

performance of the proposed heuristic procedure, scenarios where the
number of simultaneous requests exceeds the number of vehicles are
excluded from the analysis. The remaining scenarios are referred to as
filtered scenarios. Plots of the number of infeasible assignments out of
the filtered scenarios versus the number of requests are shown in Fig. 4
for three different values of the number of vehicles. It can be observed
that the number of infeasible assignments starts decreasing when the
number of requests is approximately three times the number of EVs.
7 
Fig. 3. Number of infeasible assignments out of 𝑀 = 104 scenarios versus the number
of requests for 10, 20, 30 vehicles.

Fig. 4. Number of infeasible assignments out of the filtered scenarios versus the
number of requests for 10, 20, 30 vehicles.

This occurs because, for a large number of requests, the probability
of generating a scenario where the number of simultaneous requests
exceeds the number of available vehicles approaches 1. Hence, the
number of filtered scenarios (and consequently the number of infeasi-
ble assignments) decreases to 0. Nevertheless, the heuristic procedure
shows good assignment performance among the filtered scenarios. This
can be observed in Fig. 5, showing the fraction of infeasible assignments
to the total number of filtered scenarios versus the number of requests.
This fraction represents a probability estimate of not finding a feasible
ssignment for request sets compatible with the number of vehicles
i.e., whenever the number of simultaneous requests does not exceed

the number of EVs). It is worth noting that, as long as the number of
requests is approximately less than three times the number of vehicles,
the probability mentioned above is below 5%.

5.3. Sensitivity with respect to 𝜀

The performance of the proposed chance-constrained optimization
is evaluated for different values of the probability level 𝜀. A setup with
20 vehicles and 50 requests is considered. Request sets are generated as
described in Section 5.2, until one is found, for which the assignment
eturned by the heuristic procedure is feasible. After the assignment,

several EV charging profiles are computed by solving Problem 1 for
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Table 2
Performance indicators for the solutions provided by the stochastic and the deterministic optimization.

Largest percentage of violation [%] Largest violation [kWh] Cost [e]

Stochastic (𝜀 = 0.01) 0.68% 3.90 87.97
Stochastic (𝜀 = 0.05) 2.92% 5.30 84.76
Stochastic (𝜀 = 0.10) 5.70% 6.02 83.13
Stochastic (𝜀 = 0.15) 8.36% 6.48 82.07
Deterministic 99.10% 9.77 73.91
t

t
o
T
t

s
a

Fig. 5. Fraction of infeasible assignments to the total number of filtered scenarios
versus the number of requests for 10, 20, 30 vehicles.

Fig. 6. Charging station cost and largest percentage of violation versus 𝜀.

different values of 𝜀. This provides the cost (23) as a function of 𝜀.
Then, as in Section 5.1, 𝑁 = 104 simulations are run by applying
the predetermined EV charging profiles under different realizations of
nergy demand for each request. This makes it possible to evaluate
he largest percentage of violation and the largest constraint violation
see Section 5.1) as a function of 𝜀. All these values are reported in

Table 2 for 𝜀 ranging from 0.01 to 0.15. The same table also shows
he results obtained with the EV charging profiles returned by the
eterministic optimization formulated in Section 3.1, where the energy

required by each request is assumed to be the expected value of the
elated distribution.

Since no stochastic guarantee is provided, it can be observed that
the deterministic solution leads to an overall cost which is lower
than that of the stochastic solution for all the considered values
of 𝜀. However, the solution provided by the stochastic optimization
8 
outperforms the one provided by the deterministic optimization in
terms of feasibility. Indeed, even considering 𝜀 = 0.15, the largest
percentage of violation is still much smaller than the one obtained
with the solution of the deterministic problem. Moreover, the largest
constraint violation is 6.48 kWh for the stochastic solution, whereas
it is 9.77 kWh for the deterministic solution. Finally, Fig. 6 shows the
plots of the cost (blue solid) and the largest percentage of violation
(red dashed) versus 𝜀. It is worthwhile to note that the latter grows
almost linearly with 𝜀. On the other hand, the operation cost features
high sensitivity for small values of 𝜀, while its trend tends to be almost
linear when 𝜀 ≥ 0.07.

6. Conclusions

In this paper, we considered the optimal management of a fleet of
EVs used within a rental system. The decision problem is concerned
with assigning rental requests to vehicles, and determining the EV
charging policies so that the battery of each vehicle has sufficient
charge to fulfill each request assigned to it. The charging process occurs
when vehicles are returned to the charging station, during inactivity
intervals between consecutive requests. Since the battery energy level
when a vehicle returns to the station is uncertain, a stochastic formu-
lation was adopted. The objective is to minimize the electricity cost,
while guaranteeing that the energy demand of the served requests is
met with a prescribed probability level. To cope with the mixed-integer
probabilistic nature of the assignment problem, a two-step subopti-
mal approach was proposed. In the first step, an efficient heuristic
procedure accomplishes the request-to-vehicle assignment. Then, for a
given assignment, the EV charging policies are determined by solving a
relaxed chance-constrained problem, thus obtaining a computationally
tractable approach which involves the solution of a linear program. The
good performance of the proposed procedures was assessed by means
of extensive numerical results. In particular, the results in Section 5.1
showed that the relaxed chance-constrained problem typically provides
EV battery charging profiles that are feasible for the original problem
with joint chance-constraints, with only occasional and modest viola-
ions of the bounds on the battery energy level. In Section 5.2 it was

shown that, for the simulated characteristics of the requests, the heuris-
tic assignment procedure was able to provide feasible assignments in a
very high percentage of instances for a number of requests at least up
to the double of the number of vehicles. Finally, Section 5.3 showed
that, in the presence of stochastic energy demand, the EV battery
charging profiles obtained with the stochastic procedure outperform
hose obtained with the deterministic procedure in terms of fulfillment
f constraints, with an acceptable loss in terms of cost for electricity.
he deterministic procedure considers each request as characterized by
he expected value of the corresponding energy demand distribution.

The results of this paper provided useful insights into the impact
of demand uncertainty, combined with the peculiar characteristics of
EVs, on the optimal management of EV fleets within rental and sharing
systems. Future work will focus on introducing and managing other
ources of uncertainty in the problem at hand (e.g., uncertain pickup
nd delivery times), as well as considering different types of rental

services (e.g., one-way services, where the station of pickup and that of
delivery do not coincide), and mixed fleets of heterogeneous vehicles.
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Appendix A

Proof of Lemma 1. By (34), one can write (29)–(33) as

𝑥ℎ𝑖 ≥ 𝑥ℎ𝑖−1 (44)

ℎ𝑖 ≤ 𝛥𝑇 𝜂𝑣𝑃 𝑣𝜏ℎ𝑖 + 𝑥ℎ𝑖−1 (45)

𝑥ℎ𝑖 ≥ 𝐸ℎ𝑖 (𝜀1) − 𝑆𝑣(0) + 𝐸ℎ𝑖 (46)

𝑥ℎ𝑖−1 ≥ 𝐸ℎ𝑖 (𝜀1) − 𝑆𝑣(0) (47)

𝑥ℎ𝑖 ≤ 𝐸ℎ𝑖
(𝜀2) − 𝑆𝑣(0) + 𝑆𝑣. (48)

Then, by (35)–(39), inequalities (44)–(48) become

𝑥ℎ𝑖 ≤ 𝑥ℎ𝑖 ≤ 𝑥ℎ𝑖 ∀𝑖 ∈ {0,… , 𝑚𝑣 + 1}
ℎ𝑖 ≤ 𝑥ℎ𝑖+1 ≤ 𝑥ℎ𝑖 + 𝑐ℎ𝑖 ∀𝑖 ∈ {0,… , 𝑚𝑣}. □

Proof of Lemma 2. It is easy to note that if (40)–(41) admit a solution
∗
𝑖 with 𝑖 ∈ {1,… , 𝑚}, then the following inequalities are satisfied

𝑥∗𝑖 ≥ 𝑥𝑘 ∀𝑘 ∈ {1,… , 𝑖} (49)

𝑥∗𝑖 ≤ 𝑥𝑘 ∀𝑘 ∈ {𝑖,… , 𝑚} (50)

∗
𝑖 ≤ 𝑥∗𝑘 +

𝑖−𝑘
∑

𝑗=1
𝑐𝑖−𝑗 ∀𝑘 ∈ {1,… , 𝑖 − 1} (51)

∗
𝑖 ≤ 𝑥𝑘 +

𝑖−𝑘
∑

𝑗=1
𝑐𝑖−𝑗 ∀𝑘 ∈ {1,… , 𝑖 − 1} (52)

𝑥∗𝑖 ≥ 𝑥∗𝑘 −
𝑘−𝑖−1
∑

𝑗=0
𝑐𝑖+𝑗 ∀𝑘 ∈ {𝑖 + 1,… , 𝑚} (53)

∗
𝑖 ≥ 𝑥𝑘 −

𝑘−𝑖−1
∑

𝑗=0
𝑐𝑖+𝑗 ∀𝑘 ∈ {𝑖 + 1,… , 𝑚}. (54)

Let us prove the necessity. Suppose that there exist a solution 𝑥∗𝑖 such
that (40)–(41) are satisfied, then we want to prove that

𝑤𝑖 ≤ 𝑤𝑖 ∀𝑖 ∈ {1,… , 𝑚}.
By recursively applying the definition of 𝑤𝑖 and 𝑤𝑖 in (42)–(43), the
explicit expression of 𝑤𝑖 and 𝑤𝑖 can be written as

𝑤𝑖 = max

{

max
1≤𝑘≤𝑖

𝑥𝑘, max
𝑖<𝑘≤𝑚

{

𝑥𝑘 −
𝑘−𝑖−1
∑

𝑐𝑖+𝑗

}}

(55)

𝑗=0
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𝑤𝑖 = min

{

min
𝑖≤𝑘≤𝑚

𝑥𝑘, min
1≤𝑘<𝑖

{

𝑥𝑘 +
𝑖−𝑘
∑

𝑗=1
𝑐𝑖−𝑗

}}

. (56)

Thus, by considering a feasible solution 𝑥∗𝑖 with 𝑖 ∈ {1,… , 𝑚}, we have
that (49)–(54) are satisfied and hence

max
1≤𝑘≤𝑖

{

𝑥𝑘
}

≤ 𝑥∗𝑖 ≤ min
𝑖≤𝑘≤𝑚

{

𝑥𝑘
}

max
𝑖<𝑘≤𝑚

{

𝑥𝑘 −
𝑘−𝑖−1
∑

𝑗=0
𝑐𝑖+𝑗

}

≤ 𝑥∗𝑖 ≤ min
1≤𝑘<𝑖

{

𝑥𝑘 +
𝑖−𝑘
∑

𝑗=1
𝑐𝑖−𝑗

}

which, from (55)–(56) proves that 𝑤𝑖 ≤ 𝑤𝑖, ∀𝑖 ∈ {1,… , 𝑚}.
Now we want to prove that if 𝑤𝑖 ≤ 𝑤𝑖 for 𝑖 ∈ {1,… , 𝑚}, then

40)–(41) are satisfied.
Let us consider a candidate solution 𝑥∗𝑖 = 𝑤𝑖, we want to show that

it is also a feasible solution. By exploiting the definition in (56), the
ollowing inequalities hold

𝑤𝑖 ≤ 𝑤𝑖−1 + 𝑐𝑖−1 (57)

𝑤𝑖 ≤ min
𝑖≤𝑘≤𝑚

{

𝑥𝑘
}

≤ 𝑥𝑖. (58)

So, by considering 𝑥∗𝑖 , the right hand sides of (40)–(41) are satisfied.
Thus, the following inequalities need to be checked

𝑤𝑖 ≥ 𝑤𝑖−1 (59)

𝑤𝑖 ≥ 𝑥𝑖. (60)

First, focus on 𝑤𝑖 ≥ 𝑤𝑖−1. We have that if 𝑤𝑖 = 𝑤𝑖−1 + 𝑐𝑖−1 then (59) is
satisfied since 𝑐𝑖−1 ≥ 0. On the other hand, if 𝑤𝑖 = min𝑖≤𝑘≤𝑚 𝑥𝑘 then, by
xploiting (58), the we have

min
𝑖≤𝑘≤𝑚

𝑥𝑘 ≥ min
𝑖≤𝑘≤𝑚−1

𝑥𝑘 ≥ 𝑤𝑖−1.

Finally, we have to show that the inequality in (60) is also true. In
particular, we can write

𝑤𝑖 ≥ 𝑤𝑖 ≥ 𝑥𝑖,

which concludes the proof. □

Data availability

Data will be made available on request.
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