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 A B S T R A C T

This paper introduces a new family of pursuit strategies for multi-pursuer single-evader games in a planar 
environment. The main idea is to exploit conditions under which capture of the evader in minimum time can 
be achieved by only two pursuers. The first contribution is to characterize such conditions in terms of the 
agent positions. Then, new pursuit strategies are proposed in which the multi-pursuer team aims to meet such 
conditions, switching to a two-pursuer game once they are satisfied. The benefit of this approach is twofold. 
First, it is shown that naive strategies that are in general unsuccessful can be turned into winning strategies 
by switching to the appropriate two-pursuer game. Second, the switching mechanism significantly enhances 
the performance of existing pursuit algorithms, like those based on Voronoi partitions. This is demonstrated 
by means of extensive numerical simulations.
1. Introduction

Pursuit-evasion games are intensively studied because they allow to 
tackle a variety of problems involving multi-agent systems. The large 
number of applications treated in the literature range from mobile 
robotics [1,2] to optimal robot control [3], space operations [4,5], 
predator–prey dynamics in biological systems [6], and beyond. Recent 
years have witnessed a surge in interest towards games involving 
multiple pursuers [7–9], multiple evaders [10,11], or both [12,13], 
leading to a broad spectrum of problem formulations and solutions.

Traditionally, pursuit-evasion problems are approached by framing 
them as differential games [14,15]. Unfortunately, an optimal solution 
is available only for a limited number of games. An example is that of 
the minimum-time solution of the two-pursuer one-evader game involv-
ing simple-motion players in a two-dimensional environment [16–18]. 
For the three-pursuer one-evader game, only suboptimal solutions have 
been derived [19], although it has been established that optimal strate-
gies must involve switching between different linear sub-paths [20,21]. 
An open-loop minimum-time solution for games with more than three 
pursuers has been proposed in [22], showing that the agents must 
move along linear paths. However, a closed-loop solution to this dif-
ferential game remains elusive. The above observations motivate the 
investigation of conditions under which the optimal solution of the two-
pursuer game can be exploited to devise successful strategies for games 
involving more than two pursers.
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1.1. Related work

Due to the complexity of multi-agent pursuit-evasion games, such 
problems have been often approached by splitting them in simpler 
subgames. This has led to the development of solutions based on hierar-
chical scheduling [23], dynamic pursuit assignment [24], optimal task 
allocation [25], just to name a few. Considering the scenario of multi-
pursuer single-evader game with faster pursuers, several techniques 
have been proposed which aim at reducing the problem to a two-
pursuer game, for which an optimal solution is available. In [26], a 
pursuit strategy is proposed in which all possible two-pursuer games 
are compared and the one which yields the smallest capture time is 
actually selected. The strategy is played continuously in feedback, so 
that switching may occur between different two-pursuer games (since 
all such games eventually lead to capture). A similar approach is consid-
ered in [27] for reach-avoid games involving pursuers modeled as Du-
bins cars. It is shown that at most two pursuers are sufficient to defend 
against a single attacker, thus greatly simplifying the multi-pursuer 
problem.

A key element of pursuit-evasion games is the information pattern 
available to the players, which strongly influences both the problem 
setting and the corresponding solution. For example, in multi-pursuer 
single-evader games involving simple-motion agents with equal maxi-
mum speed, a winning pursuit strategy was proposed in [19] and the 
game of kind was solved in [28], assuming that the pursuers have 
access to the velocity of the evader. In the same setting, the pursuit 
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task becomes much more difficult when the pursuers know only the 
current position of the evader. In this case, the solution of the game of 
kind is provided in [29]. Quite interestingly, such a solution is based 
on a pursuit strategy which switches progressively to games played by 
a smaller number of pursuers. However, the strategies adopted in these 
subgames are not optimal and only guarantee the eventual capture of 
the evader. The same information pattern is adopted in [7], where the 
pursuers aim to minimize the area of the evader Voronoi cell. This 
technique guarantees that the evader is captured in finite time, but 
it does not optimize over the time required to terminate the game. 
In [30], the optimal capture time for this class of games is characterized 
via a set of implicit conditions. However, pursuit techniques that are 
able to achieve capture in minimum time are not available yet.

1.2. Paper contribution

This paper proposes a new family of pursuit strategies for a multi-
pursuer single-evader game, in which agents move in a planar environ-
ment with simple motion and equal maximum speed. Both the pursuers 
and the evader have access only to the agents’ positions. The core idea 
is to derive and leverage conditions under which the minimum-time 
game boils down to a two-pursuer game. This allows one to design pur-
suit strategies aiming at enforcing these conditions and transitioning to 
a two-pursuer game when they are satisfied. Although these switching 
pursuit strategies are in general suboptimal, they consistently reduce 
capture time compared to strategies without switching. As a result, they 
enhance the performance of existing pursuit techniques and enable the 
development of new effective multi-pursuer strategies.

The main contributions of the paper are as follows. First, conditions 
under which the minimum-time pursuit strategy boils down to that 
of a two-pursuer single-evader game are established. In such cases, 
switching to the two-pursuer game provides an optimal solution to the 
multi-pursuer one. The second contribution is the definition of new 
families of switching pursuit strategies, based on the previously derived 
conditions, that guarantee capture of the evader. Specifically, simple 
strategies like pure pursuit or fixed-point pursuit, which in general 
fail to capture the evader, are transformed into successful strategies 
through a switch to the appropriate two-pursuer game. Furthermore, 
it is demonstrated through numerical simulations that switching can 
substantially reduce the capture time, even for strategies that inher-
ently guarantee capture, such as the Voronoi partition-based approach 
introduced in [7]. On the whole, the proposed switching mechanism 
provides a powerful framework for the design of a variety of new 
pursuit strategies in multi-pursuer single-evader games. A preliminary 
version of this work has been presented in [31]: the present paper 
contains all the proofs of the results, expands the technical develop-
ment, and presents a new simulation campaign to thoroughly assess 
the performance of the proposed technique.

As for the paper organization, the formulation of the multi-pursuer 
single-evader game is given in Section 2, along with a summary of 
the two-pursuer game optimal solution. Section 3, after revisiting the 
solution to the game of kind, provides the conditions under which 
the minimum-time multi-pursuer game boils down to a two-pursuer 
one. This paves the way to the introduction of new switching pursuit 
strategies in Section 4, whose performance is assessed in Section 5 
by means of numerical simulations. Concluding remarks and future 
developments are reported in Section 6.

1.3. Notation and definitions

Given a vector 𝑉 , its transpose is denoted by 𝑉 ′, while ‖𝑉 ‖ is its 
Euclidean norm. For 𝑉 ,𝑊 ∈ R2, we denote by 𝑉 𝑊  the segment with 
𝑉  and 𝑊  as endpoints. (𝑃 , 𝑟) = {𝑄 ∈ R2 ∶ ‖𝑄 − 𝑃‖ ≤ 𝑟} denotes a 
circle centered in 𝑃 ∈ R2 with radius 𝑟. For a closed set , 𝜕 is the 
boundary of , while H {} denotes the convex hull of . Given two 
sets ,, ∖ = {𝑄∶𝑄 ∈ , 𝑄 ∉ }. The interior of  is denoted by 
𝚒𝚗𝚝  = ∖𝜕.
{ }

2 
2. Multi-pursuer single-evader game

A multi-pursuer single-evader game (hereafter referred to as MP1EG) is 
a game in which 𝑝 pursuers aim at capturing one evader. The positions 
of the pursuers and the evader at time 𝑡 are denoted by 𝑃𝑘(𝑡) ∈ R2, 𝑘 =
1,… , 𝑝, and 𝐸(𝑡) ∈ R2, respectively. The players move in the plane in 
simple motion, that is
{

𝐸̇(𝑡) = 𝑣𝐸 (𝑡) ,
𝑃̇𝑘(𝑡) = 𝑣𝑃𝑘 (𝑡) , 𝑘 = 1,… , 𝑝

where 𝑣𝐸 (𝑡), 𝑣𝑃𝑘 (𝑡) ∈ R2 are the velocity vectors of the players. We 
assume that all agents have the same maximum speed, ‖𝑣𝐸 (𝑡)‖ ≤ 𝑣𝑚𝑎𝑥, 
‖𝑣𝑃𝑘 (𝑡)‖ ≤ 𝑣𝑚𝑎𝑥, 𝑘 = 1,… , 𝑝, ∀𝑡 ≥ 0. Without loss of generality, it is 
set 𝑣𝑚𝑎𝑥 = 1 and the initial game time at 𝑡 = 0. At each time 𝑡, 𝑣𝐸 (𝑡)
and 𝑣𝑃𝑘 (𝑡) are computed as functions of the state of the game 𝜉(𝑡) =
[𝐸′(𝑡) 𝑃 ′

1(𝑡) … 𝑃 ′
𝑝 (𝑡)]

′. Notice that the agents do not have information 
on the velocities of the other players. The strategies of the agents are 
closed-loop control laws mapping the current game state into the agent 
velocity vectors, i.e., 𝑣𝐸 = 𝜙(𝜉), 𝑣𝑃𝑘 = 𝜓𝑘(𝜉). Dependence on time is 
omitted when it is clear from the context.

The aim of the pursuers is to capture the evader, while the evader 
tries to avoid capture or to protract the game as long as possible. 
Capture occurs when the distance between at least one pursuer and the 
evader is equal to the radius of capture 𝑟 > 0. Hereafter, only initial 
conditions such that 
‖𝑃𝑘(0) − 𝐸(0)‖ > 𝑟, 𝑘 = 1,… , 𝑝 (1)

will be considered. A winning pursuit strategy is a strategy adopted by the 
pursuers which guarantees that capture occurs in finite time whatever 
is the strategy adopted by the evader. The capture time 𝑇  is such that 
‖𝑃𝑘(𝑇 ) − 𝐸(𝑇 )‖ = 𝑟, for some 𝑘 ∈ {1,… , 𝑝}. (2)

A minimum time pursuit strategy is a strategy 𝜓 = [𝜓1,… , 𝜓𝑝] which is a 
solution of the min–max problem 
min
𝜓

max
𝜙

𝑇 . (3)

For brevity, we will refer to functions 𝜓 and 𝜙 solving problem (3) 
as optimal strategies. To the best of our knowledge, (3) is still an open 
problem for 𝑝 ≥ 3. Conversely, for 𝑝 = 2 the problem has been fully 
solved [16–18]. In the following, the solution of the two-pursuer one-
evader game (2P1EG) given in [18] is recalled. It will play a key role in 
the definition of the class of winning strategies for the MP1EG proposed 
in this work.

2.1. Minimum-time solution of the two-pursuer one-evader game

Consider two pursuers 𝑃1, 𝑃2 trying to capture one evader. Let us 
define the region 
12 = 𝚒𝚗𝚝

{

H
{

(𝑃1, 𝑟) ∪ (𝑃2, 𝑟)
}}

. (4)

First, a solution to the game of kind is provided [18]. 

Proposition 1.  There exists a winning pursuit strategy for the 2P1EG  if 
and only if 𝐸 ∈ 12.

Hence, set 12 is the 2-pursuer capture region associated to 𝑃1 and 𝑃2; 
if the evader belongs to this region it will be captured by the pursuers in 
finite time. An example is depicted in Fig.  1. To simplify the treatment, 
w.l.o.g. we will refer to the reference frame reported in Fig.  1, where 
the origin is the midpoint of the pursuers, and they lie on the 𝑥-axis, 
i.e., 𝑃1 = [−𝑑, 0]′, 𝑃2 = [𝑑, 0]′, 𝐸 = [𝑥, 𝑦]′. Let 𝐸 ∈ 12∖((𝑃1, 𝑟)∪(𝑃2, 𝑟))
and define 

𝑇12 =
𝜅𝑟 + |𝑦|

√

𝜅2 − 4𝑥2(𝑟2 − 𝑦2)
(5)
2(𝑟2 − 𝑦2)
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Fig. 1. The 2-pursuer capture region for the 2P1EG.

where 𝜅 = 𝑑2 −𝑥2 + 𝑦2 − 𝑟2. Now, let us define the point 𝐻12 satisfying 
‖𝐸 −𝐻12‖ = ‖𝑃1 −𝐻12‖ − 𝑟 = ‖𝑃2 −𝐻12‖ − 𝑟 = 𝑇12. (6)

Within the considered reference frame, one has 𝐻12 = [0, ℎ12]′ where 

ℎ12 =

⎧

⎪

⎨

⎪

⎩

𝑦 + sign(𝑦)
√

𝑇 2
12 − 𝑥

2 if𝑦 ≠ 0

±
√

𝑇 2
12 − 𝑥

2 if𝑦 = 0.
(7)

The following result provides a solution to the minimum-time 2P1EG
[18]. 

Proposition 2.  Let 𝑝 = 2 and 𝐸 ∈ 12. The strategies solving problem 
(3) require each player to travel at maximum speed along a straight line to 
the point 𝐻12 defined by (6). Then, the evader will be captured in 𝐻12, at 
time 𝑇12 given by (5).

It is worth remarking that the strategies provided by Proposition 
2 are optimal in closed-loop sense. In particular, this means that if the 
pursuers adopt the optimal strategy and the evader does not, the evader 
will be captured in a time smaller than 𝑇12 in (5).

3. Switching conditions in multi-pursuer games

In this section, the solution of the game of kind for the MP1EG is 
first recalled. Then, a condition is derived under which the MP1EG boils 
down to a 2P1EG.

For a pair of pursuers 𝑃𝑖, 𝑃𝑗 , let 𝑖𝑗 be the corresponding 2-pursuer 
capture region, given by (4). If 𝐸 ∈ 𝑖𝑗 , let us denote by 𝜓 𝑖𝑗 the 
minimum-time pursuit strategy for the 2P1EG played by 𝑃𝑖 and 𝑃𝑗 , and 
by 𝜙𝑖𝑗 the corresponding optimal evader strategy. Moreover, we denote 
by 𝑇𝑖𝑗 the time needed by 𝑃𝑖 and 𝑃𝑗 to capture 𝐸 when the agents 𝑃𝑖, 
𝑃𝑗 and 𝐸 play the optimal 2P1EG strategies. The capture time 𝑇𝑖𝑗 and 
capture point 𝐻𝑖𝑗 are computed according to (5)–(6), for each pair 𝑖, 𝑗
such that 𝐸 ∈ 𝑖𝑗 .

Let us define the convex hull of the pursuer locations 
 = H

{

𝑃1, 𝑃2,… , 𝑃𝑝
}

(8)

and introduce the multi-pursuer capture region, defined as 

 = 𝚒𝚗𝚝

{

H

{ 𝑝
⋃

𝑖=1
(𝑃𝑖, 𝑟)

}}

. (9)

The solution of the game of kind for the MP1EG proposed in [29] is 
recalled next.

Proposition 3.  If 𝐸 ∈  in (9), then there exists a winning pursuit 
strategy. On the contrary, if 𝐸 ∉ , the evader can avoid capture 
indefinitely.

Fig.  2 shows an example of the set , in a problem with three 
pursuers. In the figure, the evader is outside , and hence it can escape 
by going straight in the direction 𝑣, which is orthogonal to the dashed 
hyperplane separating the evader from .
3 
Fig. 2. Example of multi-pursuer capture region  for 𝑝 = 3 (shaded). Since 
𝐸 ∉ , the evader can avoid capture by moving along the direction 𝑣.

The next theorem reports conditions under which the MP1EG re-
duces to the 2P1EG, in the sense that only two pursuers can provide 
capture in minimum time, irrespectively of the strategy played by the 
other pursuers.

Theorem 1.  Assume that at time 𝑡, 𝐸 ∈ 𝑖𝑗 for some 𝑖, 𝑗 ∈ {1, 2,… , 𝑝}, 
and 
‖𝐻𝑖𝑗 − 𝑃𝑘‖ ≥ 𝑇𝑖𝑗 + 𝑟, 𝑘 = 1,… , 𝑝. (10)

Then, from time 𝑡 onwards, the optimal MP1EG  strategies for 𝑃𝑖, 𝑃𝑗 , 𝐸 are 
𝜓 𝑖𝑗 and 𝜙𝑖𝑗 , respectively, and capture occurs at time 𝑡 + 𝑇𝑖𝑗 . The strategies 
adopted by the other pursuers are irrelevant to the game duration.

Proof.  W.l.o.g. assume 𝑡 = 0. If 𝑃𝑖, 𝑃𝑗 and 𝐸 play their optimal 
strategies for the 2P1EG, capture will occur at the location 𝐻𝑖𝑗 at time 
𝑇𝑖𝑗 . So, ‖𝐻𝑖𝑗 − 𝑃𝑖‖ = ‖𝐻𝑖𝑗 − 𝑃𝑗‖ = 𝑇𝑖𝑗 + 𝑟. Let 𝑃𝑘 denote a generic 
pursuer not involved in the considered 2P1EG, i.e., 𝑘 ≠ 𝑖, 𝑗. We prove 
that, if condition (10) holds, any strategy adopted by 𝑃𝑘 cannot reduce 
the capture time below 𝑇𝑖𝑗 . This is equivalent to show that 𝑃𝑘 cannot 
capture the evader during its path to 𝐻𝑖𝑗 . According to Proposition  2, 
let 𝑣𝐸 = 𝐻𝑖𝑗−𝐸(0)

‖𝐻𝑖𝑗−𝐸(0)‖
 denote the velocity vector of the evader. Since 𝐸

travels towards 𝐻𝑖𝑗 following a straight path, one has 𝐸(𝜏) = 𝐸(0)+𝜏𝑣𝐸 , 
0 ≤ 𝜏 ≤ 𝑇𝑖𝑗 . Since ‖𝐻𝑖𝑗 − 𝐸(0)‖ = 𝑇𝑖𝑗 , then (𝐸(0), 𝑟) ⊂ (𝐻𝑖𝑗 , 𝑇𝑖𝑗 + 𝑟)
and (𝐸(𝜏), 𝑟) ⊂ (𝐻𝑖𝑗 , 𝑇𝑖𝑗 + 𝑟 − 𝜏), for all 𝜏 such that 0 ≤ 𝜏 ≤ 𝑇𝑖𝑗 (see 
Fig.  3).

Consider the case ‖𝐻𝑖𝑗 − 𝑃𝑘(0)‖ > 𝑇𝑖𝑗 + 𝑟, where strict inequality is 
assumed in (10). It follows that 𝑃𝑘(0) ∉ (𝐻𝑖𝑗 , 𝑇𝑖𝑗 + 𝑟) and then for any 
possible trajectory of 𝑃𝑘 one has 𝑃𝑘(𝜏) ∉ (𝐻𝑖𝑗 , 𝑇𝑖𝑗 + 𝑟 − 𝜏), 0 ≤ 𝜏 ≤ 𝑇𝑖𝑗 . 
Hence, 𝑃𝑘(𝜏) ∉ (𝐸(𝜏), 𝑟), for all 0 ≤ 𝜏 ≤ 𝑇𝑖𝑗 and then 𝑃𝑘 cannot capture 
𝐸 before 𝑇𝑖𝑗 .

It remains to consider the case when condition (10) holds with 
equality, i.e., ‖𝐻𝑖𝑗 −𝑃𝑘‖ = 𝑇𝑖𝑗 + 𝑟. Let 𝑄 = 𝐸(0) − 𝑟𝑣𝐸 . To avoid capture 
at time 0, it must be 𝑃𝑘(0) ≠ 𝑄. By going straight towards 𝐻𝑖𝑗 , the 𝑘th 
pursuer will always lie on the border of (𝐻𝑖𝑗 , 𝑇𝑖𝑗 + 𝑟− 𝜏), thus leading 
again to 𝑃𝑘(𝜏) ∉ (𝐸(𝜏), 𝑟) for 0 ≤ 𝜏 < 𝑇𝑖𝑗 . When 𝜏 = 𝑇𝑖𝑗 one will have 
‖𝑃𝑘(𝑇𝑖𝑗 ) −𝐻𝑖𝑗‖ = 𝑟, meaning that 𝑃𝑖, 𝑃𝑗 and 𝑃𝑘 will capture the evader 
simultaneously at time 𝑇𝑖𝑗 . □

Notice that, if 𝑃𝑖, 𝑃𝑗 and 𝐸 play their optimal 2P1EG strategies, one 
has ‖𝐻𝑖𝑗 − 𝑃𝑖‖ = ‖𝐻𝑖𝑗 − 𝑃𝑗‖ = 𝑇𝑖𝑗 + 𝑟 and so (10) can be rewritten as 

‖𝐻𝑖𝑗 − 𝑃𝑘‖ ≥ ‖𝐻𝑖𝑗 − 𝑃𝑖‖, 𝑘 = 1,… , 𝑝. (11)

Such a condition states that if there is no pursuer closer to 𝐻𝑖𝑗 than 𝑃𝑖
(and 𝑃 ), then (10) holds and the optimal MP1EG strategies for 𝑃 , 𝑃 , 𝐸
𝑗 𝑖 𝑗
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Fig. 3. Sketch of the proof of Theorem  1.

are 𝜓 𝑖𝑗 and 𝜙𝑖𝑗 . This means that the other pursuers cannot improve the 
capture time even if they go straight to 𝐻𝑖𝑗 . As a direct consequence 
of Theorem  1, if there exist two distinct pairs of pursuers (𝑃𝑖, 𝑃𝑗 ) and 
(𝑃ℎ, 𝑃𝑙) satisfying the conditions of Theorem  1, then 𝑇𝑖𝑗 = 𝑇ℎ𝑙.

Theorem  1 states that if condition (10) or (11) is satisfied by a 
pair of pursuers 𝑃𝑖, 𝑃𝑗 at a certain time 𝑡, the strategies of these two 
pursuers must switch to 𝜓 𝑖𝑗 in order to be optimal from time 𝑡 onwards, 
irrespectively of what the other pursuers will do. Similarly, the evader 
must switch to strategy 𝜙𝑖𝑗 in order to maximize its survival time. This 
fact will be exploited in Section 4 to devise new families of winning 
pursuit strategies for the MP1EG. The next result provides a further 
insight on the way pursuers cooperate to capture the evader after 
condition (10) has occurred. 

Theorem 2.  Assume that condition (10) occurs at time 𝑡 > 0, and let 𝑃𝑖, 𝑃𝑗
denote the pursuers related to the corresponding 2P1EG . If 𝐸(𝑡) ∉ 𝑃𝑖(𝑡)𝑃𝑗 (𝑡)
then ∃𝑘 ≠ 𝑖, 𝑗 such that 𝐻𝑖𝑗 (𝑡) is the centroid of 𝑃𝑖(𝑡), 𝑃𝑗 (𝑡), 𝑃𝑘(𝑡).

Proof.  Since 𝐸(𝑡) ∉ 𝑃𝑖(𝑡)𝑃𝑗 (𝑡), 𝐻𝑖𝑗 (𝑡) is uniquely defined due to (7). By 
(11) one has 

‖𝐻𝑖𝑗 (𝑡) − 𝑃𝑘(𝑡)‖ ≥ ‖𝐻𝑖𝑗 (𝑡) − 𝑃𝑖(𝑡)‖ = ‖𝐻𝑖𝑗 (𝑡) − 𝑃𝑗 (𝑡)‖,∀𝑘 ≠ 𝑖, 𝑗. (12)

Let 𝜀 > 0 and set 𝜏 = 𝑡− 𝜀. Being 𝑖𝑗 an open set (see (4)), it is possible 
to choose 𝜀 sufficiently small so that 𝐸(𝜏) ∈ 𝑖𝑗 (𝜏), with 𝐻𝑖𝑗 (𝜏) defined 
according to (6). On the other hand, since at time 𝜏 condition (10) does 
not hold, one has that there exists 𝑘 ≠ 𝑖, 𝑗 such that 

‖𝐻𝑖𝑗 (𝜏) − 𝑃𝑘(𝜏)‖ < ‖𝐻𝑖𝑗 (𝜏) − 𝑃𝑖(𝜏)‖ = ‖𝐻𝑖𝑗 (𝜏) − 𝑃𝑗 (𝜏)‖. (13)

By the arbitrariness of 𝜀 and the continuity of the agents’ trajectories, 
(12) and (13) imply that

‖𝐻𝑖𝑗 (𝑡) − 𝑃𝑘(𝑡)‖ = ‖𝐻𝑖𝑗 (𝑡) − 𝑃𝑖(𝑡)‖ = ‖𝐻𝑖𝑗 (𝑡) − 𝑃𝑗 (𝑡)‖

and hence 𝐻𝑖𝑗 (𝑡) is the centroid of 𝑃𝑖(𝑡), 𝑃𝑗 (𝑡), 𝑃𝑘(𝑡). □

As a consequence of Theorem  2, if the evader is not aligned with 
pursuers 𝑃𝑖 and 𝑃𝑗 when condition (10) is verified, there are at least 
three pursuers that will end up capturing the evader simultaneously by 
heading towards their centroid 𝐻𝑖𝑗 (𝑡).

4. Switching pursuit strategies

In this section, the concept of switching pursuit strategy is introduced. 
The aim of such strategies is to guarantee that condition (10) holds 
at some finite time, and hence capture is assured by switching to the 
appropriate 2P1EG strategies.
4 
Definition 1.  A pursuit strategy is a potential switching strategy if there 
exists a pair of pursuers 𝑃𝑖, 𝑃𝑗 for which condition (10) holds at some 
finite time, for any possible strategy of the evader. A potential switching 
strategy is referred to as switching strategy if 𝑃𝑖, 𝑃𝑗 play the optimal
2P1EG strategy as soon as condition (10) holds.

By the previous definition, a switching strategy leads to the evader 
capture in finite time, and so it is a winning strategy. In fact, from 
the switching time onwards the pursuers will play the optimal 2P1EG
strategy, guaranteeing the evader capture.

In general, since condition (10) depends on the evader position, 
it is not easy to design pursuit strategies that eventually lead to its 
satisfaction. Therefore, it is useful to derive sufficient conditions under 
which (10) holds, that the pursuers can enforce whatever is the strategy 
played by the evader. Hereafter, two such conditions are presented.

Let us define the union of all the 2-pursuer capture regions as 
̂ =

⋃

𝑖,𝑗∈{1,…,𝑝}
𝑖𝑗 . (14)

An example of set ̂ is shown in Fig.  4-(a), while the corresponding 
set ̂∖𝚒𝚗𝚝 {} is depicted in Fig.  4-(b). The next theorem provides a 
sufficient condition for switching to 2P1EG.

Theorem 3.  If 𝐸 ∈ ̂∖𝚒𝚗𝚝 {}, then there exists a pair of pursuers 𝑃𝑖, 𝑃𝑗
for which condition (10) holds.

Proof.  See Appendix. □

Remark 1. 
Theorem  3 can be alternatively formulated stating that if 𝐸 ∈

∖𝚒𝚗𝚝 {}, there exists a pair of pursuers for which condition (10) 
holds. In fact, if 𝐸 ∈ ∖𝚒𝚗𝚝 {}, there are necessarily two pursuers 𝑃𝑖, 
𝑃𝑗 , such that 𝐸 ∈ 𝑖𝑗 , which implies 𝐸 ∈ ̂∖𝚒𝚗𝚝 {}.

Notice that Theorem  3 guarantees the satisfaction of (10) if 𝐸 ∈ 𝜕 . 
Moreover, Theorem  3 suggests that if the pursuers play a strategy which 
steadily reduces the size (in some sense) of  over time, then (10) is 
eventually assured. The following result guarantees the satisfaction of 
(10) whenever the pursuers are sufficiently close to each other.

Theorem 4.  Let us consider a pursuit strategy such that 
max

𝑖,𝑗=1,…,𝑝
‖𝑃𝑖(𝑡) − 𝑃𝑗 (𝑡)‖ ≤

√

3𝑟 (15)

at a certain time 𝑡 > 0. Then, there exist a time 𝑡 < 𝑡 and a pair of pursuers 
𝑃𝑖, 𝑃𝑗 for which condition (10) holds at 𝑡. Hence, the considered pursuit 
strategy is a potential switching strategy.

Proof.  See Appendix. □

Notice that condition (15) in Theorem  4 is much simpler than 
(10), since it does not depend on the evader position. Therefore, it 
can be effectively employed in designing families of winning switching 
strategies, even starting from naive pursuit strategies that would not 
be successful without switching. A first family consists of pursuers 𝑃𝑘
going straight towards a fixed point 𝑀 ∈ R2, with speed ‖𝑣𝑃𝑘 (𝑡)‖ ≥ 𝜀, 
for some 0 < 𝜀 ≤ 1, and stopping once they reach 𝑀 . It is referred to 
as Fixed-Point Pursuit Strategy (FPPS). The following result holds. 

Theorem 5.  Any FPPS is a potential switching strategy.

Proof.  Let
𝑑 = max

𝑘∈{1,…,𝑝}
‖𝑃𝑘(0) −𝑀‖.

Then, at time 𝜏 = max
{(

𝑑 −
√

3
2 𝑟

)

∕𝜀, 0
}

 one has ‖𝑃𝑘(𝜏) − 𝑀‖ ≤
√

3
2 𝑟, 𝑘 = 1,… , 𝑝, and hence ‖𝑃𝑖(𝜏)−𝑃𝑗 (𝜏)‖ ≤ ‖𝑃𝑖(𝜏)−𝑀‖+‖𝑀−𝑃𝑗 (𝜏)‖ ≤
√

3𝑟, for any pair of pursuers 𝑃𝑖, 𝑃𝑗 . Thus, the result follows by Theorem 
4. □
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Fig. 4. (a) Set 𝐷̂ denoting the union of all the 2-pursuer capture regions; (b) set ̂∖𝚒𝚗𝚝 {}.
An example of FPPS is the centroid strategy, in which all pursuers 
(or a subset of them, including the evader in their convex hull) move 
with the same speed towards the center of the minimum-radius circle 
which includes them. Notice that such a strategy is consistent with the 
fact that under certain conditions, capture occurs in the centroid of a 
subset of pursuers, as stated by Theorem  2.

Another simple pursuit strategy is the so-called pure pursuit. In this 
strategy, all pursuers always point towards the evader at maximum 
speed, i.e. 

𝑣𝑃𝑘 (𝑡) =
𝐸(𝑡) − 𝑃𝑘(𝑡)

‖𝐸(𝑡) − 𝑃𝑘(𝑡)‖
, 𝑘 = 1,… , 𝑝. (16)

It is well known that pure pursuit does not guarantee capture of the 
evader when all agents have the same maximum speed. However, it 
becomes a winning strategy if switching to 2P1EG is adopted. 

Theorem 6.  The pure pursuit strategy is a potential switching strategy.

Proof.  Let 𝛿𝑘(𝑡) = ‖𝐸(𝑡) − 𝑃𝑘(𝑡)‖. Then, by using (16),
1
2
𝑑𝛿2𝑘(𝑡)
𝑑𝑡

= (𝐸(𝑡) − 𝑃𝑘(𝑡))′(𝐸̇(𝑡) − 𝑃̇𝑘(𝑡)) = (𝐸(𝑡) − 𝑃𝑘(𝑡))′𝐸̇(𝑡) − 𝛿𝑘(𝑡).

Being ‖𝐸̇(𝑡)‖ = ‖𝑣𝐸 (𝑡)‖ ≤ 1, one has 𝑑𝛿
2
𝑘(𝑡)
𝑑𝑡 ≤ 0 and in particular 𝑑𝛿

2
𝑘(𝑡)
𝑑𝑡 = 0

if and only if 𝑣𝐸 (𝑡) = 𝑣𝑃𝑘 (𝑡) given by (16). Hence, lim𝑡→+∞ 𝛿𝑘(𝑡) =
𝛿𝑘 ≥ 0 and lim𝑡→+∞ 𝛿̇𝑘(𝑡) = 0, which in turns leads to lim𝑡→+∞ 𝑣𝑃𝑘 (𝑡) =
lim𝑡→+∞ 𝑣𝐸 (𝑡), ∀𝑘 = 1,… , 𝑝. Since, according to (16), all pursuers point 
towards the evader, this means that all pursuers and the evader tend 
to be asymptotically aligned, with the evader lying outside the segment 
containing the pursuers. Therefore, lim𝑡→+∞ 𝐸(𝑡) ∉  . By continuity of 
the agents’ trajectories, 𝐸(𝑡) must have crossed 𝜕 at some time instant 
and hence the conclusion follows by Theorem  3. □

Theorems  5 and 6 are just examples of winning pursuit strategies 
based on switching; it is apparent that many other switching strategies 
can be devised by exploiting the geometric conditions in Theorems  3
and 4.

Remark 2.  It is worth stressing that in all the proposed strategies, 
switching from MP1EG to 2P1EG occurs only once during the game, 
provided that after the switching the two pursuers and the evader 
involved in the 2P1EG play the corresponding optimal strategies de-
fined by Proposition  2. This means that the switching strategies are 
not prone to chattering, as it may happen in other types of games (see, 
e.g., [26]). Clearly, if the evader does not play its optimal strategy, 
another switching to a different 2P1EG may occur later, with the effect 
of further reducing the capture time. In fact, by definition of optimal 
strategy, once the first switching has occurred, the optimal 2P1EG
strategy of the evader maximizes the evader survival time.
5 
5. Numerical simulations

In order to show the benefits of using a switching strategy, several 
numerical simulations are reported in this section. Three pursuit strate-
gies are considered: pure-pursuit (PPS), centroid-based (CS), and the 
strategy proposed in [7], referred to as Voronoi-based strategy (VS). 
Notice that VS is a winning strategy, provided that when the game 
starts, the evader lies in the interior of the convex hull of the pursuers 
(so that the evader Voronoi cell is not empty, see [7] for details). The 
prefix S- is used to denote a given pursuit strategy when pursuers switch 
to 2P1EG as soon as condition (10) holds. For instance, S-PPS denotes 
the switching pure-pursuit strategy.

In all simulations, the maximum speed of the players is set to 1 
and the capture radius is 𝑟 = 1. In the figure illustrating the agents’ 
trajectories, pursuers are drawn in blue and the evader in red. Initial 
conditions are marked with a square, while the final positions of the 
agents are denoted by a dot. A dashed circle with radius 𝑟 is drawn 
around the capture position of the evader.

Example 1.  Let us consider a four-pursuer one-evader game, where 
pursuers are initially located at the vertices of a square with side length 
20 centered at the origin, i.e., 𝑃1(0) = [−10,−10]′, 𝑃2(0) = [−10, 10]′, 
𝑃3(0) = [10,−10]′, 𝑃4(0) = [10, 10]′. The evader starts from 𝐸(0) = [0, 5]′, 
and it goes upwards with maximum speed during each game.

If the pursuers move according to PPS and CS, the evader can es-
cape, and so such pursuit strategies are not winning in this scenario. On 
the contrary, if pursuers switch when (10) occur, the evader is captured 
at time 𝑡 = 22.66 and 𝑡 = 33.91 for S-PPS and S-CS, respectively. The 
trajectories traveled by the players in such cases are depicted in Figs. 
5 and 6.

When pursuers play the original version of the Voronoi-based strat-
egy, they are able to capture the evader at time 𝑡 = 20.02, as depicted 
in Fig.  7. When playing the corresponding switching version, capture 
time is reduced to 𝑡 = 16.61. So, in this example, the capture time 
needed by VS is about 20% greater than that needed by S-VS. The 
agents’ trajectories are shown in Fig.  8, where it can be observed that 
in this case the capture point coincides with the centroid of all the four 
pursuers, after condition (10) has occurred.

Example 2.  The aim of this example is to evaluate the benefit of 
using S-VS in place of VS. To this purpose, a simulation campaign with 
different number of pursuers located in different places is performed. In 
all simulations, the evader position is initially set to the origin. Pursuers 
start randomly inside a circle of radius 𝑅𝑝 centered at the origin. Only 
initial positions such that the evader belongs to 𝚒𝚗𝚝 {} are considered, 
so that VS always achieves capture of the evader.
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Fig. 5. Example  1. The evader goes upwards while pursuers play S-PPS. 
Capture occurs at 𝑡 = 22.66.

Fig. 6. Example  1. The evader goes upwards while pursuers play S-CS. 
Capture occurs at 𝑡 = 33.91.

Fig. 7. Example  1. The evader goes upwards while pursuers play VS. Capture 
occurs at 𝑡 = 20.02.
6 
Fig. 8. Example  1. The evader goes upwards while pursuers play S-VS. 
Capture occurs at 𝑡 = 16.61.

For a generic game, let us denote by 𝑇
𝑉 𝑆

 and 𝑇
𝑆-𝑉 𝑆  the capture 

time when pursuers play VS and S-VS, respectively. The convenience 
of adopting the switching strategy is measured through the ratio of the 
mentioned capture times, that is 𝜌 = 𝑇𝑉 𝑆

𝑇𝑆-𝑉 𝑆
. The evader strategy consists 

in pointing towards the farthest vertex of its own Voronoi cell at each 
time.

The number 𝑝 of pursuer ranges from 3 to 10, while the radius of 
the circle of the initial pursers’ position varies as 𝑅𝑝 ∈ {10, 30, 50}. 
For all possible combinations of 𝑝 and 𝑅𝑝, 100 games are played. 
The corresponding boxplots of 𝜌 are reported in Fig.  9. To increase 
readability, the upper limit of the 𝜌-axis is set to 2. However, it is 
worthwhile stressing that for several games much larger values have 
been observed. For instance, for 𝑝 = 3 and 𝑅𝑝 = 50 the maximum ratio 
is 𝜌 = 12.6. Notice that in games with 𝜌 = 1 the switching condition (10) 
never occurs, so that 𝑇

𝑉 𝑆
= 𝑇

𝑆-𝑉 𝑆 . It can be observed that there are few 
games in which 𝜌 < 1. This is due to the fact that the evader plays a 
predefined strategy that, in general, does not correspond to the optimal 
one in a min–max sense, which is unknown. Therefore, when the 
pursuers play VS, neither the pursuers nor the evader are playing their 
optimal strategy. In such a case, there is no guarantee that the capture 
time be greater than the one obtained when the pursuers play optimally 
after the switching. Nevertheless, the numerical tests show that 𝜌 ≥ 1
in most cases. On the whole, the simulation results demonstrate that 
playing the switching strategy leads to significantly smaller capture 
times than adopting the original Voronoi-based strategy.

6. Conclusions

A new family of switching pursuit strategies for a multi-pursuer 
single-evader game has been introduced. It is based on the key obser-
vation that the game can be reduced to a two-pursuer single-evader 
setting, for which a minimum-time solution is available. Conditions for 
transitioning between these two games have been derived, enabling the 
definition of new winning strategies and enhancing the performance of 
existing ones. Future work will focus on developing pursuit strategies 
that achieve the switching condition while minimizing the overall 
capture time or other relevant performance indexes. Moreover, the 
approach will be extended to handle multi-pursuer multi-evader games. 
The use of switching pursuit strategies in scenarios involving a superior 
evader will also be considered.
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Fig. 9. Example  2. Boxplot of the performance index 𝜌 for 𝑅𝑝 = 10 (top), 𝑅𝑝 = 30 (middle) and 𝑅𝑝 = 50 (bottom).
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Appendix

Proof of Theorem  3

In order to prove Theorem  3, the following lemmas are introduced. 

Lemma 1.  Let 𝑃1, 𝑃2 and 𝐸 be such that 𝐸 ∈ 12∖((𝑃1, 𝑟) ∪ (𝑃2, 𝑟)), 
and set 𝑃3 = 𝑃2 + 𝛼(𝑃2 − 𝑃1), 𝛼 > 0. Then, 𝑇13 > 𝑇12.

Proof.  W.l.o.g., let us refer to the reference frame introduced in 
Section 2.1, see Fig.  10. Hence, from 𝐸 = [𝑥, 𝑦]′ ∈ 12∖((𝑃1, 𝑟) ∪
(𝑃2, 𝑟)), one has −𝑑 < 𝑥 < 𝑑 and (𝑥± 𝑑)2 + 𝑦2 − 𝑟2 > 0. Moreover, since 
𝐸 ∈ 12∖((𝑃1, 𝑟) ∪ (𝑃2, 𝑟)), one has also 𝐸 ∈ 13∖((𝑃1, 𝑟) ∪ (𝑃3, 𝑟)). 
Therefore, the capture time 𝑇  of pursuers 𝑃  and 𝑃  can be computed 
13 1 3

7 
by using (5), in which 𝑑 and 𝑥 are replaced by 𝑑 + 𝛼𝑑 and 𝑥 − 𝛼𝑑, 
respectively. One gets 

𝑇13 =
𝜅𝛼𝑟 + |𝑦|

√

𝜅2𝛼 − 4(𝑥 − 𝛼𝑑)2(𝑟2 − 𝑦2)

2(𝑟2 − 𝑦2)
(17)

in which 𝜅𝛼 = 𝜅 +2𝛼𝑑(𝑑 +𝑥). In order to prove 𝑇13 > 𝑇12, it is sufficient 
to show that 𝑇13 in (17) is a strictly increasing function of 𝛼, for 𝛼 > 0. 
First, one has
𝑑𝜅𝛼
𝑑𝛼

= 2𝑑(𝑑 + 𝑥) > 0.

Then, it remains to show that 𝜅2𝛼−4(𝑥−𝛼𝑑)2(𝑟2−𝑦2) is strictly increasing 
in 𝛼. Through some straightforward manipulations, one obtains
𝑑
𝑑𝛼

{

𝜅2𝛼 − 4(𝑥 − 𝛼𝑑)2(𝑟2 − 𝑦2)
}

= 4
{

𝑑(𝑑 − 𝑥) + 2𝑑2𝛼
}{

(𝑥 + 𝑑)2 + 𝑦2 − 𝑟2
}

which is positive for all 𝛼 > 0. □

Lemma 2.  Consider 𝑃1, 𝑃2 and 𝐸 such that 𝐸 ∈ 12∖((𝑃1, 𝑟) ∪
(𝑃2, 𝑟)). Let 1 and 2 be the lines containing the segments 𝑃1𝐸 and 𝑃2𝐸, 
respectively. Then, let 𝑄1 and 𝑄2 be the intersections of 1 and 2 with the 
circumference 𝜕(𝐻+

12, 𝑇12 + 𝑟), opposite to 𝑃1 and 𝑃2, respectively. Define 
the region 12 as the portion of the circle (𝐻+

12, 𝑇12 + 𝑟) bounded by the 
segments 𝑄1𝐸, 𝑄2𝐸 and the minor arc of circumference 𝑄2𝑄1. Then, if a 
pursuer 𝑃 ∈  , then either 𝐸 ∈   or 𝐸 ∈  .
3 12 13 23
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Fig. 10. Sketch of the proof of Lemma  1. The shaded region denotes 
12∖((𝑃1, 𝑟) ∪ (𝑃2, 𝑟)).

Fig. 11. Sketch of the proof of Lemma  2.

Proof.  Let us consider the region 12 depicted in Fig.  11. Let 𝑆 =
𝜕(𝐸, 𝑟) ∩ 𝜕(𝐻+

12, 𝑇12 + 𝑟) be the point of tangency between the two 
circumferences. Notice that the segment 𝐸𝑆 divides 12 in two disjoint 
regions. Thus, either 𝑃1𝑃3 or 𝑃2𝑃3 will intersect 𝐸𝑆. Let us assume that 
𝑃2𝑃3 ∩ 𝐸𝑆 ≠ ∅. Then, the minimum distance between 𝐸 and 𝑃2𝑃3 is 
less than 𝑟, and hence 𝐸 ∈ 23. A similar argument can be adopted if 
𝑃1𝑃3 ∩ 𝐸𝑆 ≠ ∅. □

Now, we can proceed to prove Theorem  3. Let 𝑃𝑖, 𝑃𝑗 be the pair of 
pursuers such that 𝐸 ∈ 𝑖𝑗 and 𝑇𝑖𝑗 ≤ 𝑇ℎ𝑙, for all pairs ℎ, 𝑙 ∈ {1,… , 𝑝} for 
which 𝐸 ∈ ℎ𝑙. We show that for this pursuer pair, condition (11), and 
hence (10), holds. Condition (11) states that ‖𝑃𝑘 −𝐻𝑖𝑗‖ ≥ ‖𝑃𝑖 −𝐻𝑖𝑗‖ =
𝑇𝑖𝑗 +𝑟,  𝑘 = 1,… , 𝑝. By contradiction, assume that there exists a pursuer 
𝑃𝑧 which satisfies ‖𝑃𝑧 −𝐻𝑖𝑗‖ < 𝑇𝑖𝑗 + 𝑟, i.e., 𝑃𝑧 ∈ 𝚒𝚗𝚝

{

(𝐻𝑖𝑗 , 𝑇𝑖𝑗 + 𝑟)
}

. 
Let us define 𝑖𝐸 and 𝑗𝐸 as the lines passing through 𝑃𝑖, 𝐸 and 𝑃𝑗 , 𝐸, 
respectively. Since 𝑃𝑧 ∈  and by assumption 𝐸 ∉ 𝚒𝚗𝚝 {}, then 𝑃𝑧
must belong to the region 𝑖𝑗 , shown in Fig.  12. By Lemma  2, either 
𝐸 ∈ 𝑖𝑧 or 𝐸 ∈ 𝑗𝑧. W.l.o.g., assume 𝐸 ∈ 𝑗𝑧. Let 𝑗𝑧 be the line 
crossing 𝑃𝑗 and 𝑃𝑧. It holds 𝑗𝑧 ∩ (𝐻𝑖𝑗 , 𝑇𝑖𝑗 + 𝑟) = {𝑃𝑗 , 𝑃𝑞}, where 𝑃𝑞
denotes a fictitious pursuer. Then, by Lemma  1 one has 𝑇𝑗𝑧 < 𝑇𝑗𝑞 = 𝑇𝑖𝑗 . 
Since by assumption 𝑇𝑖𝑗 ≤ 𝑇ℎ𝑙 for all ℎ, 𝑙 ∈ {1,… , 𝑝}, a contradiction 
occurs. □

Proof of Theorem  4

According to Theorem  3 and Remark  1, if 𝐸(0) ∈ (0)∖𝚒𝚗𝚝 {(0)}, 
condition (10) already holds at time 𝑡 = 0. So, let us analyze the case 
𝐸(0) ∈ 𝚒𝚗𝚝 {(0)}. Let us first show that (15) implies 

(𝑡) ⊂
𝑝
⋃

(𝑃𝑖(𝑡), 𝑟). (18)

𝑖=1

8 
Fig. 12. Sketch of the proof of Theorem  3. The shaded area 𝑖𝑗 denotes the 
admissible region of 𝑃𝑧.

If 𝑝 = 3 and the distance between each pursuer pair is exactly equal 
to 

√

3𝑟, then  is an equilateral triangle and (18) follows from simple 
geometric arguments. Clearly, if the pursuers are closer to each other, 
(18) still holds. In the generic case of 𝑝 pursuers,  can be partitioned in 
triangles and the previous reasoning can be repeated for each triangle. 
Therefore, (18) is satisfied for a generic polytope  . This means that 
𝐸(𝑡) ∉ (𝑡), otherwise capture had already occurred. Since 𝐸(0) ∈
𝚒𝚗𝚝 {(0)}, by continuity of the agents’ trajectories there exists 𝑡 < 𝑡
such that 𝐸(𝑡) ∈ 𝜕(𝑡) and then, by Theorem  3, condition (10) holds at 
time 𝑡. □

Data availability

Data will be made available on request.
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