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This paper introduces a new family of pursuit strategies for multi-pursuer single-evader games in a planar
environment. The main idea is to exploit conditions under which capture of the evader in minimum time can
be achieved by only two pursuers. The first contribution is to characterize such conditions in terms of the
agent positions. Then, new pursuit strategies are proposed in which the multi-pursuer team aims to meet such
conditions, switching to a two-pursuer game once they are satisfied. The benefit of this approach is twofold.

First, it is shown that naive strategies that are in general unsuccessful can be turned into winning strategies
by switching to the appropriate two-pursuer game. Second, the switching mechanism significantly enhances
the performance of existing pursuit algorithms, like those based on Voronoi partitions. This is demonstrated
by means of extensive numerical simulations.

1. Introduction

Pursuit-evasion games are intensively studied because they allow to
tackle a variety of problems involving multi-agent systems. The large
number of applications treated in the literature range from mobile
robotics [1,2] to optimal robot control [3], space operations [4,5],
predator-prey dynamics in biological systems [6], and beyond. Recent
years have witnessed a surge in interest towards games involving
multiple pursuers [7-9], multiple evaders [10,11], or both [12,13],
leading to a broad spectrum of problem formulations and solutions.

Traditionally, pursuit-evasion problems are approached by framing
them as differential games [14,15]. Unfortunately, an optimal solution
is available only for a limited number of games. An example is that of
the minimum-time solution of the two-pursuer one-evader game involv-
ing simple-motion players in a two-dimensional environment [16-18].
For the three-pursuer one-evader game, only suboptimal solutions have
been derived [19], although it has been established that optimal strate-
gies must involve switching between different linear sub-paths [20,21].
An open-loop minimum-time solution for games with more than three
pursuers has been proposed in [22], showing that the agents must
move along linear paths. However, a closed-loop solution to this dif-
ferential game remains elusive. The above observations motivate the
investigation of conditions under which the optimal solution of the two-
pursuer game can be exploited to devise successful strategies for games
involving more than two pursers.
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1.1. Related work

Due to the complexity of multi-agent pursuit-evasion games, such
problems have been often approached by splitting them in simpler
subgames. This has led to the development of solutions based on hierar-
chical scheduling [23], dynamic pursuit assignment [24], optimal task
allocation [25], just to name a few. Considering the scenario of multi-
pursuer single-evader game with faster pursuers, several techniques
have been proposed which aim at reducing the problem to a two-
pursuer game, for which an optimal solution is available. In [26], a
pursuit strategy is proposed in which all possible two-pursuer games
are compared and the one which yields the smallest capture time is
actually selected. The strategy is played continuously in feedback, so
that switching may occur between different two-pursuer games (since
all such games eventually lead to capture). A similar approach is consid-
ered in [27] for reach-avoid games involving pursuers modeled as Du-
bins cars. It is shown that at most two pursuers are sufficient to defend
against a single attacker, thus greatly simplifying the multi-pursuer
problem.

A key element of pursuit-evasion games is the information pattern
available to the players, which strongly influences both the problem
setting and the corresponding solution. For example, in multi-pursuer
single-evader games involving simple-motion agents with equal maxi-
mum speed, a winning pursuit strategy was proposed in [19] and the
game of kind was solved in [28], assuming that the pursuers have
access to the velocity of the evader. In the same setting, the pursuit
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task becomes much more difficult when the pursuers know only the
current position of the evader. In this case, the solution of the game of
kind is provided in [29]. Quite interestingly, such a solution is based
on a pursuit strategy which switches progressively to games played by
a smaller number of pursuers. However, the strategies adopted in these
subgames are not optimal and only guarantee the eventual capture of
the evader. The same information pattern is adopted in [7], where the
pursuers aim to minimize the area of the evader Voronoi cell. This
technique guarantees that the evader is captured in finite time, but
it does not optimize over the time required to terminate the game.
In [30], the optimal capture time for this class of games is characterized
via a set of implicit conditions. However, pursuit techniques that are
able to achieve capture in minimum time are not available yet.

1.2. Paper contribution

This paper proposes a new family of pursuit strategies for a multi-
pursuer single-evader game, in which agents move in a planar environ-
ment with simple motion and equal maximum speed. Both the pursuers
and the evader have access only to the agents’ positions. The core idea
is to derive and leverage conditions under which the minimum-time
game boils down to a two-pursuer game. This allows one to design pur-
suit strategies aiming at enforcing these conditions and transitioning to
a two-pursuer game when they are satisfied. Although these switching
pursuit strategies are in general suboptimal, they consistently reduce
capture time compared to strategies without switching. As a result, they
enhance the performance of existing pursuit techniques and enable the
development of new effective multi-pursuer strategies.

The main contributions of the paper are as follows. First, conditions
under which the minimum-time pursuit strategy boils down to that
of a two-pursuer single-evader game are established. In such cases,
switching to the two-pursuer game provides an optimal solution to the
multi-pursuer one. The second contribution is the definition of new
families of switching pursuit strategies, based on the previously derived
conditions, that guarantee capture of the evader. Specifically, simple
strategies like pure pursuit or fixed-point pursuit, which in general
fail to capture the evader, are transformed into successful strategies
through a switch to the appropriate two-pursuer game. Furthermore,
it is demonstrated through numerical simulations that switching can
substantially reduce the capture time, even for strategies that inher-
ently guarantee capture, such as the Voronoi partition-based approach
introduced in [7]. On the whole, the proposed switching mechanism
provides a powerful framework for the design of a variety of new
pursuit strategies in multi-pursuer single-evader games. A preliminary
version of this work has been presented in [31]: the present paper
contains all the proofs of the results, expands the technical develop-
ment, and presents a new simulation campaign to thoroughly assess
the performance of the proposed technique.

As for the paper organization, the formulation of the multi-pursuer
single-evader game is given in Section 2, along with a summary of
the two-pursuer game optimal solution. Section 3, after revisiting the
solution to the game of kind, provides the conditions under which
the minimum-time multi-pursuer game boils down to a two-pursuer
one. This paves the way to the introduction of new switching pursuit
strategies in Section 4, whose performance is assessed in Section 5
by means of numerical simulations. Concluding remarks and future
developments are reported in Section 6.

1.3. Notation and definitions

Given a vector V, its transpose is denoted by V', while ||V is its
Euclidean norm. For V, W € R2, we denote by VW the segment with
vV and W as endpoints. C(P,r) = {Q € R*:||Q — P| < r} denotes a
circle centered in P € R? with radius r. For a closed set A, 0.4 is the
boundary of A, while H {.A} denotes the convex hull of A. Given two
sets A, B, AA\B={0Q:0 € A, O ¢ B}. The interior of A is denoted by
int {A} = A\JA.
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2. Multi-pursuer single-evader game

A multi-pursuer single-evader game (hereafter referred to as MP1EG) is
a game in which p pursuers aim at capturing one evader. The positions
of the pursuers and the evader at time ¢ are denoted by P,(f) € R, k =
1,...,p, and E(7) € R?, respectively. The players move in the plane in
simple motion, that is

{ E@) = vg0),
Bt =vp (1), k=1,....p

where vg(1), vp (1) € R? are the velocity vectors of the players. We
assume that all agents have the same maximum speed, ||V < Ugxs
lop, Ol < Vpaxs k = 1,...,p, ¥t 2 0. Without loss of generality, it is
set v,,,, = 1 and the initial game time at + = 0. At each time ¢, v(?)
and vp, (1) are computed as functions of the state of the game &(r) =
[E'®) P[(®) ... Pp’ (®)Y'. Notice that the agents do not have information
on the velocities of the other players. The strategies of the agents are
closed-loop control laws mapping the current game state into the agent
velocity vectors, i.e., vy = @(&), vp, = wi(©). Dependence on time is
omitted when it is clear from the context.

The aim of the pursuers is to capture the evader, while the evader
tries to avoid capture or to protract the game as long as possible.
Capture occurs when the distance between at least one pursuer and the
evader is equal to the radius of capture r > 0. Hereafter, only initial

conditions such that
1P, 0) - EQ)>r, k=1,...,p (@)

will be considered. A winning pursuit strategy is a strategy adopted by the
pursuers which guarantees that capture occurs in finite time whatever
is the strategy adopted by the evader. The capture time T is such that

|P.(T) — E(T)|| = r, for some k € {1,...,p}. 2)

A minimum time pursuit strategy is a strategy y = [y, ...
solution of the min-max problem

Wl which is a

minmax 7. 3
vo¢

For brevity, we will refer to functions y and ¢ solving problem (3)
as optimal strategies. To the best of our knowledge, (3) is still an open
problem for p > 3. Conversely, for p = 2 the problem has been fully
solved [16-18]. In the following, the solution of the two-pursuer one-
evader game (2P1EG) given in [18] is recalled. It will play a key role in
the definition of the class of winning strategies for the MP1EG proposed
in this work.

2.1. Minimum-time solution of the two-pursuer one-evader game

Consider two pursuers P, P, trying to capture one evader. Let us
define the region

Dy, = int {H{C(P,r) UC(Py.1)}}. Q)

First, a solution to the game of kind is provided [18].

Proposition 1. There exists a winning pursuit strategy for the 2P1EG if
and only if E € D,.

Hence, set D, is the 2-pursuer capture region associated to P, and P,;
if the evader belongs to this region it will be captured by the pursuers in
finite time. An example is depicted in Fig. 1. To simplify the treatment,
w.l.o.g. we will refer to the reference frame reported in Fig. 1, where
the origin is the midpoint of the pursuers, and they lie on the x-axis,
ie, P, =[-d,0], P, =[d,0, E = [x,y]". Let E € D, \(C(P}, )UC(P,, 7))
and define

K7+ |yl VK2 — 4x2(r2 — y?)

Ty, = 07— ) (5)
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Fig. 1. The 2-pursuer capture region for the 2P1EG.

where x = d” — x? +y? — r%. Now, let us define the point H,, satisfying
I|E—-Hpll=11P — Hpll—r= 1P, = Hpll —r =Ty )

Within the considered reference frame, one has H,, = [0, h,]' where

y +sign(y)4 /T2 — x2 ify £0
hyy = 2 @

+ T]z2 - x2 ify = 0.

The following result provides a solution to the minimum-time 2P1EG
[181.

Proposition 2. Let p =2 and E € D,,. The strategies solving problem
(3) require each player to travel at maximum speed along a straight line to
the point H,, defined by (6). Then, the evader will be captured in H,, at
time T), given by (5).

It is worth remarking that the strategies provided by Proposition
2 are optimal in closed-loop sense. In particular, this means that if the
pursuers adopt the optimal strategy and the evader does not, the evader
will be captured in a time smaller than 7}, in (5).

3. Switching conditions in multi-pursuer games

In this section, the solution of the game of kind for the MP1EG is
first recalled. Then, a condition is derived under which the MP1EG boils
down to a 2P1EG.

For a pair of pursuers P, P;, let D;; be the corresponding 2-pursuer
capture region, given by (4). If E € D;;, let us denote by y"/ the
minimum-time pursuit strategy for the 2P1EG played by P, and P;, and
by ¢ the corresponding optimal evader strategy. Moreover, we denote
by T;; the time needed by P, and P; to capture E when the agents P,
P; and E play the optimal 2P1EG strategies. The capture time 7;; and
capture point H,; are computed according to (5)-(6), for each pair i, j
such that E € D;;.

Let us define the convex hull of the pursuer locations

P=H{P.P,....P,} €)

and introduce the multi-pursuer capture region, defined as

P
M = int {H{UC(F}J)}}. )
i=1

The solution of the game of kind for the MP1EG proposed in [29] is
recalled next.

Proposition 3. If E € M in (9), then there exists a winning pursuit
strategy. On the contrary, if E & M, the evader can avoid capture
indefinitely.

Fig. 2 shows an example of the set M, in a problem with three
pursuers. In the figure, the evader is outside M, and hence it can escape
by going straight in the direction v, which is orthogonal to the dashed
hyperplane separating the evader from M.
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Fig. 2. Example of multi-pursuer capture region M for p = 3 (shaded). Since
E & M, the evader can avoid capture by moving along the direction v.

The next theorem reports conditions under which the MP1EG re-
duces to the 2P1EG, in the sense that only two pursuers can provide
capture in minimum time, irrespectively of the strategy played by the
other pursuers.

Theorem 1. Assume that at time t, E € D;; for some i, j € {1,2,...,p},
and

IH;;— Pl =Ty +r, k=1,....p. (10)

Then, from time t onwards, the optimal MP1EG strategies for P;, P, E are
w' and ¢', respectively, and capture occurs at time t + T;;. The strategies

adopted by the other pursuers are irrelevant to the game duration.

Proof. W.lo.g. assume + = 0. If P,,P; and E play their optimal
strategies for the 2P1EG, capture will occur at the location H;; at time
T;;. So, ||H;; — Pl = |H;; — Pjll = T;; +r. Let P denote a generic
pursuer not involved in the considered 2P1EG, i.e., k # i, j. We prove
that, if condition (10) holds, any strategy adopted by P, cannot reduce
the capture time below T7;;. This is equivalent to show that P, cannot

capture the evader during its path to H;;. According to Proposition 2,
H,;—E(0)

IIH,-;—E(O)II

travels towards H; j following a straight path, one has E(z) = E(0)+7vg,

0 < 7 < T,,. Since || H;; — EQ)|| = T;;, then C(E(0),r) C C(H,;.T;; +r)

and C(E(z),r) C CH;;, Ty +r—1), for all r such that 0 < 7 < T;; (see

Fig. 3).

Consider the case || H;; — P.(0)|| > T}; + r, where strict inequality is
assumed in (10). It follows that P(0) & C(H,;,T;; +r) and then for any
possible trajectory of P, one has Pi(z) & C(H,;,T;; +r—1), 0<7 <T};.
Hence, P(7) & C(E(r),r), for all 0 < z < T}; and then P, cannot capture
E before T};.

It remains to consider the case when condition (10) holds with
equality, i.e., |H;; — Pcll = T;; +r. Let Q = E(0) - rvg. To avoid capture
at time 0, it must be P, (0) # Q. By going straight towards H;;, the kth
pursuer will always lie on the border of C(H;;,T;; +r — 7), thus leading
again to Py(r) ¢ C(E(r),r) for 0 < 7 < T;;. When 7 = T}; one will have
| P (T;;) — H;;|l = r, meaning that P, P; and P, will capture the evader
simultaneously at time 7;;. []

let vp = denote the velocity vector of the evader. Since E

Notice that, if P, P; and E play their optimal 2P1EG strategies, one
has ||H;; — P|| = ||H;; — P;|ll = T;; + r and so (10) can be rewritten as

IH;; = Pl 2 |H;; = Pll, k=1,....p. an

Such a condition states that if there is no pursuer closer to H;; than P,
(and Pj), then (10) holds and the optimal MP1EG strategies for P, P;, E

i»Ljs
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Fig. 3. Sketch of the proof of Theorem 1.

are '/ and ¢". This means that the other pursuers cannot improve the
capture time even if they go straight to H;;. As a direct consequence
of Theorem 1, if there exist two distinct pairs of pursuers (P, P;) and
(Py, P)) satisfying the conditions of Theorem 1, then T;; = Tj,.

Theorem 1 states that if condition (10) or (11) is satisfied by a
pair of pursuers P, P; at a certain time 7, the strategies of these two
pursuers must switch to w* in order to be optimal from time t onwards,
irrespectively of what the other pursuers will do. Similarly, the evader
must switch to strategy ¢¥ in order to maximize its survival time. This
fact will be exploited in Section 4 to devise new families of winning
pursuit strategies for the MP1EG. The next result provides a further
insight on the way pursuers cooperate to capture the evader after
condition (10) has occurred.

Theorem 2. Assume that condition (10) occurs at time ¢t > 0, and let P, P
denote the pursuers related to the corresponding 2P1EG. If E(t) & P.(t)P;(t)
then Ak # i, j such that H;;(v) is the centroid of P;(t), P;(1), Py (1).

Proof. Since E(7) ¢ P,(t)P;(1), H;;(t) is uniquely defined due to (7). By
(11) one has

1,0 = Pl 2 I1H,(0) = PON = 1 Hyj(0) = Pyl Yk # i . a2

Let € > 0 and set 7 =t —¢. Being D;; an open set (see (4)), it is possible
to choose ¢ sufficiently small so that E(zr) € D;;(z), with H;;(z) defined
according to (6). On the other hand, since at time 7 condition (10) does
not hold, one has that there exists k # i, j such that

|H,;(x) = @l < |H;;(x) = (@Il = | H;;(z) = ;). 13)

By the arbitrariness of £ and the continuity of the agents’ trajectories,
(12) and (13) imply that

|H;;(t) — POl = | H;;(t) = POl = |[H;;(1) = P,(0]|
and hence H;;(t) is the centroid of P,(1), P;(1), P(t). O

As a consequence of Theorem 2, if the evader is not aligned with
pursuers P, and P; when condition (10) is verified, there are at least
three pursuers that will end up capturing the evader simultaneously by
heading towards their centroid H,;(®).

4. Switching pursuit strategies

In this section, the concept of switching pursuit strategy is introduced.
The aim of such strategies is to guarantee that condition (10) holds
at some finite time, and hence capture is assured by switching to the
appropriate 2P1EG strategies.
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Definition 1. A pursuit strategy is a potential switching strategy if there
exists a pair of pursuers P, P; for which condition (10) holds at some
finite time, for any possible strategy of the evader. A potential switching
strategy is referred to as switching strategy if P;, P; play the optimal
2P1EG strategy as soon as condition (10) holds.

By the previous definition, a switching strategy leads to the evader
capture in finite time, and so it is a winning strategy. In fact, from
the switching time onwards the pursuers will play the optimal 2P1EG
strategy, guaranteeing the evader capture.

In general, since condition (10) depends on the evader position,
it is not easy to design pursuit strategies that eventually lead to its
satisfaction. Therefore, it is useful to derive sufficient conditions under
which (10) holds, that the pursuers can enforce whatever is the strategy
played by the evader. Hereafter, two such conditions are presented.

Let us define the union of all the 2-pursuer capture regions as

b= (J b, 14
ije(L....p}

An example of set D is shown in Fig. 4-(a), while the corresponding

set D\int {P} is depicted in Fig. 4-(b). The next theorem provides a

sufficient condition for switching to 2P1EG.

Theorem 3. IfE € ﬁ\int {P), then there exists a pair of pursuers P, P;
for which condition (10) holds.

Proof. See Appendix. [

Remark 1.

Theorem 3 can be alternatively formulated stating that if £ €
M\int {P}, there exists a pair of pursuers for which condition (10)
holds. In fact, if E € M\int {P}, there are necessarily two pursuers P,
P;, such that E € D;;, which implies E € D\int {P}.

Notice that Theorem 3 guarantees the satisfaction of (10) if E € oP.
Moreover, Theorem 3 suggests that if the pursuers play a strategy which
steadily reduces the size (in some sense) of P over time, then (10) is
eventually assured. The following result guarantees the satisfaction of
(10) whenever the pursuers are sufficiently close to each other.

Theorem 4. Let us consider a pursuit strategy such that
max 1B® = Pl < Var as)
J=L

at a certain time t > 0. Then, there exist a time f < f and a pair of pursuers
P, P; for which condition (10) holds at . Hence, the considered pursuit
strategy is a potential switching strategy.

Proof. See Appendix. [J

Notice that condition (15) in Theorem 4 is much simpler than
(10), since it does not depend on the evader position. Therefore, it
can be effectively employed in designing families of winning switching
strategies, even starting from naive pursuit strategies that would not
be successful without switching. A first family consists of pursuers P,
going straight towards a fixed point M € R?, with speed |lv POl > &,
for some 0 < £ < 1, and stopping once they reach M. It is referred to
as Fixed-Point Pursuit Strategy (FPPS). The following result holds.

Theorem 5. Any FPPS is a potential switching strategy.

Proof. Let

d= me P.(0)— M]||.
kel(?,",‘.’f,p; (| P (0) |

Then, at time ¢ = max { (d— ‘/T§r> /5,0} one has ||P(z) - M| <
\/;r, k=1,...,p, and hence | P,(v)= P;(0)|| < | P,(2)-M||+||M - P;(D)]| <

\/gr, for any pair of pursuers P, P;. Thus, the result follows by Theorem
4. O
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Fig. 4. (a) Set D denoting the union of all the 2-pursuer capture regions; (b) set ﬁ\int {P}.

An example of FPPS is the centroid strategy, in which all pursuers
(or a subset of them, including the evader in their convex hull) move
with the same speed towards the center of the minimum-radius circle
which includes them. Notice that such a strategy is consistent with the
fact that under certain conditions, capture occurs in the centroid of a
subset of pursuers, as stated by Theorem 2.

Another simple pursuit strategy is the so-called pure pursuit. In this
strategy, all pursuers always point towards the evader at maximum
speed, i.e.

E@) — P,(r)
IE®) - POI’
It is well known that pure pursuit does not guarantee capture of the
evader when all agents have the same maximum speed. However, it
becomes a winning strategy if switching to 2P1EG is adopted.

vp, (1) = k=1....p. a6)

Theorem 6. The pure pursuit strategy is a potential switching strategy.

Proof. Let §,(t) = || E(t) — P,(1)||. Then, by using (16),

1 d&3(n) . . L
TR (E@®) — P()) (E@) — P (1)) = (E@) — P,1)) E(t) — 6, (1).

s2 2
Being || E(t)|| = |lvg®)|| < 1, one has % < 0 and in particular dﬁ;t([) =0

if and only if vg(t) = vp, (1) given by (16). Hence, lim,_,  6,(t) =
8¢ = 0 and lim,_,, , 8,(t) = 0, which in turns leads to lim,_, ., vp (1) =
lim,_,,, vg(®), Vk =1, ..., p. Since, according to (16), all pursuers point
towards the evader, this means that all pursuers and the evader tend
to be asymptotically aligned, with the evader lying outside the segment
containing the pursuers. Therefore, lim,_, E(t) ¢ P. By continuity of
the agents’ trajectories, E(r) must have crossed 0P at some time instant
and hence the conclusion follows by Theorem 3. []

Theorems 5 and 6 are just examples of winning pursuit strategies
based on switching; it is apparent that many other switching strategies
can be devised by exploiting the geometric conditions in Theorems 3
and 4.

Remark 2. It is worth stressing that in all the proposed strategies,
switching from MP1EG to 2P1EG occurs only once during the game,
provided that after the switching the two pursuers and the evader
involved in the 2P1EG play the corresponding optimal strategies de-
fined by Proposition 2. This means that the switching strategies are
not prone to chattering, as it may happen in other types of games (see,
e.g., [26]). Clearly, if the evader does not play its optimal strategy,
another switching to a different 2P1EG may occur later, with the effect
of further reducing the capture time. In fact, by definition of optimal
strategy, once the first switching has occurred, the optimal 2P1EG
strategy of the evader maximizes the evader survival time.

5. Numerical simulations

In order to show the benefits of using a switching strategy, several
numerical simulations are reported in this section. Three pursuit strate-
gies are considered: pure-pursuit (PPS), centroid-based (CS), and the
strategy proposed in [7], referred to as Voronoi-based strategy (VS).
Notice that VS is a winning strategy, provided that when the game
starts, the evader lies in the interior of the convex hull of the pursuers
(so that the evader Voronoi cell is not empty, see [7] for details). The
prefix S- is used to denote a given pursuit strategy when pursuers switch
to 2P1EG as soon as condition (10) holds. For instance, S-PPS denotes
the switching pure-pursuit strategy.

In all simulations, the maximum speed of the players is set to 1
and the capture radius is r = 1. In the figure illustrating the agents’
trajectories, pursuers are drawn in blue and the evader in red. Initial
conditions are marked with a square, while the final positions of the
agents are denoted by a dot. A dashed circle with radius r is drawn
around the capture position of the evader.

Example 1. Let us consider a four-pursuer one-evader game, where
pursuers are initially located at the vertices of a square with side length
20 centered at the origin, i.e., P;(0) = [-10,-101, P,(0) = [-10,107,
P;(0) = [10,—107, P4(0) = [10, 10]'. The evader starts from E(0) = [0, 5],
and it goes upwards with maximum speed during each game.

If the pursuers move according to PPS and CS, the evader can es-
cape, and so such pursuit strategies are not winning in this scenario. On
the contrary, if pursuers switch when (10) occur, the evader is captured
at time ¢+ = 22.66 and ¢ = 33.91 for S-PPS and S-CS, respectively. The
trajectories traveled by the players in such cases are depicted in Figs.
5 and 6.

When pursuers play the original version of the Voronoi-based strat-
egy, they are able to capture the evader at time ¢t = 20.02, as depicted
in Fig. 7. When playing the corresponding switching version, capture
time is reduced to r = 16.61. So, in this example, the capture time
needed by VS is about 20% greater than that needed by S-VS. The
agents’ trajectories are shown in Fig. 8, where it can be observed that
in this case the capture point coincides with the centroid of all the four
pursuers, after condition (10) has occurred.

Example 2. The aim of this example is to evaluate the benefit of
using S-VS in place of VS. To this purpose, a simulation campaign with
different number of pursuers located in different places is performed. In
all simulations, the evader position is initially set to the origin. Pursuers
start randomly inside a circle of radius R, centered at the origin. Only
initial positions such that the evader belongs to int { P} are considered,
so that VS always achieves capture of the evader.
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Fig. 5. Example 1. The evader goes upwards while pursuers play S-PPS.
Capture occurs at ¢ = 22.66.

Pursuers
351 Evader
30
251
20 -
151
10

50
ok
5+
-10 = . = : 5 : :
-30 -20 -10 0 10 20 30
Fig. 6. Example 1. The evader goes upwards while pursuers play S-CS.

Capture occurs at t = 33.91.
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Fig. 7. Example 1. The evader goes upwards while pursuers play VS. Capture
occurs at ¢t = 20.02.
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Pursuers
Evader
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51
or
S5
_10 ™ 1 1 1 3
-10 -5 0 5 10
Fig. 8. Example 1. The evader goes upwards while pursuers play S-VS.

Capture occurs at ¢t = 16.61.

For a generic game, let us denote by 7, and T, the capture
time when pursuers play VS and S-VS, respectively. The convenience
of adopting the switching strategy is r;leasured through the ratio of the

mentioned capture times, that is p = 5. The evader strategy consists

T
in pointing towards the farthest vertex of its own Voronoi cell at each
time.

The number p of pursuer ranges from 3 to 10, while the radius of
the circle of the initial pursers’ position varies as R, € {10,30,50}.
For all possible combinations of p and R,, 100 games are played.
The corresponding boxplots of p are reported in Fig. 9. To increase
readability, the upper limit of the p-axis is set to 2. However, it is
worthwhile stressing that for several games much larger values have
been observed. For instance, for p =3 and R, = 50 the maximum ratio
is p = 12.6. Notice that in games with p = 1 the switching condition (10)
never occurs, so that T, =T, Itcan be observed that there are few
games in which p < 1. This is due to the fact that the evader plays a
predefined strategy that, in general, does not correspond to the optimal
one in a min-max sense, which is unknown. Therefore, when the
pursuers play VS, neither the pursuers nor the evader are playing their
optimal strategy. In such a case, there is no guarantee that the capture
time be greater than the one obtained when the pursuers play optimally
after the switching. Nevertheless, the numerical tests show that p > 1
in most cases. On the whole, the simulation results demonstrate that
playing the switching strategy leads to significantly smaller capture
times than adopting the original Voronoi-based strategy.

6. Conclusions

A new family of switching pursuit strategies for a multi-pursuer
single-evader game has been introduced. It is based on the key obser-
vation that the game can be reduced to a two-pursuer single-evader
setting, for which a minimum-time solution is available. Conditions for
transitioning between these two games have been derived, enabling the
definition of new winning strategies and enhancing the performance of
existing ones. Future work will focus on developing pursuit strategies
that achieve the switching condition while minimizing the overall
capture time or other relevant performance indexes. Moreover, the
approach will be extended to handle multi-pursuer multi-evader games.
The use of switching pursuit strategies in scenarios involving a superior
evader will also be considered.
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Fig. 9. Example 2. Boxplot of the performance index p for R, = 10 (top), R, = 30 (middle) and R, = 50 (bottom).
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Appendix

Proof of Theorem 3
In order to prove Theorem 3, the following lemmas are introduced.

Lemma 1. Let P, P, and E be such that E € D,\(C(P;,r) U C(P,,1)),
and set P; = P, + a(P, — P)), a > 0. Then, T}3 > T},.

Proof. W.l.o.g., let us refer to the reference frame introduced in
Section 2.1, see Fig. 10. Hence, from E = [x,y] € D;)\(C(P,,r) U
C(P,,r)), one has —d < x < d and (x +d)* + y> — r* > 0. Moreover, since
E € D)\(C(P;,r) U C(Py, 1)), one has also E € D3\(C(P,r) U C(P;,F)).
Therefore, the capture time 75 of pursuers P, and P; can be computed

by using (5), in which d and x are replaced by d + ad and x — ad,
respectively. One gets

Kol + |y|\/KZ —4(x — ad)2(r2 — y?)
2% = )

T, = a7
in which «, = k +2ad(d + x). In order to prove T}; > T),, it is sufficient
to show that T)5 in (17) is a strictly increasing function of «, for a > 0.
First, one has

di,
— =2d(d +x)>0.
da

Then, it remains to show that 2 —4(x—ad)?(r? - y*) is strictly increasing
in a. Through some straightforward manipulations, one obtains

4 (k2 = 4(x — ad)>(* = )}
da ~ *
=4 {d(d —-X)+ 2d2a} {(x +d)? +y? - r2}

which is positive for all « > 0. []

Lemma 2. Consider P, P, and E such that E € D;,\(C(P,r) U
C(P,.r)). Let £, and L, be the lines containing the segments P, E and P,E,
respectively. Then, let O, and Q, be the intersections of L, and L, with the
circumference 0C(H 1+2 T\, + r), opposite to P, and P,, respectively. Define
the region W), as the portion of the circle C(H,, T}, + r) bounded by the
segments O, E, Q,E and the minor arc of circumference QZ‘Q\, Then, if a

pursuer Py € W,,, then either E € D5 or E € Dy;.
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Fig. 10. Sketch of the proof of Lemma 1. The shaded region denotes
Dp\(C(Py, 1) U C(Py, 7).

Fig. 11. Sketch of the proof of Lemma 2.

Proof. Let us consider the region W,, depicted in Fig. 11. Let § =
dC(E,r) n 0C(H},, Ty, + r) be the point of tangency between the two
circumferences. Notice that the segment ESS divides W,, in two disjoint
regions. Thus, either P, P; or P, P; will intersect ES. Let us assume that
P,P; N ES # . Then, the minimum distance between E and P,P; is
less than r, and hence E € D,;. A similar argument can be adopted if
PPnES#0. O

Now, we can proceed to prove Theorem 3. Let P;, P; be the pair of
pursuers such that £ € D;; and T}; < Ty, for all pairs A,/ € {1, ..., p} for
which E € D;;. We show that for this pursuer pair, condition (11), and
hence (10), holds. Condition (11) states that || P, — H;|| > |1 P, — H; |l =
T,;+r, k=1,...,p. By contradiction, assume that there exists a pursuer
P, which satisfies ||P, — H;|| < T;; +r, i.e, P, € int {C(H,;,T;; +1)}.
Let us define £, and L, as the lines passing through P, E and P, E,
respectively. Since P, € P and by assumption E ¢ int {P}, then P,
must belong to the region W,;, shown in Fig. 12. By Lemma 2, either
E € D;; or E € D;,. W.lo.g., assume E € D,,. Let L;, be the line
crossing P; and P,. It holds £;, n C(H,;,T;; +r) = {P;, P,}, where P,
denotes a fictitious pursuer. Then, by Lemma 1 one has T, < T}, = T;;.
Since by assumption T}; < T), for all 4,/ € {1,...,p}, a contradiction
occurs. []

Proof of Theorem 4
According to Theorem 3 and Remark 1, if E(0) € M(0)\int {P(0)},
condition (10) already holds at time ¢ = 0. So, let us analyze the case

E(0) € int {P(0)}. Let us first show that (15) implies

p
P@® c | cr@.n. as)
i=1
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Fig. 12. Sketch of the proof of Theorem 3. The shaded area W); denotes the
admissible region of P,.

If p = 3 and the distance between each pursuer pair is exactly equal
to \/Er, then P is an equilateral triangle and (18) follows from simple
geometric arguments. Clearly, if the pursuers are closer to each other,
(18) still holds. In the generic case of p pursuers, P can be partitioned in
triangles and the previous reasoning can be repeated for each triangle.
Therefore, (18) is satisfied for a generic polytope P. This means that
E®@) ¢ P(i), otherwise capture had already occurred. Since E(0) €
int {P(0)}, by continuity of the agents’ trajectories there exists 7 < 7
such that E(f) € 9P(?) and then, by Theorem 3, condition (10) holds at
time 7. [

Data availability

Data will be made available on request.
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