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Undergraduate robotics students often find it difficult to design and validate control algorithms for teams of mobile robots. This is
mainly due to two reasons. First, very rarely, educational laboratories are equipped with large teams of robots, which are usually
expensive, bulky, and difficult to manage and maintain. Second, robotics simulators often require students to spend much time to
learn their use and functionalities. For this purpose, a simulator of multiagent mobile robots named MARS has been developed
within the Matlab environment, with the aim of helping students to simulate a wide variety of control algorithms in an easy way
and without spending time for understanding a new language. Through this facility, the user is able to simulate multirobot teams
performing different tasks, from cooperative to competitive ones, by using both centralized and distributed controllers. Virtual
sensors are provided to simulate real devices. A graphical user interface allows students to monitor the robots behaviour through

an online animation.

1. Introduction

It is a common opinion that experimental validation of
control algorithms involving mobile robots is a mandatory
practice in this field of research. Unfortunately, performing
such experiments is usually costly and time demanding, espe-
cially when a large number of vehicles are involved in these
experiments. When dealing with mobile robotics in educa-
tion, it is often difficult to let students perform real exper-
iments, due to several reasons like, for instance, large num-
ber of students, inadequate laboratories, lack of economic
resources, and so forth. A possible solution consists in
using software simulators able to accurately reproduce robot
behaviours. Such simulators can be effectively used by stu-
dents during the courses. Nowadays, a number of mobile
robot simulators are available, developed by both commercial
companies and research institutions. Examples of commer-
cial products are Webots [1], V-rep [2], MobotSim [3], and
Virtual Robotics Toolkit [4]. Moreover, many simulators have
been developed in academic institutions; see [5-10], just to
cite a few. These simulators provide several nice features to

the user, like very accurate modelling of the mechanics of
the vehicles, a detailed description of the environment, and
realistic animations showing the behaviour of the robot team.
On the other hand, they usually require a significant effort
on the student side, in order to get acquainted with a specific
programming language to implement the control algorithms
for driving the robots.

In this paper, a multirobot simulator named MARS is
described. Initially, this project was launched with the pur-
pose of simulating the behaviour of mobile robots built with
Lego Mindstorms bricks [11] embedded in the remote labo-
ratory named Automatic Control Telelab (ACT); see [12-14].
Then, its scope has been extended to provide an educational
easy-to-use simulator aimed at testing control algorithms
for generic robots working in user-defined environments
and equipped with various sensors. Unlike the above cited
simulators, it does not concentrate on the dynamical model of
robots and on virtual reality animation. Instead, it is oriented
to rapid prototyping of the control strategies designed to
accomplish the requested task. In order not to force students
to learn a specific language, the simulator is based on the



Matlab environment, which is widely employed within engi-
neering programs. Thanks to these features, designing and
validating control algorithms are much easier and faster than
in other robot simulators. Several kinds of experiments can be
performed in MARS, from cooperative to competitive ones,
involving a number of different tasks like path planning and
obstacle avoidance [15], coverage, pursuer-evader games [16],
rendezvous, and so forth. A key feature of MARS is the ability
to design add-ons, that is, functions able to implement special
features. Students may take advantage of this capability by
embedding in their projects predefined add-ons or add-
ons designed by other students. In addition, robots may be
equipped with virtual sensors simulating real devices, like
sonar or laser range finders. MARS has been successfully
adopted in secondary school and undergraduate engineering
courses at the University of Siena. Despite its simplicity, it may
be also used as a research tool, allowing researchers to design
and validate complex controllers before the actual implemen-
tation on real vehicles. A description of a preliminary version
of the simulator architecture is sketched in [17].

The paper is organized as follows. In Section 2, a brief
overview of the MARS project is summarized, while its soft-
ware architecture is described in detail in Section 3. A session
example is reported in Section 4, showing how the user
can easily implement a controller and simulate it. Teaching
experiences involving MARS carried out at the University of
Siena are reported in Section 5. Experiments related to several
different tasks are presented in Section 6, to demonstrate
the power and flexibility of the proposed simulator. Finally,
conclusions and future developments are given in Section 7.

2. Simulator Overview

The Multiagent Robot Simulator (MARS) (website: http://
mars.diism.unisi.it/) is a software simulator whose aim is
to provide a virtual environment for simulating teams of
mobile robots. Within MARS, it is possible to simulate
robots moving in both structured and unstructured two-
dimensional workspaces. Holonomic and nonholonomic
vehicles equipped with different types of sensors can be
considered, thus leading to heterogeneous robot teams.

Let x;(t) and y,(t) be the position of the ith robot at
time ¢, and let v, ;(¢) and vy,,-(t) be its velocities along the
two coordinate axes. Holonomic robots are driven by their
velocities along the two coordinate axes, so their kinematics
can be easily expressed as

X (6) = vy, (B
30 = vy (0).

Instead, nonholonomic vehicles are implemented as uni-
cycles, whose poses evolve as

% (1) = v, (£) cos (6, (1),
3, (t) = v; (t)sin (6; (1)), ()
0, (t) = w; (1),

where v;(t) and w;(t) are the linear and angular speed,
respectively, and 0,(t) denotes the robot orientation with
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FIGURE 1: MARS software architecture.

respect to the x-axis. All kinematic equations are discretized
for simulation. Sampling time is set by the user and robots
change their status at each time step.

Robots can be equipped with the same controller or
with different controllers as well, for example, for experiment
involving one leader and many followers. Several types of
control strategies can be implemented as follows.

Centralized Control with Full Information. It is assumed that
the complete information about the environment and all
robot poses is known by a supervisor controller. At each time
step, such a controller is in charge of computing the desired
velocities for all agents in the network.

Centralized Control with Partial Information. Unlike the pre-
vious setting, one may assume that the supervisor controller
knows only partial information about robot status, like, for
instance, position but not orientation.

Distributed Control with Partial Information. Each robot has
to compute its own velocities based on its pose and the poses
of some of the other vehicles, for instance, of its neighbors.
It may also know partial information about other agents, for
example, their position but not their orientation.

Distributed Control with Sensor Information. Agents have to
compute their speed by means of measurements obtained by
embedded virtual sensors which provide the only available
information.

3. Software Architecture

MARS has been developed in Matlab and consists of a set of
functions which can be divided into five main groups (see
Figure 1).

Main File. The file called mars.m represents the main function
of the simulator and it is the function to be launched to run a
simulation.

Resource Files. These are functions which can be used by the
main file and/or by users to provide specific functionalities
(e.g., check whether collisions occur).

Sensor Files. These functions allow the simulation of virtual
sensors mounted on the robots, like proximity sensors, laser
range finders, and so forth.
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Add-Ons Files. MARS allows one to include in the environ-
ment a bunch of features of interests, like the presence of
obstacles, Voronoi diagrams, and so forth. Such functionali-
ties are implemented through add-ons predefined within the
simulator or designed by users.

Demo Files. These files are useful to show demonstrations of
the simulator functionalities. They can be used as a starting
point to develop new experiments.

Hereafter, the main file (mars.m) is described in detail.
This is the file the user has to run to start the simulation.
It consists of a Matlab function whose syntax is defined as
follows:

[out_data] = mars (exp_file, stop_time, speed, options)

(i) exp-file is the name of the function containing the
experiment to be simulated, which has to be defined
by the user. Demo files can be used as well. This is a
mandatory input parameter.

(ii) stop-time specifies the time duration of the experi-
ment in seconds.

(iii) speed denotes the playback speed of the simulation.
speed = 1 (default) means that the simulation runs at
actual time; that is, the duration of the simulation is
the same as that of the real experiment. Greater values
can be used to increase the simulation speed, while
lower values can be used to decrease it. Special values
are speed = 0 which means “manual mode”; that is,
simulation proceeds at each key pressed, and speed =
“max” which runs the simulation at the maximum
speed allowed by the available computational power.

(iv) options is a structure defining options to be used in
the simulation. All the fields of the experiment status
structure (Exp_status) can be set, see Table 1.

(v) out_data is a structure containing all the experi-
ment data including robot poses, sensor outputs, and
workspace features for each time step. This dataset is
useful to perform offline analysis of the experiment.

All the data involving a simulation are internally stored
in the experiment status structure called Exp_status. Such
a structure contains data which remain constant over time,
like the mechanical characteristics of the robots, as well
as dynamical variables like robot poses. The main fields of
Exp_status are reported in Table 1.

The body of mars.m can be divided into 3 sections.

Parameter Definition. In this section, default values are
assigned to parameters governing the experiment, like, for
instance, the default sampling time, the workspace geometry,
and the vehicles characteristics. Such parameters can be
changed by the user both from the command line (setting the
options parameter in the MARS call, as described above) and
from the user-defined function of the experiment (exp_file).

Initialization. During this phase, the experiment file exp_file
is checked and relevant information is set, like the number of

for T=0:sampling time:stop_time
- update animation
- run addons loop functions
- generate sensor measurements
- synchronize simulation
- execute control function
- check motor saturation
- check if robot inside the workspace
- check if the experiment is over
- update robot pose

ALGORITHM l: Sketch of the routines inside the main loop.

robots used, their initial conditions, the animation parame-
ters, and the used add-ons. Moreover, experiment parameters
are overwritten if specified.

Main Loop. This section is in charge of simulating the exper-
iment and can be seen as the core of the project. A sketch
of the main commands executed inside the loop is shown in
Algorithm 1. The loop is repeated every sampling time and it
is synchronized on the basis of the playback speed. At each
time step, robot dynamics, sensor measurements, and add-
ons routines are computed and the animation is updated.
Additional computations concern collision detection and the
storage of data in the output structure out_data.

On the user side, the only thing to do is to generate
the experiment control file. Let us assume that exp_file.m is
the name of the user-defined file defining the experiment
controller. This file has to adhere to the following syntax:

[Command, Exp_status] = exp_file (Exp_status, Init_
flag)

(i) Exp_status denotes the experiment status structure.
The main structures fields are listed in Table 1.

(ii) Init_flag is a boolean variable establishing whether the
simulator is in the initialization or in the simulation

phase.

(iii) Command is a matrix containing the desired input
speeds of all the robots at the current time step.

The task of the user can be summarized as follows.
By exploiting the data contained in Exp_status, design a
control law for each robot which returns a desired robot
speed. For holonomic robots, exp_file has to generate the
velocities v, ;(£), v, ;(t) along the two cartesian axes, while for
nonholonomic robots it has to return the linear and angular
velocities, v;(¢) and w;(t).

Therefore, to sum up, the user has just to freely write the
code of the desired control law generating the desired veloc-
ities and finally pack them up within the matrix Command
with the following structure:

Va1 Va2 Vx,n]

(i) Holonomic robots: Command = [V%l Vg Vo

(ii) Nonholonomic robots: Command = [ o & ©- o |
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TABLE 1: Description of main Exp_status fields.

Field name Description

Robots Number of robots used (default = 1)

Pose Robots pose [x (meters); y (meters); angle (radians)]

Initial_pose
Sampling_time
Iteration

Time

Stop_time
Workspace
Bounds
Non-holonomic
Command_delay
Geometric_center
Exp_over

Exp_over_msg

Initial pose of robots

Sampling time (seconds)

Actual iteration of the main simulation loop

Elapsed experiment time (seconds)

Max duration of the experiment (seconds)

Vertexes defining the polygonal workspace in clockwise order

Bounds of the outer box of the workspace (meters) [min_x, max_x, min_y, max_y]
True if robots have nonholonomic drive; false for holonomic drive (default = true)
Transmission delay (seconds)

Coordinates of the geometric center of the robot

True if the experiment is over

Message describing why the experiment is over

Filename Name of the controller file

Version Simulator version

Addons List of add-ons to be used

Addons_suffix List of suffixes to be used in add-on’s filename
Robot Robot mechanical characteristics

Robot.Max_linear_speed
Robot.Wheels_semiaxis_length
Robot.Diameter

Robot.Distance_center_barycenter

Maximum linear speed (m/s)
Semiaxis length (m)
Diameter of robot chassis (m)

Distance from the geometric center of the robot to the center of rotation

Animation

Animation.Title
Animation.Grid
Animation.Show_initial_pose
Animation.Show _real_shape

Animation.Wake
Animation.Wake_style

Animation.Playback_speed
Animation.Enable
Animation.Base_colors

Animation.Colors

Animation structure

Title of the simulation (default = “[Simulation]”)

Enable/disable grid (default = true)

Showthide initial pose of robots (default = true)

If true, the actual robot shape is shown; otherwise, a pointwise robot is depicted (default = true)
Enable/disable robots’ wake (default = true)

If wake is enabled, use the defined style; styles are the same as in the Matlab function plot
(default = “-7)

Simulation playback speed in seconds (default = 1)
Enable the animation (default = true)
Base colors to be used in the animation; they will be repeated if needed

Robot colors to be used in the animation; they are computed repeating the base colors if needed

History
History.Time
History.Pose
History.Command

History.Command_time

Historical data structure
Simulation time

Robot pose

Robot command

Time when the command is received

where » is the number of robots, specified by Exp_status.

Robots.

4. Session Description

In this section, an illustrative session example is reported
along with the Matlab code needed to implement it. As

described in the previous section, the user has to provide
a control file (Example_random.m in this session example)
which generates the desired robot velocities at each time
sample.

The aim of this experiment is to drive two robots in a
squared environment of 10 x 10 meters. Robots are equipped
with proximity sensors (e.g., a ring of sonar) which return
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2
3 if Initialization
Exp.Robots=2;

i

5
6
7 Exp.Initial pose=[130; 97 pi]’;
8 Exp.Animation.Grid=0;

10  Exp.Addons={’Map’};
11 V(1).Vertex=[52; 43; 64; 53];

13 V(3).Vertex=[66; 77; 86];
14 V(4) .Vertex=[10 0; 10 10];
15 V(5).Vertex=[ 00; 0 10];

16 V(6) .Vertex=[ 0 10; 10 10];
17  V(7).Vertex=[ 0 0; 10 0];

18 Exp.Map.0Obstacle=V;

20 for i=1:Exp.Robots

23 end

25 Command=[]; return
26 end

27

28 for i=1:Exp.Robots

1 function [Command,Exp]=Example random(Exp,Initialization)

Exp.Workspace=[0 0; 0 10; 10 10; 10 0];
Exp.Animation.Title=’ [Random movements]’;

12 V(2).Vertex=[45;37;28;16; 25];

21 Exp=Add_sensor (Exp,i,{’ProximitySensor’}) ;
22 Exp.Agent (i) .Sensor (1) .Range=0.3;

29 if Exp.Agent (i) .Sensor(1) .Presence

30 Command (:,i)=[-0.2; 0];

31 elseif (Exp.Iteration>1)&&(Exp.History.Command(Exp.Iteration-1,1,1i))<0,
32 Command (:,i)=[0; pi/2+rand(1)*pil;

33 else

34 Command (:,i)=[0.2; 0];

35 end

36 end

ALGORITHM 2: Matlab code implementing the illustrative example of Section 4.

true if an obstacle or a robot is closer than a prescribed range
(0.3 m in this example). The linear speed of both robots is set
as 0.2 m/s, while the angular speed is set as 0 if no obstacle is
detected. Whenever a robot detects an obstacle or the other
robot, it goes backward for one time step and then it rotates
with a random angle. The sampling time is set as 1 second.

The overall Matlab code implementing the required task
is reported in Algorithm 2, while the simulation output after
1000 s is depicted in Figure 2. The simulation is run by the
following command: out_data = mars(“Example_random’,
1000, “max”).

Initialization (Lines 3-26)

Lines 4-8. Several parameters are defined, includ-
ing the number of robots used in the experiment, the
workspace shape and size, and the initial poses of the
vehicles.

Line 10. The add-on Map is loaded. It generates the

new substructure Exp.Map containing all the infor-
mation about the map.

Lines 11-18. Obstacles are defined through their
vertices. In lines 14-18, “fictitious” obstacles are
defined at the workspace boundary to prevent robots
from exiting the environment.

Lines 20-23. Inline 21, each robot is equipped with
a proximity sensor, while in line 22 it is set to detect
obstacles around a circle with radius 0.3 m.

Line 25. Itincludes a mandatory code at the end of
the initialization section.

Body (Lines 28-36)

Lines 29-30. For each robot, line 29 checks whether
the sensor detects the presence of an obstacle or a
robot inside its field of view. If a presence is found, the
robot is asked to go backward with a linear velocity
of 0.2m/s and an angular speed of 0. Otherwise,
condition in 31 is evaluated.

Lines 31-35. Condition in line 31 checks whether
the linear speed at the previous time step was negative



T = 1000.0 sec (max speed) (random movements)

Y (m)

FIGURE 2: Illustrative example of two robots moving randomly in an
environment with obstacles.

(and the iteration number is greater than one to
prevent errors). If so, the robot stops and turns with
a random angle between 77/2 and 3/2m; otherwise, it
proceeds straight.

5. Teaching Experiences

Two types of educational experiences based on MARS have
been assessed in the recent past, involving secondary school
and bachelor students, respectively.

5.1. Secondary School Student Experiences. This experience
regards 31 secondary school students who came to the
university for a short stage, with the aim of stimulating
their creativity and passion towards engineering topics. This
activity dealt with a pursuer-evader game with one pursuer
and one evader. The aim of the pursuer is to “catch” the
evader, that is, to collide with it, while the evader should
avoid collision. After a given time, if no collision occurs,
the evader wins; otherwise, it loses. Students were asked to
gather in small groups and design a control law for the evader
agent. They knew the pursuer strategy which consists in going
towards the evader at each time step. The evader speed was
initially set as twice the pursuer speed. Then, the latter was
gradually increased to make the game more challenging.
Several different control algorithms were devised by
various groups. An effective solution relates to a strategy
which alternatively drives the evader to one of the four
corners of the rectangular workspace depending on the
pursuer position (Figure 3). Such an algorithm allows the
evader to escape from the pursuer when the speed ratio
between the pursuer and the evader is up to 0.9. Of course,
different initial positions led to different results. Moreover, it
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T = 500.0 sec (max speed) (NaifPEG)

351

Y (m)

15

0.5

0 0.5 1 1.5 2 2.5 3 35 4 45 5
X (m)
FIGURE 3: Pursuer-evader game, evader controller implemented by

secondary school students. Robot poses after 500 seconds. Pursuer:
blue; evader: red.

was shown to students that a slower pursuer is still able to
capture the evader when using more clever strategies.

5.2. Undergraduate Student Experiences. Another educa-
tional activity which makes use of MARS is related to specific
projects carried out by bachelor students, who were asked
to implement control algorithms available in the literature,
performing a number of different tasks. Only one student
is usually involved in a given assignment. Some of these
experiences are reported in the next session, concerning
tasks such as coverage, pursuer-evader games, cyclic pursuit,
collective circular motion, and path planning.

6. Session Examples

In this section, five simulation experiments are described
to illustrate the features and capabilities of the proposed
simulator. All the controllers have been implemented by
bachelor students as a part of their final exam project. In
all the experiences, robots are assumed to be nonholonomic
drive vehicles.

6.1. Coverage. Coverage tasks for multiagent systems consist
in arranging them to optimally cover a given environment,
that is, to place them in suitable positions in order to min-
imize a given cost function. A convex environment is
assumed and a density function representing the importance
of different areas is given.

An undergraduate student was asked to implement the
distributed control strategy described in [18]. Such a control
law is an extension of the Lloyd algorithm [19] and it is based
on the central Voronoi partitions of the environment [20].
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T = 1.0 sec (max speed) (Ex_Coveragel)

Y (m)

(c)

T = 30.0 sec (max speed) (Ex_Coveragel)

2 4 6 8 10 12 14 16 18 20
X (m)
(b)
T = 200.0 sec (max speed) (Ex_Coveragel)

10 12 14 16 18 20

X (m)
(d)

FIGURE 4: Coverage Example 1. Voronoi cells assigned to each robot for different times. (a) t = 1s. (b) t = 30s. (¢) t = 60s. (d) t = 200s.

Therefore, Voronoi cells and their corresponding centroids
were computed by means of the Voronoi add-on in MARS.
As a first example, an experiment involving 20 robots,
uniform density, and square workspace has been performed,
whose simulation results are reported in Figure 4. After t = 60
seconds, robots almost reached their steady state position.
Since the implemented algorithm does not guarantee
attaining the global minimum of the performance cost, it
may happen that slightly different initial positions give rise
to quite different final ones. Such a behaviour is shown in
Figure 5 for 8 robots moving in a circular environment, using

the same control strategy described above. In particular, the
initial positions of the two experiments differ only for the
position of one robot for 0.1 m. This experience helps students
to get acquainted with the key concepts like nonconvex
optimization and sensitivity to initial conditions.

6.2. Pursuer-Evader Game. A pursuer-evader game with one
pursuer and one evader is considered. The aim is to imple-
ment the pursuer strategy reported in [21]. Let us name this
control law VoronoiPEG. Such a strategy is based on the
Voronoi partition of the workspace and aims at increasing



T = 1.0 sec (max speed) (Ex_Coverage2_A)

Y (m)

X (m)

(a)
T = 1.0 sec (max speed) (Ex_Coverage2_B)

Y (m)

X (m)
(c)
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T = 50.0 sec (max speed) (Ex_Coverage2_A)

X (m)
(b)
T = 50.0 sec (max speed) (Ex_Coverage2_B)

Y (m)

X (m)
(d)

FIGURE 5: Coverage Example 2. Voronoi cells assigned to each robot for different times. (a) Initial configuration experiment A (¢ = 1). (b)
Final configuration experiment A (¢ = 50 s). (c) Initial configuration experiment B (t = 15s). (d) Final configuration experiment B (¢ = 50's).

the area of the Voronoi cell associated with the pursuer at
each time instant. In [21], it is proved that the area of the
Voronoi cell associated with the pursuer is increasing at each
time step under any admissible evader strategy. Eventually,
the evader cell reduces to zero with the consequent capture
by the pursuer.

In the reported example, it is assumed that the speed of
the pursuer is set as 80% of the speed of the evader. The evader
will move alternatively to four points near the corners of the

workspace, depending on the current position of the pursuer.
The initial condition is shown in Figure 6(a). Empty and
filled circles denote the initial and final poses of the robots,
respectively. Robot paths are denoted by solid lines, while the
light red area denotes the Voronoi cell associated with the
evader (red circle). Figures 6(b) and 6(c) show the path of
the two vehicles at different times. In Figure 6(d), the final
configuration of the robots is displayed, showing the capture
of the evader by the pursuer.
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T = 0.0 sec (max speed) (VoronoiPEG)
®

35 ®

2.5

Y (m)

1.5

0.5

0 05 1 1.5 2 25 3 35 4 45 5

X (m)
()
T = 70.0 sec (max speed) (VoronoiPEG)

Y (m)
[ 38

15¢

0.5t

X (m)
()

0 05 1 1.5 2 25 3 35 4 45 5

T = 50.0 sec (max speed) (VoronoiPEG)

Y (m)
8]

1.5t

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
X (m)
(b)
T = 98.0 sec (max speed) (VoronoiPEG)

0 0.5 1 1.5 2 2.5 3 35 4 45 5
X (m)
(d)

FIGURE 6: Pursuer-evader game example. Pose of each robot for different times. (a) Initial robot poses. (b) t = 50s. (c) t = 70s. (d) Final
robot poses (t = 98 s). Pursuer: blue; evader: red; evader Voronoi cell: light red.

6.3. Cyclic Pursuit. Cyclic pursuit is a well studied problem
in formation control. In this experiment, six vehicles are
assumed to be distinguishable and labeled from 1 to 6. Each
agent has to pursue the next one; that is, robot i has to
follow robot i + 1 (modulo 6). It is assumed that each
robot is equipped with an ideal sensor which allows it to
detect the position and orientation of the robot it has to
follow. The aim is to design a control algorithm driving each
robot, stabilizing the platoon to regular formations. In this
experiment, the decentralized control law described in [22]

has been implemented, with the aim of driving vehicles
around a circular trajectory. Each robot independently com-
putes its linear and angular speed, proportional to the
distance and the orientation of its preceding neighbor. With
a suitable choice of the controller gains, a circular forma-
tion with equally spaced vehicles is eventually achieved, as
depicted in Figure 7. This experience helps the student to
understand the role of the controller parameters and to
analyze how the formation scales with the number of robots
in the team.
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7 T = 0.0 sec (max speed) (cyclic pursuit)
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T = 150.0 sec (max speed) (cyclic pursuit)
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T = 50.0 sec (max speed) (cyclic pursuit)

)
>

0 1 2 3 4 5 6 7
X (m)
(b)
T = 500.0 sec (max speed) (cyclic pursuit)

Y (m)

Y (m)

X (m)
(d)

FIGURE 7: Cyclic pursuit example. Pose of each robot for different times. (a) Initial robot poses. (b) t = 50s. (¢) t = 150s. (d) t = 5005s.

6.4. Collective Circular Motion. This experiment regards col-
lective circular motion of a team of mobile robots [23, 24].
Being different from the previous experiment, here, the
platoon is assumed to be composed of indistinguishable
vehicles. Each robot is equipped with a range finder sensor
able to provide range and bearing measurements of vehicles
falling inside a given range and a proximity sensor (e.g., a
sonar ring) which returns the presence of the closest vehicle.

The aim of the platoon is to encircle a moving beacon
while maintaining a minimum distance among the vehicles
and avoiding collisions. The distributed control law devised
in [23] has been implemented. An experiment involving
four robots pursuing a slow moving beacon is reported in
Figure 8. Here, the beacon moves from [3.6, 2.5]"to [1.3,1.3]’
following a straight line. The platoon is able to pursue the
moving beacon and to stabilize around a circle as soon as
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T = 0.0 sec (max speed) (collective circular motion)
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the reference stops. Also, in this case, the student can easily
challenge the considered technique by changing the sensor
range, initial configuration, or the beacon trajectory.

6.5. Path Planning in Complex Environment. To demonstrate
the capabilities of MARS in managing complex environ-
ments, in Figure 9, three robots navigating inside the second
floor of the authors’ department are shown. The map has been
generated in the same way as in the much simpler example in
Algorithm 2, after extracting the vertices of each element in
the environment from a CAD map. In the experiment, robots
are driven by an algorithm based on the artificial potential
field; see [25] for details. They are asked to avoid collisions,
navigate towards a sequence of waypoints, and stop when the
last waypoint is reached. Notice that while two robots are able
to reach their final destination, the red one gets stuck inside a
room. This behaviour is in accordance with a known issue of

controllers based on the artificial potential field method, and
students may easily check it. As a possible solution, waypoints
should be rearranged or a new waypoint should be added.

7. Conclusions

In this paper, MARS, a Matlab-based simulator for mobile
robotics, has been introduced. Such a tool is able to simulate
teams of autonomous vehicles performing different tasks.
A number of control strategies may be easily implemented,
exploiting partial or full information or using data acquired
by virtual sensors. In addition, users can design new add-ons
and sensors to customize the simulator to specific needs.
The main purpose of this project is educational and it
has been used in control systems and robotics courses at
the University of Siena. The scope of this facility is not only
confined to the educational one, since it can also be used
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for rapid prototyping of new multiagent control algorithms
before testing them on real setups.

The MARS project is still under development and several
extensions are planned for the near future, like the develop-
ment of a graphical interface for defining virtual obstacles,
the addition of further virtual sensors, and the simulation
of communication protocols between robots. This will lead
to a more realistic analysis of complex multiagent systems,
such as asynchronous moving sensor networks or teams of
heterogeneous mobile robots.
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