
Optimal Operation of Solar Battery Chargers

via Mixed-Integer Linear Programming

Gianni Bianchini, Marco Casini, Antonino Laudani, Gabriele Maria Lozito

Abstract

This paper considers an islanded system consisting of a photovoltaic source connected to a battery

storage through power converters, subject to a time varying load. An innovative charging architecture

composed of two DC-DC converters and a super-capacitor is considered, and a novel modeling and

optimal control framework is proposed with the aim of optimizing battery charge/discharge cycles

while satisfying given generation and load profiles. Nonlinearities and nonconvex constraints arising

from the electrical models are suitably treated in order to devise an optimal control problem involving

linear dynamics that can be solved to the global optimum via mixed-integer linear programming.

Numerical simulations based on a real data set show the effectiveness of the proposed approach as

well as its computational feasibility.

Index Terms

Solar energy, electrical storage systems, optimal control

I. INTRODUCTION

In recent years, photovoltaic (PV) generation systems have undergone an extraordinary development

and have become a leading technology for renewable energy production. To fully exploit their

potential, it is common practice to combine them with energy storage systems (ESSs). Such a

combination is exploited to allow the energy surplus to be used when solar power is unavailable,

as well as to balance grid operation and increase its stability [1], [2]. Electrical storage devices fall

into two main categories: batteries, with lithium-ion batteries being the prominent technology, and
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super-capacitors (SCs). Batteries are characterized by high energy density but low power density,

and are prone to performance degradation when subjected to repeated charge/discharge cycles; on

the other hand, SCs exhibit low energy density and high power density, are generally more durable

and more resilient to high current rates and variable load conditions. The complementarity of these

two classes of devices led to the proposal of hybrid solutions where SCs and batteries cooperate to

compensate for each other’s shortcomings [3].

In this work, we consider a recently introduced direct current (DC) charger architecture [4] based

on the cascade of two DC-DC converters decoupled by an SC. In this architecture, a first converter

is used to control the operating point of the PV device, which is required, e.g., to achieve Maximum

Power Point Tracking (MPPT) and/or compensation for partial shading conditions [5], [6]. A second

converter is used for regulating the battery current, while the introduction of an SC acting as both

a DC link and an auxiliary storage allows for absorbing rapid current variations during transients.

This reduces stress on the battery, thus preventing premature degradation and preserving its overall

capacity. A similar framework is proposed in [7]. A key characteristic of this charger architecture is the

flexibility offered by the two converter gains, which can be exploited as control variables to regulate,

e.g., both the operating point of the PV source and the battery charging/load current. In [7], this feature

is exploited via an empirical control scheme based on PID and fuzzy logic in order to achieve MPPT

on the PV side and constant current charging on the battery side. A prominent shortcoming of such an

approach is that the existence of loads is not accounted for, i.e., the analysis is limited to the charging

process. The presence of loads is inescapable in several application contexts such as microgrids, and

in this case the combined battery charging/discharging behavior must be explicitly accounted for, as it

represents the main source of battery degradation [8]. The latter should be minimized due to economic

and environmental reasons. Moreover, numerous constraints arise in the overall system, including, e.g.,

PV power availability depending on weather, battery capacity and safety bounds, charging/discharging

current limitations, and operating ranges of the electrical components. The above requirements call for

the development of a suitable optimal control framework, possibly relying on formulations that can be

solved to the global optimum and in a computationally feasible manner. This is not a straightforward

task due to the nonlinear nature of the involved dynamics and nonconvexity of the constraints.

In this paper, we aim at filling the above research gap by providing the contributions summarized

below.

- An optimal strategy for scheduling the operation of the considered architecture under variable loads

and weather conditions is designed, with the aim of optimizing the battery charging cycles while

satisfying generation, load, and technological constraints;

- An optimal control scheme underpinning such strategy is developed making use of standard non-
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linear models of both PV generation and battery storage. The most notable feature of such scheme

is that nonlinearities in the dynamics and nonconvex constraints arising from the electrical models

are suitably treated so that the optimal control problem involves linear dynamics and can be solved

to the global optimum via a low-complexity mixed-integer linear program (MILP).

The proposed control strategy is validated through numerical simulations based on realistic devices

and weather data taken from [9]. The performance of the devised control technique is compared to

that of an adaptation (due to the presence of load and physical constraints) of the standard MPPT

operation combined with constant current charging, showing the superiority of the proposed approach

in optimizing battery life while maintaining a minimal computational effort.

The paper is organized as follows: the models of the components of the considered setup are

introduced in Section II. In Section III, the proposed optimal control strategy is derived. Numerical

simulations are provided in Section IV, while conclusions are drawn in Section V.

II. SYSTEM MODELING

In this section, the models used to represent the full energy conversion chain are presented.

A. Photovoltaic Source

The electrical equivalent model of a PV source that will be used throughout this work is the widely

adopted single-diode model [10]. The electrical behavior is completely regulated by the voltage-current

relationship given by (see Fig. 1)

ipv = Iirr − Io

[

e
vpv+Rsipv

NsnVT − 1

]

−
vpv +Rsipv

Rsh

, (1)

where VT denotes the thermal voltage, Ns is the number of series connected PV cells, Iirr is the

photocurrent, Io is the diode reverse saturation current, n is the diode ideality factor, Rs is the series

resistance, and Rsh is the shunt resistance.

The previous parameters depend on irradiance G and/or temperature of the cell Tc [10]. Equation

(1) can be solved through iterative methods or via the Lambert-W function to derive the PV voltage

vpv for a known PV current ipv or vice versa [11], and also to determine, given G and Tc, the

maximum power operation point (MPP) of the PV source

P
MPP

= max
(vpv ,ipv) in (1)

Ppv,

with Ppv = vpvipv. Another well-known feature captured by the model in (1) is that a given

reference power Ppv < P
MPP

can be tracked at two different operating points (v−pv[Ppv], i
−
pv [Ppv]) and

(v+pv[Ppv], i
+
pv[Ppv]), see Fig. 2, which can be computed numerically. In the framework considered
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Fig. 1. Single diode model for a silicon photovoltaic device.
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Fig. 2. Voltage-power characteristics of a solar cell. The blue curve denotes the operating points (v−pv[Ppv], i
−

pv[Ppv ]),
while the red one represents (v+pv [Ppv], i

+
pv [Ppv]).

in this paper, it is convenient to operate the PV panel at (v+pv[Ppv], i
+
pv[Ppv]). In that region, the PV

voltage vpv is always greater or equal to the MPP voltage v
MPP

and close to the open circuit voltage

vocpv, see [11].

B. Battery

The battery model employed in this paper consists of a nonlinear voltage source with series

resistance and two RC cells that account for rapid transient phenomena such as charge diffusion

processes [12]. This model (see Fig. 3) is used to represent a large variety of cells of different

technologies [13]. The state of charge (SOC) S, which represents a continuous state variable of the

battery model, belongs to the closed interval [0, 1].

The full state equation model is expressed as

Ṡ = 1
QN

ib , v̇Ci
= 1

Ci

[

ib −
vCi

Ri

]

, i = 1, 2 (2)

where QN is the nominal capacity of the battery.

In lithium-ion batteries, the open circuit voltage voc is a nonlinear function of S. In this work, we
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Fig. 3. Dynamic model of the battery.

consider the model developed in [14], given by

voc(S) = a1e
b1·S − a2e

b2·S + vcut, (3)

where parameters a1, a2, b1, b2 depend on battery quality and aging, while vcut is a constant termed

cut-off voltage. In Fig. 4, the plot of voc vs. S is reported for an ESS system consisting of the parallel

of 2 series of 9 batteries with the parameters reported in [14], for different battery aging.

Remark 1 Rechargeable batteries are in general not meant to be fully discharged, since a full

discharge can permanently damage them, and operation below vcut must not be allowed to avoid

overdischarging [14]. This condition requires enforcing a lower bound vmin
oc ≥ vcut on voc, corre-

sponding via (3) to a lower bound Smin ≥ Scut = log(a1/a2)/(b2 − b1) on S. An upper bound

vmax
oc can be similarly imposed. Taking vmax

oc = voc(1), corresponding to a fully charged battery, and

vmin
oc = vcut, i.e., the largest interval [vmin

oc , vmax
oc ], the ratio vmin

oc /vmax
oc for common devices varies in

the range [0.77, 0.79], corresponding to Smin varying in [0.17, 0.32], over [0, 7] years of battery age

[14], [15] (see Fig. 4). Narrower limits [vmin
oc , vmax

oc ] are used to improve battery life. Such limitations

are typically enforced via the device circuitry.

C. DC-DC Converters

All DC-DC converters are switched circuits that require time-domain modelling with time steps

well below the time constants involved in the charging process of the battery. For this reason, it is

common to consider the DC-DC converters at steady-state [16], [17]. In this case, the converter can

be seen as a DC transformer, for which it is possible to define a voltage gain Mv and a current gain

Mi such that

Mv = vo/vi , Mi = io/ii. (4)
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Fig. 4. Battery open circuit voltage voc vs. state of charge S for lithium-ion batteries of different age. Parameters vcut, vmax
oc

and Scut are reported for a new battery and a 7-year-old battery.
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Fig. 5. Double conversion stage model.

For the sake of simplicity, we neglect any loss associated to either parasitic components or switching,

and so MvMi = 1.

D. Double conversion stage battery charger

In this paper, we consider a double conversion stage composed of two first order (buck, boost)

converters in cascade with a DC bus consisting of a suitably dimensioned super-capacitor. This

configuration is in general referred to as split-π [18], [19], [4]. The load is modeled through an ideal

current generator connected to the output terminals of the boost converter. Since the dynamics of the

charging process is much slower than the charge diffusion on the battery, capacitors C1 and C2 in

Fig. 3 can be neglected. Thus, the schematic representation of the overall system can be illustrated

as in Fig. 5, where R = R1 +R2 +Rb is the overall resistance of the battery and il denotes the load

current. Let us denote by M1 < 1 and M2 > 1 the voltage gains of the buck and boost converters,
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and by Ppv and Pl the PV generation and load power, respectively. Then, according to (2) and (4)

the overall system can be modeled as

Ṡ(t) = 1
QN

ib(t) (5a)

v̇bus(t) =
1
C

[

1
M1(t)

ipv(t)−M2(t)iout(t)
]

, (5b)

where

vbus(t) = M1(t)vpv(t) (6)

ib(t) =
1
R
(M2(t)vbus(t)− voc(S(t))) (7)

iout(t) = ib(t) +
Pl(t)

M2(t)vbus(t).
(8)

Notice that (5b) represents the voltage dynamics of the SC with equivalent capacity C . In the above

nonlinear model, the converter gains M1(t) and M2(t) constitute the command inputs to the system.

III. OPTIMAL CONTROL DESIGN

In this section, an optimal control strategy is derived for the considered solar charger model in

order to schedule the charging process over a given time horizon (e.g., one day) under a variable load,

with the aim of optimizing the battery charging cycles while satisfying generation, load, and device

operational constraints. The proposed approach is based on suitable manipulations of the models in

Section II and of the corresponding constraints, so that the underlying optimization problem boils

down to a low-complexity MILP, which can be efficiently solved to the global optimum.

Since the PV generator power is given by Ppv(t) = vpv(t)ipv(t), by substituting (6)-(8) into (5b), the

system state equations can be rewritten as

Ṡ(t) = 1
QN

ib(t) (9a)

v̇bus(t) =
Ppv(t)−ib(t)(Rib(t)+voc(S(t)))−Pl(t)

Cvbus(t)
, (9b)

and moreover

M1(t) =
vbus(t)
vpv(t)

(10a)

M2(t) =
Rib(t)+voc(S(t))

vbus(t)
. (10b)

Using the SC bus stored energy

Ebus(t) =
1
2Cv2bus(t) (11)
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as a state variable in (9b) in place of vbus(t), it is easily seen that the system dynamics can be further

expressed as that of two integrators, i.e.,

Ṡ(t) = 1
QN

u1(t) (12a)

Ėbus(t) = u2(t)− Pl(t), (12b)

where the auxiliary control inputs u1(t), u2(t) are given by

u1(t) = ib(t) (13a)

u2(t) = Ppv(t)−Ru21(t)− voc(S(t))u1(t). (13b)

Clearly, M1(t) and M2(t) can be recovered from u1(t) and u2(t) by computing Ppv(t) from (13b),

and in turn vpv(t) = vpv[Ppv(t)] numerically as pointed out in Section II-A, and finally using (11) in

(10).

Discretizing (12) via the Zero-Order-Hold (ZOH) equivalent method with sampling time τs, and

denoting by the subscript k the sampling of a variable (·)(t) at the k-th time step, i.e., (·)k = (·)(kτs),

k = 0, 1, . . . , one gets

Sk+1 = Sk +
τs
QN

u1,k (14a)

Ebus,k+1 = Ebus,k + τsu2,k − τsPl,k. (14b)

The sought optimal control problem is formulated over a discrete time horizon k ∈ T , T = 0, 1, . . . , T .

In such formulation, it is assumed that Pl,k and P
MPP ,k represent forecasts of the load and peak PV

power, respectively, where the latter is in turn computed on the basis of a weather forecast (Gk, Tc,k)

as outlined in Section II-A. Such forecasts are assumed to be available at the beginning of the control

horizon. The following constraints are enforced on the control system variables in order to account

for technological and performance limitations of the models.

• PV power. PV generation, which in turn determines the operating point of the PV device at each

time step as outlined above, must be kept between 0 and the maximum available power forecast,

i.e.,

0 ≤ Ppv,k ≤ P
MPP ,k. (15)

• Battery current and SOC. Charge/discharge current ib must satisfy suitable technological bounds for

proper device operation that is,

imin
b ≤ u1,k ≤ imax

b , (16)
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where imin
b < 0 and imax

b > 0. In general, the battery discharge current must be kept considerably

lower than the short circuit current voc(S)/R, and therefore it can be assumed without loss of

generality that

|imin
b | ≤ vmin

oc

2R . (17)

Taking into account the considerations in Remark 1, a constraint of the following form can be used:

0 < Smin ≤ Sk ≤ Smax ≤ 1. (18)

• SC voltage. Due to technological aspects, the operating voltage limits of SCs need to be bounded in

a specific range. Such bounds can be expressed as vbus,k ∈ [vmin
bus , vmax

bus ] which in turn are equivalent

to the corresponding bounds on the stored energy, i.e.,

Emin
bus ≤ Ebus,k ≤ Emax

bus , (19)

where E
[min|max]
bus

= 1
2Cv

[min|max]
bus

2
.

• DC-DC voltage gains. As stated in Section II, the first conversion stage is characterized by M1 < 1.

Since the PV panel is operated at (v+pv[Ppv], i
+
pv[Ppv]), it holds that vpv(t) ≥ v

MPP
(see Fig. 2)

and therefore M1 < 1 is guaranteed if vmax
bus < v

MPP
, where the MPP is evaluated for maximal

irradiance/temperature conditions. As for the second stage, M2 > 1 is ensured if vmin
oc −R|imin

b | >

vmax
bus . The above two constraints can be satisfied by a suitable design of the electrical components.

It turns out that, while constraints (16), (18), (19) are linear in the state and input variables of

(14), constraints (15) are not, due to the dependence of Ppv,k on u1,k and voc(Sk) (see (13b)). Such

constraints can be tackled by devising suitable piecewise affine bounds to the involved quantities as

follows. Let us define Πk = Ru21,k + voc(Sk)u1,k. By (13b), (15) reads

−Πk ≤ u2,k ≤ P
MPP ,k −Πk. (20)

By the considerations in Remark 1, Πk can be bounded above and below for imin
b ≤ u1,k ≤ imax

b by

Π
′
k ,











Ru21,k + vmin
oc u1,k, imin

b ≤ u1,k ≤ 0

Ru21,k + vmax
oc u1,k, 0 ≤ u1,k ≤ imax

b

(21)

and

Π′
k ,











Ru21,k + vmax
oc u1,k, imin

b ≤ u1,k ≤ 0

Ru21,k + vmin
oc u1,k, 0 ≤ u1,k ≤ imax

b ,

(22)
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i
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bi

min
b

Π
′

k

Π1,k

Π−1,k u1,k
Π1,k

Π2,k

Π−2,k

Π−1,k

Π
′

k

Fig. 6. Piecewise affine lower (blue) and upper (red) bounds to Πk.

respectively, and hence, at the price of a slight amount of conservatism, (20) holds if

−Π′
k ≤ u2,k ≤ P

MPP ,k −Π
′
k. (23)

Clearly, the wider the interval [vmin
oc , vmax

oc ], the more (23) is conservative with respect to (20). Note

that the right constraint in (23) is convex, being Π
′
k a convex function of u1,k, while the left one

is not. In order to devise an optimization problem enjoying properties that allow its solution to the

global optimum, a piecewise affine lower bound Πk to Π′
k can be exploited. In this respect, many

choices are indeed possible and Π′
k can be approximated with arbitrary precision at the price of

increasing the computational complexity of the resulting mixed-integer program. However, for the

sake of simplicity, we opt for the following lower bound which holds if (17) is in place (see Fig. 6):

Πk ,


































Π
−2,k , (2Rimin

b + vmax
oc )u1,k −Rimin

b

2
, imin

b ≤ u1,k ≤
imin
b

2

Π
−1,k , vmax

oc u1,k,
imin
b

2
≤ u1,k ≤ 0

Π
1,k , vmin

oc u1,k, 0 ≤ u1,k ≤
imax
b

2

Π
2,k , (2Rimax

b + vmin
oc )u1,k −Rimax

b
2,

imax
b

2
≤ u1,k ≤ imax

b

(24)

Concerning the right constraint in (23), despite its convexity, we choose to exploit a piecewise linear

upper bound Πk to Π′
k. This is done to avoid having to deal with a quadratically constrained mixed-

integer problem, which is much harder to solve than a MILP. Such bound can be computed (see

Fig. 6) as

Πk ,











Π−1,k , (Rimin
b + vmin

oc )u1,k, imin
b ≤ u1,k ≤ 0

Π1,k , (Rimax
b + vmax

oc )u1,k, 0 ≤ u1,k ≤ imax
b .

Using Πk and Πk as upper and lower bounds to Πk, it turns out that (20), and in turn (15), holds
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if there exist binary variables z−2,k, z−1,k, z1,k, z2,k such that

z
−2,k, z−1,k, z1,k, z2,k ∈ {0, 1} (25a)

z
−2,k + z

−1,k + z1,k + z2,k = 1 (25b)

Wi,k = W (1− zi,k), i = −2,−1, 1, 2 (25c)

u1,k ≤
imin
b

2
+W

−2,k (25d)

−W
−1,k +

imin
b

2
≤ u1,k ≤ W

−1,k (25e)

−W1,k ≤ u1,k ≤
imax
b

2
+W1,k (25f)

−W2,k +
imax
b

2
≤ u1,k (25g)

−W
−2,k −Π

−2,k ≤ u2,k ≤ P
MPP ,k −Π

−1,k +W
−2,k (25h)

−W
−1,k −Π

−1,k ≤ u2,k ≤ P
MPP ,k −Π

−1,k +W
−1,k (25i)

−W1,k −Π
1,k ≤ u2,k ≤ P

MPP ,k −Π1,k +W1,k (25j)

−W2,k −Π
2,k ≤ u2,k ≤ P

MPP ,k −Π1,k +W2,k. (25k)

In (25), a standard big-M argument is used to represent the piecewise linear bounds Πk and Πk.

The constant W must be chosen large enough that when Wi,k is nonzero, the constraints involving

it become trivial (note that W can be estimated from the bounds on the quantities involved in such

constraints). The binary variables z−2,k, z−1,k, z1,k, z2,k indicate which of the intervals in (24) u1,k

belongs to as per (25d)-(25g), so that the corresponding constraint in (25h)-(25k) is enforced. Note

that (25a)-(25c) allow one and only one zi,k, i ∈ {−2,−1, 1, 2} to be 1 and the corresponding Wi,k

to be zero. Concerning the objective function to be optimized, the minimization of battery strain due

to charging/discharging is well captured by the 1−norm of the current time series ib,k = u1,k, i.e.,

JT =

T−1
∑

k=0

|u1,k| (26)

(see [8]). In light of the the above points, the optimal control problem can be formulated as follows:
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Problem 1:

Θ∗ = argmin
Θ

T−1
∑

k=0

hk

subjected to:

(14), (16), (18), (19), (25), k = 0, . . . , T − 1

− hk ≤ u1,k ≤ hk, k = 0, . . . , T − 1 (27a)

(S0, Ebus,0) =
(

S0, E0
bus

)

(27b)

(ST , Ebus,T ) =
(

ST , ET
bus

)

, (27c)

where the optimization variables are represented by the set of sequences

Θ = {(u1,k, u2,k, hk), k = 0, . . . T − 1,

(z−2,k, z−1,k, z1,k, z2,k), k = 0, . . . T − 1,

(Sk, Ebus,k), k = 0, . . . T} .

Notice that the slack variables hk introduced in (27a) allow one to formulate the objective function JT

in a linear fashion, while the two constraints in (27b)-(27c) are used to enforce boundary conditions

on the two state variables, for given values of S0, E0
bus, S

T , ET
bus. Problem 1 is a MILP involving 4T

binary variables. However, its computational complexity is heavily mitigated by the complementarity

constraint z−2,k + z−1,k + z1,k + z2,k = 1, which is exploited very efficiently by modern solvers even

for quite large instances.

The command signals M1(t) and M2(t) corresponding to the optimal solution can be constructed

from the ZOH-maintained versions of the optimal sequences in Θ∗ via (13), (11), (10) as described

at the beginning of this section.

IV. NUMERICAL RESULTS

In this section, a simulation study is conducted to evaluate the performance and computational

feasibility of the proposed method. The considered setup consists of an islanded system modeled as

in Section II. The ESS is composed by the parallel of 2 series of 9 new LiFePO4 cells with the

characteristics taken from [14], for a maximum open circuit voltage of 26V and a total stored charge

of 6Ah. Forecasts of solar irradiance G(t) and temperature Tc(t) are taken from the publicly available

data set in [9] and refer to a summer day in Australia. The sampling time is chosen as τs = 15 min. By

using these data, the PV peak power generation forecast time series P
MPP ,k is computed numerically

by exploiting (1), assuming a 65W PV module whose parameters are extracted according to the

methods in [20]. The SC bus is composed by the parallel of 4 series of 4 super-capacitors rated
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4000F/3.2V , thus resulting in a single equivalent SC with 4000F/12.8V . A feasible load profile

forecast Pl,k is considered.

In order avoid thermal stress on the components, the following constraints are enforced on the battery

charging/discharging current and on the SC bus:

imin
b = −3A, imax

b = 3A, vmin
bus = 7V, vmax

bus = 12V.

Bounds vmin
oc , vmax

oc are chosen as [vmin
oc , vmax

oc ] = [vcut, voc(1)], yielding the most conservative bound

(23) as per Remark 1, with Smin, Smax set accordingly. Boundary conditions on the battery SOC and

SC voltage are set as S0 = ST = 0.5, v0bus = vTbus = 9.8V . This guarantees the same initial SOC at

the beginning of consecutive days. Of course, different choices could be considered on the basis, e.g.,

of generation and load forecasts over time periods spanning multiple days. An instance of Problem 1

was run over a time horizon of one day, thus involving 482 continuous and 384 binary variables.

Solver time averaged over 100 runs turned out to be 0.54 seconds1. The continuous-time model (5)

was simulated using the control inputs computed from the obtained optimal solution. Fig. 7 depicts

the evolution of the most relevant variables. The generated power Ppv,k satisfies Ppv,k ≤ P
MPP ,k

as expected. It is worth noticing that, when required by the load profile, the optimal control action

actually drives Ppv,k extremely close to P
MPP ,k, thus showing a very low level of conservatism of

the piecewise affine constraints (25) with respect to the nonlinear ones (20). From the plot of vbus,

one may notice that the SC is charged/discharged several times and spans the entire allowed range,

as opposite to the battery SOC S that basically exhibits only one partial charging/discharging cycle.

Such a behavior is in line with the objective function of Problem 1 which aims at reducing battery

cycles.

The proposed approach has been compared with the standard charging technique consisting of

MPPT operation combined with constant current charging. The latter has been adapted to deal with

the presence of load, and controller parameters have been tuned by trial-and-error in order to satisfy the

same constraints as the optimal control problem. The proposed approach outperforms this benchmark

in terms of the battery strain JT in (26), reducing it by about 30%.

Finally, it is worth noticing that this problem instance admits a solution also assuming a 7-year-old

battery, by considering the relevant values of the parameters. However, if different constraints are

considered, infeasibility may occur in the latter case mainly due to more stringent requirements on

Smin. For example, the bound S0 = ST can be decreased down to 0.22 for a new battery without

incurring infeasibility, while for a 7-year-old one only values down to 0.37 are tolerated.

1Simulations have been performed using Gurobi [21] on a 3.49 GHz Apple M2 processor. Tolerance for primal and dual

feasibility is 10−6, while the integrality tolerance is 10−5.
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Fig. 7. Evolution of PV panel power output Ppv(t), DC-DC gains M1(t),M2(t), battery state of charge S(t), and SC

voltage vbus(t). In the first plot, Ppv(t) is compared with the peak power P
MPP

(t) corresponding to irradiance G(t) and

temperature Tc(t), and with load power Pl(t). Gray regions in the plot of M1 correspond to time intervals where PV

generation is negligible and PV side converter is switched off.

V. CONCLUSIONS

In this paper, a novel control scheme for optimal operation of electrical storage systems connected

to a PV power source has been introduced, by exploiting an architecture consisting of two DC-DC con-

verters connected through a super-capacitor bus. The proposed framework is aimed at satisfying power

and technological constraints while optimizing battery cycles, and considers realistic circuit models.

By means of suitable model transformations and nonconvex constraint handling using piecewise-affine

bounds, the underlying optimization problem has been formulated as a computationally tractable

MILP. The performance of the proposed method has been evaluated by numerical simulations. Future

work will focus on the adaptation of the proposed control architecture to online feedback MPC, as

well as on a robust formulation accounting for uncertainties affecting the load and generation profiles.
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