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Abstract

In this paper, a two-pursuer one-evader game in the plane is considered.
All the agents have simple motion and the same speed. As opposed to
the game with superior pursuers, capture can occur in finite time only by
defining a nonzero capture radius and for a subset of initial game states.
Such a set is characterized and the full game solution is provided. In
particular, the value function of the game and explicit expressions of the
closed-loop optimal strategies of all the agents are derived. The results
are validated via numerical simulations, comparing the optimal control
actions with alternative strategies for both the evader and the pursuers.

Keywords: Pursuit-evasion games, autonomous agents, cooperative control,
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1 Introduction

Pursuit-evasion problems are dynamic games in which two players, or groups
of players, pursue conflicting objectives. The study of this class of problems
has a long history and its mathematical foundations rely on the theory of
differential games [1–3]. A survey of the different settings considered in the
literature can be found in [4], while a taxonomy of applications in the mobile
robotics field is reported in [5].
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2 A two-pursuer one-evader game with equal speed and finite capture radius

Multi-pursuer games usually involve a team of cooperating agents which
attempt to capture one or more evaders. The literature on the subject can
be classified in terms of the assumptions concerning the motion models and
the environment, see, e.g., [6–10] and references therein. Both decentralized
solutions [11, 12] and centralized ones [13–16] have been proposed for multi-
pursuer one-evader games; the advantages of the latter have been discussed
in [17]. Problems in which the evader is faster (superior) than the pursuers
have also been addressed [18–20]. Notwithstanding this rich production, a
number of pursuit-evasion games have not been solved yet, even in quite simple
settings. For example, a full closed-loop solution of the three-pursuer one-
evader game is still lacking, although optimal open-loop strategies have been
recently proposed [21, 22].

Within the vast research activity on multi-pursuer games, a special atten-
tion has been devoted to games involving two pursuers and one evader. The
original minimum time game, involving agents with simple motion on a plane,
was formulated in [1] under the name “the two cutters and the fugitive ship”,
and a solution based on geometric arguments was provided. In this version of
the game, the two pursuers are faster than the evader and capture occurs when
at least one pursuer reaches exactly the position of the evader. The problem
has recently received renewed attention: optimality of the solution proposed
by Isaacs has been formally proved in [23], while a complete solution of the
game of kind is presented in [24]. In [25], the same game is considered but the
objective of the pursuers is relaxed to achieving a predefined finite distance
from the evader (capture radius). Evading strategies maximizing capture time
have been analyzed in [26], for different behaviors of the pursuers. The case of
a faster evader is treated in [27], where control strategies allowing the evader
to safely cross the line connecting the two pursuers are derived. Several other
scenarios have been addressed in the literature, including different motion
models, environmental constraints or the use of relay strategies. For a fairly
complete review, the interested reader is referred to [26].

In this paper, an alternative version of the two-pursuer one-evader game
is considered. All the agents have simple motion and the same velocity. As
a consequence, capture can be achieved only within a finite capture radius
and for a bounded set of initial conditions (capture set). In this respect, the
problem is substantially different from that involving superior pursuers, whose
solution cannot be adapted to cope with the equal speed game. The same
setting has been considered in [28], where the capture set and the optimal
strategies of the agents are obtained by applying geometric arguments. The
contribution of this paper is to derive a complete game-theoretic solution of
the problem. First, a novel characterization of the game states for which the
pursuers may capture the evader (game of kind) is provided. Then, explicit
expressions of the optimal open-loop strategies of all the agents are derived.
The main result consists in computing the value function of the game, which
provides a solution to the Isaacs equation. This allows one to show that the
above control actions constitute a saddle-point of the game, and hence they
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are also closed-loop optimal strategies. The results are confirmed by numerical
simulations, comparing the derived optimal controls with alternative strategies
for both the evader and the pursuers.

The rest of the paper is organized as follows. The dynamic game is for-
mulated in Section 2. The optimal player strategies are presented in Section
3 and they are validated via numerical tests in Section 4. Some concluding
remarks are provided in Section 5.

2 Problem formulation

Let E(t) = [xe(t) ye(t)]
′ ∈ R2 and Pi(t) = [xi(t) yi(t)]

′ ∈ R2, i = 1, 2, denote
the evader and pursuer locations at time t. The players motion model is

{
Ė(t) = e(t) ,

Ṗi(t) = wi(t) , i = 1, 2,
(1)

where e(t) ∈ R2 and wi(t) ∈ R2, i = 1, 2, are the players velocity vectors. It is
assumed that the pursuers and the evader have the same speed. Without loss
of generality, one can set ∥e(t)∥ = 1 and ∥wi(t)∥ = 1. Thus, system (1) can be
written as 




ẋe(t) = cos θ(t) ,
ẏe(t) = sin θ(t) ,
ẋi(t) = cosψi(t) ,
ẏi(t) = sinψi(t) , i = 1, 2,

(2)

where the heading angles θ(t) and ψi(t) are the evader and pursuer control
inputs, respectively. In the following, the state of the game will be denoted by
ξ(t) = [E′(t) P ′

1(t) P
′
2(t)]

′.
The pursuers aim at capturing the evader: this occurs when the distance

of at least one pursuer from the evader is equal to the radius of capture r > 0.
Hereafter, only initial conditions such that ∥E(0)−Pi(0)∥ > r, for i = 1, 2, will
be considered. The objective of the pursuers is to achieve capture in minimum
time, while the evader tries to delay capture as much as possible. Hence, the
game can be formulated as

min
ψ1,ψ2

max
θ

∫ tf

0

dt (3)

where tf is such that ∥E(tf )− Pi(tf )∥ = r for either i = 1 or i = 2.
In order to solve problem (3), it is useful to introduce a suitable reference

system to describe the initial game state (hereafter, explicit dependence on
time will be omitted unless when necessary). Let the origin be the midpoint
between the position of the two pursuers, P2+P1

2 , and the x-axis be aligned
with the direction P2−P1. In this reference frame, denote the pursuer positions
by P1 = [−d 0]′ and P2 = [d 0]′. Moreover, let E = [x y]′ be the position of
the evader (see Fig. 1). It is easy to check that the relationships with the game
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state ξ are given by

d =

√
(x2 − x1)2 + (y2 − y1)2

2
, (4)

(
x
y

)
=




x2 − x1
2d

y2 − y1
2d

−y2 − y1
2d

x2 − x1
2d






xe −

x1 + x2
2

ye −
y1 + y2

2


 . (5)

Notice that in the new reference system the game is symmetric with respect
to both axes; for this reason, only the case x ≥ 0, y ≥ 0 can be considered. In
the following, we will refer to the initial game state in terms of the quantities
d, x and y. It is stressed that this reference frame is used only to simplify the
mathematical expressions appearing in the main results: the same formulas
in terms of the full system state ξ can be easily recovered by applying the
transformations (4)-(5) at every time t.

E
P1 P2

C x

y

r
︸ ︷︷ ︸

d

Fig. 1 Reference frame defined by (4)-(5) and set C in (7) (gray region). The two circles
represent the initial capture areas of the pursuers.

3 Optimal player strategies

Due to the finite capture radius, the admissible evader positions for which the
game is well defined belong to the set

E = {E : (x± d)2 + y2 > r2}. (6)

We first characterize the set of states for which the game does not admit a
finite-time solution, and hence the evader is able to escape indefinitely.

Theorem 1 Game (3) does not have finite-time solution if E /∈ C, where

C = {(x, y) ∈ E : |x| < d , |y| < r} . (7)



A two-pursuer one-evader game with equal speed and finite capture radius 5

Proof Let y ≥ r and assume the evader chooses the constant input θ(t) = π
2 , for

t ≥ 0. Then, one has E(t) = [x y + t]′. In order to capture the evader at time tf ,
pursuer P2 must reach a distance r from E. The shortest path for P2 to do so is
clearly a straight line towards the evader position at time tf . Since P2(t) = [d 0]′,
this leads to

(d− x)2 + (y + tf )
2 = (tf + r)2 , (8)

which is equivalent to

2(r − y)tf = (d− x)2 + y2 − r2 . (9)

If y ≥ r, equation (9) does not admit a positive solution in tf . Therefore, P2 cannot
capture the evader in finite time. The same argument applies to P1. Therefore, for
y ≥ r, the evader can indefinitely run away from the pursuers by heading orthogonally
to the initial line of the pursuers.
Now, let 0 < y < r and x ≥ d, such that (x − d)2 + y2 > r2. Assume the evader
chooses the constant input θ(t) = tan−1( y

x−d ), for t ≥ 0. Then, one has

E(t) =

[
x+

x− d√
(x− d)2 + y2

t y +
y√

(x− d)2 + y2
t

]′
.

Clearly, P2 can never reach E, that is moving straight in the direction E(0)−P2(0).
Let us check if P1 can a reach a distance r from E, at some time tf . The best way to
do so for P1 is to travel a straight line towards the evader, which gives the relationship(

x+ d+
x− d√

(x− d)2 + y2
tf

)2
+

(
y +

y√
(x− d)2 + y2

tf

)2
= (tf + r)2 , (10)

which, after some manipulations, becomes

2

{
r
√

(x− d)2 + y2 − y2 − x2 + d2
}
tf =

[
(x+ d)2 + y2 − r2

]√
(x− d)2 + y2.

(11)
From (x+ d)2 + y2 > r2, one has that the right hand side in (11) is positive. On the
other hand, from (x− d)2 + y2 > r2 and x ≥ d one gets

r
√

(x− d)2 + y2 − y2 − x2 + d2 < (x− d)2 − x2 + d2 = 2d(d− x) ≤ 0 .

Therefore, equation (11) does not admit a positive solution in tf and capture cannot
occur. □

It is worth observing that the set C in (7) vanishes when the capture
radius r is equal to zero. In fact, if exact capture is required, the evader can
always delay it indefinitely by just heading orthogonally to the line connecting
the pursuers, as it is evident from (9). Therefore, a finite capture radius is
necessary for the pursuers to capture the evader, in the equal speed game. In
the subsequent development, it will be shown that game (3) indeed admits a
finite-time solution whenever E ∈ C, and hence C turns out to be the so-called
capture set of the game, providing a solution to the game of kind.

Let us denote by ang(vx, vy) the four-quadrant inverse tangent of the vector
v = [vx vy]

′, i.e., ang(vx, vy) is the angle of vector v with the x-axis, in the
range [−π, π]. The next result gives an explicit expression of the open-loop
optimal strategies of the agents when E ∈ C, and the corresponding capture
time.
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Theorem 2 Let E ∈ C. Assume the evader control action is given by

θ(t) = θ∗ = ang(−x, y∗ef − y) , (12)

while the pursuer inputs are

ψ1(t) = ψ∗
1 = ang(d, y∗ef ) , ψ2(t) = ψ∗

2 = ang(−d, y∗ef ) (13)

where

y∗ef =


x2 + y2 + r2 − d2 + 2rt∗f

2y
, if y ̸= 0√

(t∗f )
2 − x2 , if y = 0.

(14)

Then, the game terminates at time

t∗f =
κr + |y|

√
κ2 − 4x2(r2 − y2)

2(r2 − y2)
, (15)

where κ = d2 − x2 + y2 − r2. Moreover, every other pursuer or evader open-loop
control action leads to a capture time which is larger than t∗f .

Proof According to [2, Theorem 2], one has to show that the evader and pursuer
controls (12) and (13), respectively maximize and minimize the Hamiltonian function
of the problem, which is given by

H(ξ, λ, θ, ψ) = λex cos θ + λey sin θ + λ1x cosψ1

+λ1y sinψ1 + λ2x cosψ2 + λ2y sinψ2 + 1
(16)

where λ = [λex λey λ1x λ1y λ2x λ2y]
′ is the costate vector. Maximization of (16)

with respect to θ leads to

cos θ∗ =
λex√

λ2ex + λ2ey

, sin θ∗ =
λey√

λ2ex + λ2ey

(17)

while minimization with respect to ψ1 and ψ2 gives

cosψ∗
i = − λix√

λ2ix + λ2iy

, sinψ∗
i = −

λiy√
λ2ix + λ2iy

i = 1, 2. (18)

Since the Hamiltonian does not depend explicitly on the state ξ, one has

λ̇′(t) = − ∂

∂ξ
H(ξ, λ, θ, ψ) = 0

which means that the costate variables are all constant. Then, from (17)-(18), one
has that also the optimal control actions θ(t) and ψi(t) are constant, i.e., the optimal
paths traveled by the pursuers and the evader are all straight lines. One consequence
of this fact is that, in order to travel the shortest path, the pursuers must necessarily
head towards the final position of the evader. Moreover, it is easy to verify that the
pursuers must capture the evader simultaneously. Indeed, assume by contradiction
that only one pursuer (say P1) captures the evader at time t̄. Since the pursuers travel
the same distance, this must necessarily occur in the half-plane closer to P1. But in
this case, the evader may choose an alternative target point, in the same half-plane,
allowing it to avoid capture at time t̄ (see Fig. 2).
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Fig. 2 If pursuer P1 captures the evader in the half-plane closer to P1(0), then the evader

may travel the same distance towards Ê (dotted path) without being captured at time t̄.
Therefore, the pursuers must capture the evader simultaneously, which necessarily occurs
when the evader is on the perpendicular bisector of the segment connecting P1(0) and P2(0).

From the above observations, it can be concluded that the distance between the
initial position of each pursuer and the point where capture occurs must be tf+r, i.e.

∥Pi(0)− E(tf )∥ = tf + r , i = 1, 2. (19)

Denoting the final position of the evader by E(tf ) = [xef yef ]
′, equations (19) can

be rewritten as √
(xef + d)2 + y2ef = tf + r, (20)√
(xef − d)2 + y2ef = tf + r, (21)

from which one obtains xef = 0, i.e., capture occurs when the evader is on the
perpendicular bisector of the segment connecting P1(0) and P2(0). Since also the
evader moves along a straight path, one has ∥E(tf )− E(0)∥ = tf , i.e.,√

(xef − x)2 + (yef − y)2 = tf . (22)

By substituting xef = 0 in (20)-(22), one has

d2 + y2ef = (tf + r)2 (23)

x2 + (yef − y)2 = t2f , (24)

from which one gets, for y ̸= 0,

yef =
x2 + y2 + r2 − d2 + 2rtf

2y
. (25)

Substituting (25) into (23), after some straightforward manipulations one has

(r2 − y2)t2f − κrtf +
κ2 + 4x2y2

4
= 0 , (26)
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where κ = d2−x2+y2− r2. By exploiting the fact that the admissible initial evader
positions satisfy (x− d)2 + y2 > r2, and the assumptions |x| < d and |y| < r, it can
be shown that κ > 0 and the equation (26) always admits two real positive solutions.
Clearly, the optimal capture time t∗f corresponds to the largest one, which is equal
to (15).
In the case y = 0, from (24) one obtains

yef =
√
t2f − x2 (27)

and then from (23), t∗f = d2−x2−r2
2r , which corresponds to (15) with y = 0. Sub-

stituting the obtained expressions of t∗f into (25) and (27), one gets (14). Since the

optimal strategy for all players is to point towards E(tf ) = [0 yef ]
′, the expressions

of the control actions (12)-(13) follow directly. □

In the case y = 0, the solution provided by Theorem 2 is not unique: indeed,
the players may choose the angles opposite to those in (12)-(13), and obtain
the same capture time t∗f (in such a case the game evolves in the halfplane
y < 0, instead of y > 0). This situation is known as a game dilemma and y = 0
is referred to as a dispersal surface [1, Chapter 6]. Nevertheless, thanks to the
finite capture radius, as soon as the players make either of the two equivalent
choices, the symmetry of the game is broken and one gets y ̸= 0, for which
the solution provided by Theorem 2 is unique.

It can be observed that the control actions (12)-(13) in Theorem 2 are the
same as those obtained in [28] by applying geometric arguments leading to
the characterization of the evader safe region. It is also worth stressing that
Theorem 2 guarantees that if the agents adopt the control actions (12)-(13)
from the initial time onwards, capture occurs within time t∗f given by (15).
This provides an open-loop representation of the optimal control strategies (see
the thorough discussions in [2] and [21]). Now, the objective is to show that
the same control actions, when computed as a function of the current state
ξ(t)1, are also optimal closed-loop strategies and constitute a saddle point for
game (3). To this aim, one has to find the value function V (ξ) of the game
and show that the control actions are the solutions of the Isaacs equation (see
[2, Theorem 1])

min
ψ1,ψ2

max
θ

∂V (ξ)

∂ξ
f(ξ, θ, ψ) + 1 = 0 , (28)

where f(ξ, θ, ψ) is the vector field of system (2).
Let us consider the candidate value function

V (ξ) = α(ξ)t1(ξ) + (1− α(ξ))t2(ξ) (29)

where

ti(ξ) =
(xi − xe)

2 + (yi − ye)
2 − r2

2δi(ξ)
, i = 1, 2 (30)

1Notice that this can be done by considering d(t), x(t) and y(t) in (4)-(5) as functions of ξ(t),
for all t ≥ 0.
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and

α(ξ) =
η2(ξ)δ1(ξ)

η2(ξ)δ1(ξ)− η1(ξ)δ2(ξ)
(31)

with

ηi(ξ) = (xi − xe) sin θ
∗ − (yi − ye) cos θ

∗ (32)

δi(ξ) = r + (xi − xe) cos θ
∗ + (yi − ye) sin θ

∗ (33)

for i = 1, 2. In (29)-(33), the optimal evader control action θ∗ is given by (12),
and is expressed in terms of ξ by using the substitutions (4)-(5). The following
result provides the complete solution of game (3).

Theorem 3 Let θ∗(ξ), ψ∗(ξ) be closed-loop control strategies, defined respectively
by (12) and (13), with the substitutions (4)-(5). Then, V (ξ) in (29) is the value
function of game (3) and the control strategies θ∗(ξ), ψ∗(ξ) provide a saddle point
for the game.

Proof According to [2, Theorem 1], we have to show that: (i) V (ξ) is continuously
differentiable in the capture set C; (ii) V (ξ) satisfies the Isaacs equation (28).
(i) From the definition of V (ξ), it is sufficient to prove that its denominator does
not vanish in C. To this aim, we show that δi(ξ) > 0, i = 1, 2, and η2(ξ)δ1(ξ) −
η1(ξ)δ2(ξ) > 0 for all ξ such that |x| < d and |y| < r. First, notice that δi(ξ) and
ηi(ξ) are invariant with respect to rotations and translations of the reference frame.
Hence, in the reference system defined by (4)-(5), one has xi − xe = ∓d − x and
yi − ye = −y. Hence,

δi = r + (∓d− x) cos θ∗ − y sin θ∗.

From (12) and (24), one can write

cos θ∗ =
−x√

x2 + (y∗ef − y)2
=

−x
t∗f
, sin θ∗ =

y∗ef − y√
x2 + (y∗ef − y)2

=
y∗ef − y

t∗f
.

which leads to

δi = r +
∓dx+ x2 − yy∗ef + y2

t∗f
.

By substituting the expression of y∗ef in (14) one gets

δi = r +
∓dx+ 1

2 (x
2 + y2 + d2 − r2)− rt∗f

t∗f

=
(x∓ d)2 + y2 − r2

2t∗f
> 0

where the last inequality comes from (6).
By using a similar procedure, after some straightforward manipulations one gets

η2δ1 − η1δ2 = r {(x2 − x1) sin θ
∗ − (y2 − y1) cos θ

∗}
+(x2 − xe)(y1 − ye)− (x1 − xe)(y2 − ye)
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which, in the reference system defined by (4)-(5), becomes

η2δ1 − η1δ2 = 2d

{
r(y∗ef − y)

t∗f
− y

}
.

For y = 0, the expression is clearly positive. For y ̸= 0, by using once again y∗ef in
(14), one obtains

η2δ1 − η1δ2 =
2d

t∗f

{
r
x2 − y2 + r2 − d2 + 2rt∗f

2y
− yt∗f

}

=
2d

t∗f

{
2r2t∗f − rκ

2y
− yt∗f

}
=

d

yt∗f

{
2(r2 − y2)t∗f − rκ

}
.

Finally, substituting the expression of t∗f in (15), one has

η2δ1 − η1δ2 =
d

t∗f
sgn(y)

√
κ2 − 4x2(r2 − y2) > 0.

(ii) Now let us prove that V (ξ) satisfies (28). From the proof of Theorem 2, the
values θ∗ and ψ∗ optimizing (28) are given by (12)-(13), and therefore it is sufficient
to check that

∂V (ξ)

∂ξ
f(ξ, θ∗, ψ∗) + 1 = 0 . (34)

Let us first show that ti(ξ) in (30) represents the time required by pursuer i to
capture the evader, from the current game state ξ, if the agents adopt the optimal
actions θ∗ and ψ∗. By using the same arguments as in the proof of Theorem 2, if
pursuer i captures the evader at time ti, one must have

xi + (ti + r) cosψ∗
i = xe + ti cos θ

∗ (35)

yi + (ti + r) sinψ∗
i = ye + ti sin θ

∗ (36)

for i = 1, 2. By eliminating ψ∗
i and solving for ti, from (35)-(36) one gets (30). Since

the pursuers capture the evader simultaneously, one has t1(ξ) = t2(ξ), which leads to[
(x1 − xe)

2 + (y1 − ye)
2 − r2

]
δ2(ξ) =

[
(x2 − xe)

2 + (y2 − ye)
2 − r2

]
δ1(ξ). (37)

Hereafter, in order to streamline the treatment, we adopt the following shorthand
notations: ∆xi = xi − xe, ∆yi = yi − xe, r

2
i = ∆2

xi +∆2
yi, c

∗ = cos θ∗, s∗ = sin θ∗.
Let us differentiate V (ξ) with respect to each state variable. From (29) one has

∂V (ξ)

∂ξi
= α(ξ)

∂t1(ξ)

∂ξi
+ (1− α(ξ))

∂t2(ξ)

∂ξi
+
∂V (ξ)

∂θ∗
∂θ∗(ξ)
∂ξi

(38)

where it has been taken into account that t1(ξ) = t2(ξ) and that V (ξ) depends on

ξ also through the evader control action θ∗. Let us show that
∂V (ξ)
∂θ∗ = 0. Exploiting
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once again t1(ξ) = t2(ξ), one has

∂V (ξ)

∂θ∗
= α(ξ)

∂t1(ξ)

∂θ∗
+ (1− α(ξ))

∂t2(ξ)

∂θ∗

= α(ξ)(r21 − r2)
∆x1s

∗ −∆y1c
∗

2δ21(ξ)
+ (1− α(ξ))(r22 − r2)

∆x2s
∗ −∆y2c

∗

2δ22(ξ)

=
η2(ξ)δ1(ξ)

η2(ξ)δ1(ξ)− η1(ξ)δ2(ξ)

η1(ξ)

2δ21(ξ)
(r21 − r2)+

− η1(ξ)δ2(ξ)

η2(ξ)δ1(ξ)− η1(ξ)δ2(ξ)

η2(ξ)

2δ22(ξ)
(r22 − r2)

=
η1(ξ)η2(ξ)

2δ1(ξ)δ2(ξ)[η2(ξ)δ1(ξ)− η1(ξ)δ2(ξ)]
[(r21 − r2)δ2(ξ)− (r22 − r2)δ1(ξ)]

= 0

where the last equality follows from (37).
By differentiating t1(ξ) in (30) with respect to each state variable one obtains

∂t1(ξ)

∂xe
= −∂t1(ξ)

∂x1
=

(r21 − r2)c∗ − 2∆x1δ1(ξ)

2δ21(ξ)
, (39)

∂t1(ξ)

∂ye
= −∂t1(ξ)

∂y1
=

(r21 − r2)s∗ − 2∆y1δ1(ξ)

2δ21(ξ)
, (40)

∂t1(ξ)

∂x2
=
∂t1(ξ)

∂y2
= 0 . (41)

On the other hand, by exploiting (35)-(36), the vector field f(ξ, θ∗, ψ∗) can be written
as

f1(ξ, θ
∗, ψ∗) = c∗ f2(ξ, θ

∗, ψ∗) = s∗ , (42)

f3(ξ, θ
∗, ψ∗) =

t1(ξ)c
∗ −∆x1

t1(ξ) + r
f4(ξ, θ

∗, ψ∗) =
t1(ξ)s

∗ −∆y1
t1(ξ) + r

, (43)

f5(ξ, θ
∗, ψ∗) =

t2(ξ)c
∗ −∆x2

t2(ξ) + r
f6(ξ, θ

∗, ψ∗) =
t2(ξ)s

∗ −∆y2
t2(ξ) + r

. (44)

By using (39)-(41) and (42)-(44), one gets

6∑
i=1

∂t1(ξ)

∂ξi
fi(ξ, θ

∗, ψ∗) =

=
(r21 − r2)c∗ − 2∆x1δ1(ξ)

2δ21(ξ)

(
c∗ − t1(ξ)c

∗ −∆x1
t1(ξ) + r

)
+

(r21 − r2)s∗ − 2∆y1δ1(ξ)

2δ21(ξ)

(
s∗ −

t1(ξ)s
∗ −∆y1

t1(ξ) + r

)
=

(r21 − r2)δ1(ξ)− 2rδ1(ξ)(∆x1c
∗ +∆y1s

∗)− 2r21δ1(ξ)

2δ21(ξ)(t1(ξ) + r)

= −
r21 + r2 + 2r(∆x1c

∗ +∆y1s
∗)

2δ1(ξ)(t1(ξ) + r)

= −
r21 + r2 + 2r(∆x1c

∗ +∆y1s
∗)

r21 − r2 + 2r
[
r +∆x1c∗ +∆y1s∗

]
= −1

(45)
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in which the definitions of t1(ξ) in (30) and δ1(ξ) in (33) have been exploited. By
following the same reasoning, one can show also that

6∑
i=1

∂t2(ξ)

∂ξi
fi(ξ, θ

∗, ψ∗) = −1 . (46)

Finally, substituting (38) into (34) and using (45)-(46), one gets

∂V (ξ)

∂ξ
f(ξ, θ∗, ψ∗) + 1 =

= α(ξ)

6∑
i=1

∂t1(ξ)

∂ξi
fi(ξ, θ

∗, ψ∗) + (1− α(ξ))

6∑
i=1

∂t2(ξ)

∂ξi
fi(ξ, θ

∗, ψ∗) + 1

= α(ξ)(−1) + (1− α(ξ))(−1) + 1 = 0

(47)

which concludes the proof. □

Remark 1 The proof of Theorem 3 is based on a reasoning similar to that adopted
in [23, Theorem 1]. In particular, the expression of the value function (29)-(33) is
inspired by that of the value function in [23]. However, the results are substantially
different. Indeed, the value function in [23] concerns a game in which the pursuers
are faster than the evader and its expression diverges as the velocity of the pursuers
approaches that of the evader. Moreover, the game with superior pursuers always
terminates with the evader capture, while the equal-speed game admits a finite-time
solution only for the initial conditions defined by the capture set C in Theorem 1.
Finally, it is worth observing that Theorems 2 and 3 provide explicit expressions
of the closed-loop control strategies and of the time-to-capture (i.e., of the optimal
game solutions), while the corresponding solution of the game with superior pursuers
given in [23] requires to compute the intersections of two Apollonius circles.

4 Numerical simulations

In this section, results of numerical simulations are reported to compare the
optimal strategies with some non-optimal ones. Games have been simulated
in closed loop through a discrete-time implementation with a sampling time
equal to 0.001. For all the examples, the capture radius is set to r = 1. The
initial player positions at t = 0 are P1(0) = [−5 0]′, P2(0) = [5 0]′ and
E(0) = [3 0.4]′. It is easy to see that E(0) ∈ C in (7), and then the evader
can be captured in finite time. In the figures illustrating the games, squares
represent the agent initial positions and dots the final ones. The capture circle
at the final time tf is dashed.

Fig. 3 shows the game in which all the agents play the optimal strategy, i.e.,
they all point to (0, y∗ef ). Capture occurs at tf = t∗f = 12.388 and the evader
is captured simultaneously by both pursuers on the perpendicular bisector of
the segment connecting P1(0) and P2(0), as expected.

In the example shown in Fig. 4, pursuers move in an optimal way according
to (13), while the evader keeps moving upward. In this case, the evader is
captured by P2 at tf = 2.965, that is at a time much less than t∗f . Notice
that now the pursuer trajectories are not straight lines anymore, due to the
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Fig. 3 Player trajectories when both the pursuers and the evader play the optimal strategy.

fact that the evader has chosen a non-optimal strategy. Games in which the
players adopt these strategies (optimal for the pursuers, straight upwards for
the evader) have been simulated for 10000 randomly selected initial conditions
E(0) ∈ C. As expected, capture always occurs at a time tf < t∗f . The average
ratio tf/t

∗
f is equal to 0.454.
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Fig. 4 Player trajectories when the pursuers play the optimal strategy and the evader
moves upward.

Now, assume that the evader plays the closed-loop optimal strategy defined
by (12), while the pursuers play a “pure-pursuit” game, that is they head
towards the evader position at each time. The behavior of this game is reported
in Fig. 5. At time t = 0.952 the simulation was stopped because the evader
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left the capture set, and then it can escape indefinitely. In view of this result,
one may argue that if the pursuers play a pure-pursuit game and the evader
plays at its best, capture never occurs. Such conjecture is not true, in general.
In fact, capture is strictly related to the initial conditions. For instance, if
P1(0) = [−5 0]′, P2(0) = [5 0]′ and E(0) = [4 0.25]′, capture occurs at time
tf = 4.988, see Fig. 6. The optimal capture time provided by (15), when
also the pursuers play the optimal strategy, is t∗f = 4.374. Also in this case,
10000 randomly initial conditions E(0) ∈ C have been simulated. Capture is
achieved only in 0.49% of the games, in which the average ratio tf/t

∗
f is equal

to 1.174. The region containing the initial conditions E(0) that lead to the
evader capture is depicted in Fig. 7.
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Fig. 5 Player trajectories when the evader plays the optimal strategy and the pursuers
play the pure-pursuit strategy, with E(0) = [3 0.4]′.
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Fig. 6 Player trajectories when the evader plays the optimal strategy and the pursuers
play the pure-pursuit strategy, with E(0) = [4 0.25]′.
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Fig. 7 Region of evader initial conditions for which capture with pure pursuit occurs (in
red).

5 Conclusions

A two-pursuer one-evader game with all the agents moving at the same speed
has been studied. It has been shown how the capture set depends on the
capture radius and the optimal strategies of all players have been derived.
The game value function has been also characterized, thus guaranteeing that
the devised strategies constitute a saddle point of the game and they are
optimal closed-loop control actions. The solution of this game is not only
interesting in itself, but also as a tool that may be useful in multi-pursuer
games with a larger number of pursuers. For example, novel strategies may be
conceived that promote the evolution of the multi-pursuer game towards the
most favorable two-versus-one winning condition. This topic is the subject of
ongoing research.
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[4] Kumkov, S.S., Le Ménec, S., Patsko, V.S.: Zero-sum pursuit-evasion
differential games with many objects: survey of publications. Dynamic
games and applications 7(4), 609–633 (2017)

[5] Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in
mobile robotics. Autonomous Robots 31(4), 299–316 (2011)



16 A two-pursuer one-evader game with equal speed and finite capture radius

[6] Vidal, R., Shakernia, O., Kim, H.J., Shim, D.H., Sastry, S.: Probabilistic
pursuit-evasion games: theory, implementation, and experimental evalu-
ation. IEEE Transactions on Robotics and Automation 18(5), 662–669
(2002)

[7] Bopardikar, S.D., Bullo, F., Hespanha, J.P.: On discrete-time pursuit-
evasion games with sensing limitations. IEEE Transactions on Robotics
24(6), 1429–1439 (2008)

[8] Alexander, S., Bishop, R., Ghrist, R.: Capture pursuit games on
unbounded domains. L’Enseignement Mathématique 55(1), 103–125
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Cooperative pursuit by multiple pursuers of a single evader. Journal of
Aerospace Information Systems 17(8), 371–389 (2020)

[23] Garcia, E., Fuchs, Z.E., Milutinovic, D., Casbeer, D.W., Pachter, M.: A
geometric approach for the cooperative two-pursuer one-evader differen-
tial game. IFAC-PapersOnLine 50(1), 15209–15214 (2017)

[24] Pachter, M., Von Moll, A., Garcia, E., Casbeer, D.W., Milutinović, D.:
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