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Abstract

The increasing penetration of plug-in electric vehicles in recent years asks for

specific solutions concerning the charging policies to be used in parking lots equipped

with charging stations. In fact, simple policies based on uncoordinated charge of

vehicles lead, in general, to high peak power demand, which may cause high costs

to the car park owner. In this paper, the problem of minimizing the daily peak

power of a charging station is addressed. Three sources of uncertainty affect the

incoming vehicles: the arrival time, the departure time and the demanded energy to

be charged. To assess the quality of the charging service under such uncertainties,

a suitable customer satisfaction policy is employed. Depending on the information

available on the uncertain variables, two algorithms based on a receding horizon

approach are designed. Such algorithms require the solution of linear programs and

provide the charging power for each plugged-in vehicle. Numerical simulations are

provided to assess performance and computational burden of the algorithms, showing

the effectiveness and feasibility of the proposed techniques.

Keywords— Plug-in electric vehicles; optimization; smart charging; peak reduction;

uncertainty.
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1 Introduction

The development of renewable generation technologies and electric vehicles (EVs) makes

it possible to tackle several issues causing green house effect and pollution. On the energy

production side, renewable generation has been adopted to produce green energy without

impact on the environment. Concerning EVs, their utilization allows to move gas emis-

sions outside living centers and to reduce the overall fossil fuel consumption by exploiting

renewable sources [1, 2]. On the other hand, existing power systems might not be capa-

ble to manage the electricity demand needed for a high number of electric vehicles. In

fact, safety and technical constraints may be violated in the presence of high penetration

of EVs. Several studies available in the literature propose EV charging solutions to face

different problems. In [3, 4], battery swapping strategies have been developed to reduce

the user waiting time, charging time and to maximize the station profit, while in [5], a

centralized charging strategy based on battery swapping has been adopted to minimize

the total charging cost, as well as to reduce power loss and voltage deviations in power

networks. In [6], a study focused on the minimization of travel time and charging cost has

been performed, whereas in [7], a price competition game aimed at maximizing charging

station revenues has been developed. In [8], it has been shown that by exploiting smart

metering tools and optimization techniques it is possible to handle a high penetration of

EVs without changing the power system structure. Energy management of an industrial

microgrid including the charging policy for EVs has been studied in [9], with the scope

of minimizing the overall electricity bill and satisfying network stability constraints. To

guarantee satisfactory EV charging service, sizing and siting of charging stations in the

network have been investigated, see [10, 11, 12, 13]. In [14], vehicle arrivals are modeled

through an ergodic Markov chain, and an algorithm to minimize the mean waiting time

has been proposed, while in [15], a charging strategy to maximize the profit based on a

distributionally robust joint chance constraint approach has been presented. Regarding

location of charging station for EVs, parking lots represent an opportunity which has been

often exploited in several cities. To this purpose, a number of works are focused on the

management of charging units located in parking lots, like, e.g., [16, 17, 18, 19, 20].

Various charging strategies have been proposed to reduce the peak load consumption.

A decentralized EV charging schedule aimed at filling the valleys in electric load profiles

has been developed in [21], while in [22] a similar approach has been proposed taking into
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account future incoming vehicles, too. In [23], a coordinated strategy between renewables,

EVs and electrical storage devices has been implemented to reduce domestic peak load,

while in [24], the peak shaving problem has been addressed at network distribution level.

The problem of reducing the peak load under demand response programs in a parking lot

has been recently considered in [25].

A crucial aspect to consider when dealing with EVs is related to the uncertainty which

inevitably affects their behavior, like the arrival time, the parking time and the demanded

energy. If not properly handled, these uncertainties may generate drawbacks, degrading

performance or causing problems to the grid. Different solutions have been devised to

handle such issues. In [26], dynamic programming has been exploited to provide a real-

time algorithm for a cost saving/load flattening problem by clustering EVs on the basis of

their departure time. A smart charging algorithm providing peak shaving is described in

[27] for non-residential sites. Vehicle arrivals are uncertain, while times of departure are

assumed to be known whenever a vehicle plugs-in. In a vehicle-to-grid framework, an event

driven optimization has been proposed in [28], where rescheduling is performed when a new

vehicle arrives or when an EV leaves the station before the declared time. In [29], a power

schedule aimed at reducing the overall charging cost is considered. Incoming vehicles are

supposed to be affected by uncertainty and the departure time is fixed when a vehicle arrives

at the station. A similar setting is considered in [30], where vehicle arrivals are generated

following a Poisson distribution. If the EV is not fully charged at departure, a monetary

penalty is applied. Photovoltaic generation in an EV charging station has been considered

in [31]. Here, charging strategies based on Model Predictive Control have been devised to

achieve peak reduction. In [32], peak reduction is achieved by two algorithms, based on

interruption (on-off) and modulation strategies, respectively. In both cases, the energy to

be charged and the departure time of vehicles are known once they reach the station. The

above mentioned works require the knowledge of the departure time of plugged-in vehicles.

Such information can be hard to be notified in several practical situations, like for instance,

in charging stations located in commercial centers, where the parking time can be affected

by several unpredictable events. To fill this gap, charging techniques which do not assume

such information have been proposed.
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Paper contribution

In this paper, we consider a charging station equipped with a number of charging units

for plug-in electric vehicles. The aim of this work is to design a charging power schedule

for each unit able to minimize the overall daily peak power while satisfying the customer

requirements in terms of charged energy. Assuming that the energy price the car park

owner (CPO) has to pay to the energy provider depends on the daily peak power, the

minimization of such peak will lead to an increase of the CPO profit. Moreover, the

station may participate in a demand response program [33], where a peak reduction is

rewarded by a monetary remuneration. The arrival and departure times of EVs as well as

the amount of energy to be charged are assumed to be uncertain. In the present setting,

vehicle-to-grid power exchange is not considered.

The contribution of the paper consists in the development of two novel algorithms

aimed at solving the above mentioned problem. Differently from other approaches avail-

able in the literature (like, e.g., [26, 27, 28, 29, 30, 31, 32]), the considered setting does

not require the knowledge of the departure time of plugged-in vehicles. To deal with this

setting, a suitable policy has been devised to assess the customer satisfaction, where a

nominal charging power is guaranteed to the customer, which may decide to leave the

station even before the demanded energy be effectively charged. The proposed algorithms

are formulated in a receding horizon framework. In particular, the first one refers to the

case where the CPO has no prior knowledge about the uncertain variables affecting the

system, while the second one is suitable for the case when some information about them is

available, e.g., in terms of probability distributions. Both algorithms turn out to be com-

putationally feasible even for a large number of charging units, thus resulting appropriate

to be implemented in real applications. In fact, they are based on the solution of a linear

program efficiently solved by standard mathematical tools. To evaluate the performance

and the computational feasibility of the proposed techniques, numerical simulations have

been performed and comparisons are provided versus the uncoordinated charging policy

and an ideal (omniscient) algorithm able to provide a lower bound on the daily peak power.

Paper organization

The paper is structured as follows. In Section 2, a sketch of the considered problem is

described, while in Section 3, a rigorous formulation is reported. The proposed charging
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algorithm assuming no information available on the uncertain variables is provided in Sec-

tion 4. In Section 5, an improved version of the charging procedure is presented, assuming

that some information on the uncertain variables are available. In Section 6, numerical

simulations are reported to evaluate the performance and the computational feasibility of

the devised methods and to provide comparisons with other charging strategies. Finally,

in Section 7, some conclusions are drawn together with perspectives on future work.

Acronyms

CPO Car park owner

DEC Desired energy to be charged

EV Electric vehicle

NCP Nominal charging policy

RHP Receding horizon policy

RHPP Receding horizon policy with prior information

ICP Ideal charging policy
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Nomenclature

N Set of natural numbers

∆ Sampling time

t Generic time step

v Vehicle index

P0 Nominal charging power

P Maximum charging power

η Charging efficiency

tav Arrival time of vehicle v

tdv Departure time of vehicle v

τ fv Number of time slots needed to fulfill vehicle v

tfv Fulfillment time of vehicle v

Ef
v Desired energy to be charged for vehicle v

V (t) Set of plugged-in vehicles to be charged at time t

Ev(t) Energy charged till time t for vehicle v

Pv(t) Mean charging power from t to t+1 for vehicle v

rv(t) Customer satisfaction profile for vehicle v at time t

γ̂ Daily peak power till the present time

γ̃ Power for charging parked vehicles at maximum rate

k Time index used in optimization problems

P ∗

v (t) Optimal charging power schedule at time t

γp Predicted peak power

T (t) Time horizon used in optimization at time t

εv(t) Weights for cost function at time t

E(t) Vector collecting εv(t)

Nm Average number of incoming vehicles at each time step

Em Mean value of the charged energy for each vehicle

Pa(k) Estimate of power consumption at time k of v /∈V (t)
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2 Problem description

In this work, we focus on a plug-in EV charging station, which can be supposed to belong

to a parking lot.

We assume that the car park owner contracts with customers according to the following

policy:

• The CPO promises a given nominal charging rate to customers.

• Once a vehicle arrives, the customer selects the desired amount of energy to be

charged (DEC), or equivalently, the desired level of charge at departure.

• Based on the promised charging rate, the charging unit estimates the time at which

the request will be fulfilled (fulfillment time), and communicates it to the customer.

• When the customer leaves the parking lot, he/she will be marked as satisfied if the

EV has been charged with an average charging power which is greater or equal to the

promised one. Otherwise he/she will be not satisfied. For instance, if the customer

leaves the parking lot at the fulfillment time (or later), he/she will be marked as

satisfied if the vehicle has been charged with the DEC.

The charging profile promised by the CPO is depicted in Fig. 1. The slope of the

quantized ramp represents the nominal charging power rate. The customer is marked as

satisfied if the energy charged at departure lies in the satisfaction region (gray area in

Fig. 1). In a realistic scenario, several uncertainties are related to the incoming vehicles.

To deal with such issues, in this paper, three sources of uncertainty are considered for each

vehicle: the arrival time, the parking time and the desired energy to be charged.

The aim of this work is to devise a charging policy for the station such to minimize

the peak power on a daily basis while guaranteeing customer satisfaction. Reducing the

peak power is convenient whenever the energy price the CPO has to pay to the energy

provider is related to the daily peak power consumption. One more reason may concern

the participation of the charging station in a demand response program, where a monetary

reward is granted to the CPO in the face of a power reduction request [33]. To accomplish

this goal, the problem is formulated in a receding horizon framework, where a suitable

optimization problem is solved in order to compute the charging power of all active units
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Ef
v
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t
0
tav tfv

Ev(t)

Figure 1: Customer satisfaction region for a generic vehicle v. Ev(t) denotes the energy

charged till time t, tav denotes the arrival time, tfv the fulfillment time and Ef
v the desired

energy to be charged.

at each time step. Two different control algorithms are proposed depending on the prior

knowledge the CPO has about the uncertain variables.

It is worthwhile to remark that the choice of a satisfaction region as in Fig. 1 allows

to evaluate the customer satisfaction under uncertain departure time. In fact, differently

from other works where a customer notifies its departure time when the vehicle arrives

at the station, in this framework EVs leave the station at uncertain time. By assuring a

minimum charging power, the CPO can modulate the actual charging power to reduce the

daily peak, while guaranteeing customer satisfaction.

3 Problem formulation

The problem is formulated in a discrete time setting, where ∆ denotes the sampling time.

Let v ∈ N denote a vehicle involved in the charging process. For a given vehicle v, we

denote by tav ∈ N and tdv ∈ N the arrival and departure time steps, respectively. We denote

by Ev(t) the energy charged till time t and by Pv(t) the mean charging power between the
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time step t and t+ 1.

Once a vehicle plugs-in to the charging unit, the customer declares a desired energy

to be charged Ef
v . Assuming to charge the vehicle at a constant nominal power P0, and

denoting by η the charging efficiency, the number of time slots needed to fulfill the request

is

τ fv =

⌈
Ef

v

∆P0η

⌉
. (1)

Thus, the DEC will be reached at time

tfv = tav + τ fv . (2)

Let us call tfv as the fulfillment time of vehicle v. Moreover, let tdv denote the departure

time of vehicle v. Notice that in a realistic scenario tdv may be greater, less or equal than

tfv .

The set of plugged-in vehicles in charge at the present time t is denoted by

V (t) =
{
v : tav ≤ t < tdv and Ev(t) < Ef

v

}
. (3)

In this framework, we suppose that there is a sufficient number of charging units to ensure

the connection of new arriving vehicles.

The dynamics of the charged energy of vehicle v can be expressed as

Ev(t+ 1) = Ev(t) + ∆Pv(t)η. (4)

It is assumed that the charging power is bounded, i.e.,

0 ≤ Pv(t) ≤ P , (5)

where P > P0 denotes the maximum power of the charging units.

According to (4), the customer satisfaction lower bound rv(t) can be expressed as follows

(see Fig. 1)

rv(t) = min
{
∆P0 η (t− tav), Ef

v

}
. (6)

Thus, the satisfaction region in Fig. 1 is defined by the constraint

rv(t) ≤ Ev(t) ≤ Ef
v . (7)

It is worthwhile to remark that, for any possible departure time, customer satisfaction is

guaranteed whenever (7) holds.
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In the next sections, two procedures aimed at minimizing the daily peak power con-

sumed by the charging station while maintaining customer satisfaction are described. These

procedures rely on different hypothesis on the information available to the CPO about the

uncertain variables.

4 EV charging policy without a-priori information

In this section, it is assumed that no information about vehicle arrival/departure time and

DEC is available to the car park owner. The goal of the CPO is to minimize the daily

electricity peak power while guaranteeing customer satisfaction.

Let us denote by γ̂ the peak power consumption occurred in the considered day till

the present time t. At time t, we denote by γ̃ the power needed to charge all the parked

vehicles at the maximum rate without exceeding the DEC, i.e.,

γ̃ =
∑

v∈V (t)

min

{
P,

Ef
v − Ev(t)

∆η

}
. (8)

It is apparent that charging the vehicles with an overall power less than or equal to γ̂ does

not increase the daily peak, i.e., γ̂ remains the same. So, a preliminary check can be done

in order to evaluate if the power needed to charge all the parked vehicles at the maximum

rate is less than or equal to γ̂, that is:

γ̃ ≤ γ̂ . (9)

If (9) holds, then each vehicle is charged with power

Pv(t) = min

{
P,

Ef
v −Ev(t)

∆η

}
, ∀v ∈ V (t) (10)

without affecting γ̂. Notice that, as previously stated, Pv(t) represents the mean charging

power from time t to t+ 1 for vehicle v.

If (9) does not hold, an optimization algorithm has to be devised in order to find a

charging schedule aimed at minimizing the daily peak power. To accomplish this task, a

receding horizon approach is adopted. Since we are interested in minimizing the daily peak

power, we will consider an operation time horizon of one day.

In Algorithm 1, the pseudo-code of the proposed receding horizon optimization algo-

rithm is reported. After the variable initialization at the beginning of the day, a loop is
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Algorithm 1: Receding horizon control algorithm.

1 γ̂ = 0;

2 t = 0;

3 while day not over do

4 compute V (t);

5 γ̃ =
∑

v∈V (t)

min

{
P,

Ef
v − Ev(t)

∆η

}
;

6 if γ̃ ≤ γ̂ then

7 P ∗

v (t) = min

{
P,

Ef
v − Ev(t)

∆η

}
, ∀v ∈ V (t);

8 else

9 [P ∗

v (t), γ
∗

p ] = charge no prior info(V (t), γ̂);

10 γ̂ =
∑

v∈V (t)

P ∗

v (t);

11 end

12 apply command P ∗

v (t);

13 t = t + 1;

14 end

performed until the day is over. Each loop iteration corresponds to a time step. At a

generic time step t, the set V (t) containing the indices of charging vehicles is obtained and

the maximum overall power at time t is computed as in (8). If γ̃ ≤ γ̂, the power sched-

ule at time t is set according to (10), otherwise it is computed by the charge no prior info

routine. Such a function returns the solution of a suitable optimization problem (described

below) in terms of charging power schedule (P ∗

v (t)) for the next time slot; after that γ̂ is

updated accordingly. Then, the computed charging power schedule is applied to vehicles

and the loop iterates.

It is apparent that the crucial step of Algorithm 1 resides in the optimization problem

the function charge no prior info has to solve at each time instant. The rest of this section

is devoted to describe and comment such an optimization program, whose solution will

define the charging power for all plugged-in vehicles at the present time t.

In view of the constraints introduced in Section 3 related to physical and customer

satisfaction constraints, the following optimization problem is formulated.
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Problem 1 (charge no prior info)




[P ∗

v (t), γ
∗

p ] = arg inf
Pv(t),γp


γp −

∑

v∈V (t)

εv(t)Pv(t)




subject to:

0 ≤ Pv(k) ≤ P, v ∈ V (t), k = t, . . . , T (t)−1

Ev(k + 1) = Ev(k) + ∆Pv(k)η, v ∈ V (t), k = t, . . . , T (t)−1

rv(k)≤Ev(k)≤Ef
v , v ∈ V (t), k = t+1, . . . , T (t)

γ̂ ≤
∑

v∈V (t)

Pv(t) ≤ γp

∑

v∈V (t)

Pv(t) ≥
∑

v∈V (t)

Pv(k), k = t+1, . . . , T (t)−1

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

where T (t) denotes the optimization time horizon defined as

T (t) = max{tfv : v ∈ V (t)} . (12)

Notice that, according to (2), all the vehicles belonging to V (t) will be fully charged or

will have left the parking at time T (t).

The optimization variables in Problem 1 are the power schedule for all vehicles Pv(k), ∀v ∈

V (t), k = t, ..., T (t) − 1, and the predicted peak power γp, while the optimal variables of

interest for Algorithm 1 are only the charging powers at the present time step t, i.e.,

Pv(t), v ∈ V (t). Let us denote by the superscript ∗ the optimal value of the optimization

variables.

In Problem 1, we aim at minimizing the difference of two quantities: γp and
∑

v∈V (t) εv(t)Pv(t).

For the sake of simplicity, for the moment, let us neglect the latter one in (11a) and let

us focus on the minimization of γp, i.e., the predicted peak power till the time horizon

T (t). Constraints (11b) are related to the charging power bounds in (5), while (11c)-(11d)

concern the dynamics of the charged energy and the customer satisfaction constraints as

defined in (4) and (6), respectively. Constraint (11e) bounds the total power consumed at

time t to belong to the interval [γ̂, γp], while (11f) enforces the overall power consumed at

time t to be greater or equal to the power absorbed at next time steps. So, constraints

(11e)-(11f) impose that the maximum peak power until time T (t) be less than or equal to

γp. Then, the optimal value of γp represents the minimum predicted peak power within

the time horizon.
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Remark 1 Constraints (11f) may appear somehow obscure. Along with (11e), these con-

straints impose that the optimal predicted peak γ∗

p be attained at the first time step t, that

is, ∑

v∈V (t)

P ∗

v (t) = γ∗

p . (13)

Notice that, since Ev(k) ≥ Ev(t), k = t + 1, . . . , T (t) − 1, according to (8), the maximum

charging power (of vehicles belonging to V (t)) which can be consumed at time t is greater

than or equal to those occurring at next time instants, i.e.,

γ̃ =
∑

v∈V (t)

min

{
P,

Ef
v − Ev(t)

∆η

}

≥
∑

v∈V (t)

min

{
P ,

Ef
v − Ev(k)

∆η

}
, k = t+1, . . . , T (t)− 1.

So, constraints (11f) are surely feasible. Moreover, the introduction of (11f) does not

change the optimal predicted peak γ∗

p, but it forces such a peak to occur at the current time

step t. In fact, assuming that γ∗

p be a reliable estimate of the future peak, it is convenient

to force the present power consumption to equal this estimate.

Remark 2 Notice that Problem 1 is an LP problem, whose solution can be efficiently

found through standard optimization solvers. Moreover, one may easily prove that such a

problem is always feasible. In fact, by charging all the vehicles at the maximum power until

the DEC is attained, one gets ∑

v∈V (t)

Pv(t) = γ̃ .

Since Problem 1 is evaluated only if γ̃ > γ̂ (due to line 6 in Algorithm 1), constraint (11e)

is surely satisfied, as well as (11b)-(11d). Finally, by Remark 1, (11f) holds, too.

It is worthwhile to stress that since the problem is formulated in a receding horizon

framework, only the charging powers related to the present time step will be actually

applied. However, since the CPO has no information about the uncertainty affecting

vehicles, each computation of Problem 1 involves only the vehicles which are plugged-in at

time t.

In the above reasoning, we neglected the second part of the cost function, i.e.,

−
∑

v∈V (t)

εv(t)Pv(t) . (14)
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In (14), εv(t) > 0 denote weights which satisfy
∑

v∈V (t) εv(t) = ǫ, for a fixed ǫ ≪ 1. In

(13), it is stated that the optimal cost (neglecting (14) from (11a)) is

γ∗

p =
∑

v∈V (t)

P ∗

v (t) .

So, it is straightforward to note that, since ǫ ≪ 1, the introduction of (14) in the cost

function does not significantly change the optimal cost. However, it allows to allocate the

optimal overall charging power at time t among vehicles on the basis of the weights εv(t).

Such weights can be chosen in several ways. A heuristics which provides good results

(see Section 6) is to assign greater charging power to vehicles which have longer fulfillment

time. A possible way to do that is described below.

Let us define

ε̃v(t) = tfv − t , v ∈ V (t) (15)

and let Ẽ(t) be the vector collecting ε̃v(t). By the definition of V (t) in (3), one has

Ev(t) < Ef
v . Moreover, by (1)-(2) one gets t < tfv and hence ε̃v(t) > 0, for all v ∈ V (t). So,

by defining the weighting vector E(t) as

E(t) = ǫ
Ẽ(t)

‖Ẽ(t)‖1
, (16)

it is easy to show that ‖E(t)‖1 =
∑

v∈V (t) εv(t) = ǫ.

Thus, the amount of power given by γ∗

p will be split among vehicles to favor those with

greater fulfillment time.

Let us call the procedure reported in Algorithm 1 as receding horizon policy (RHP).

Moreover, let us denote by nominal charging policy (NCP) the uncoordinated charging

schedule where each vehicle is charged with constant nominal power P0 till departure or

the DEC is attained.

In the following, we want to show that RHP always returns a peak power which is less

or equal to that obtained by NCP. To this purpose, some notation needs be introduced.

Let us call by γ̂r(t) and γ̂n(t) the peak power occurred up to time t by adopting the RHP

and NCP strategy, respectively. Hereafter, we denote by the superscript r and n all the

variables related to RHP and NCP, respectively. To simplify the exposure, let us define

V̂ (t) =
{
v : tav ≤ t < tdv

}
. By (3), one has V̂ (t) ⊇ V (t) since V̂ (t) contains also the vehicles

which are charged with the DEC but have not left the parking lot. Since the charging

power is null for such vehicles, they do not contribute to the charging schedule.
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The charging power applied by NCP at time step t is

P n
v (t) = min

{
P0,

Ef
v − En

v (t)

η∆

}
, v ∈ V̂ (t). (17)

By definition, the peak power function up to time t satisfies

γ̂n(t) = max



γ̂n(t− 1),

∑

v∈V̂ (t)

P n
v (t)



 . (18)

The fact that the peak power obtained by RHP cannot be greater than that of NCP is

stated by the following theorem.

Theorem 1 At a given time t, the following inequality holds

γ̂r(t) ≤ γ̂n(t) , ∀t ≥ 0.

Proof: See Appendix. �

This theorem states that, for any possible distribution involving the uncertain variables,

the proposed algorithm outperforms the uncoordinated charging policy, that is RHP is able

to reduce the daily peak power while guaranteeing customer satisfaction.

5 EV charging policy with a-priori information

In this section, it is assumed that the CPO has some knowledge about the uncertain

variables involved in the charging process, i.e., the arrival and charging time of vehicles

and the DEC. We suppose that the probability distributions (or an estimate of them) of

the previously mentioned variables are available, obtained for instance by using historical

data. Under such an assumption, the technique described in Section 4 can be refined, in

order to obtain better performance, i.e., reduced daily peak power.

The main procedure is like to that reported in Algorithm 1, with the only difference

that the function charge no prior info used to solve Problem 1 in Line 9 is replaced by

charge prior info, aimed at solving Problem 2.
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Problem 2 (charge prior info)





[P ∗

v (t), γ
∗

p ] = arg inf
Pv(t),γp


γp −

∑

v∈V (t)

εv(t)Pv(t)




subject to:

0 ≤ Pv(k) ≤ P, v ∈ V (t), k = t, . . . , T (t)−1

Ev(k + 1) = Ev(k) + ∆Pv(k)η, v ∈ V (t), k = t, . . . , T (t)−1

rv(k)≤Ev(k)≤Ef
v , v ∈ V (t), k = t+1, . . . , T (t)

γ̂ ≤
∑

v∈V (t)

Pv(t) ≤ γp

∑

v∈V (t)

Pv(t) ≥
∑

v∈V (t)

Pv(k), k = t+1, . . . , T (t)−1

∑

v∈V (t)

Pv(k)P
(
tdv > k|tdv > t

)
+ Pa(k) ≤ γp, k = t+1, . . . , T (t)−1

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)

(19g)

where

Pa(k) = Nm P0 min

{
k − t,

Em

∆ηP0

}
, (20)

and Nm, Em denote the average number of vehicles arriving at the station at each time

step and the mean value of the charged energy, respectively.

Problem 2 differs from Problem 1 since constraints (19g) have been added in the for-

mer with the aim of obtaining a better estimate of the future peak power γp. Notation

P
(
tdv > k|tdv > t

)
in (19g) denotes the probability that the departure time of vehicle v be

greater than k, conditioned to the fact that it is greater than t. The left hand side of (19g)

can be decomposed in this way

∑

v∈V (t)

Pv(k)P
(
tdv > k|tdv > t

)

︸ ︷︷ ︸
current vehicles

+ Pa(k)︸ ︷︷ ︸
future vehicles

where, at time k, the left part denotes the expected value of the overall power consumption

given by the vehicles which are charging at time t, while Pa(k) provides an estimate of the

overall power consumption given by vehicles which will arrive at future time, assuming

nominal charging power. In the expression of Pa(k) in (20), it is assumed that each vehicle

asks for an amount of energy to be charged equal to Em. In (20), the expression Em

∆ηP0
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denotes the mean number of time slots needed to complete the charge. So, while plugged-

in vehicles are considered individually in (19g), future EVs are managed in an aggregated

way, by exploiting average values of uncertain variables.

The introduction of constraints (19g) in the optimization problem leads to a better es-

timate of the predicted peak power γ∗

p , improving the performance of the overall algorithm,

as reported in the following section.

6 Numerical results

To assess the performance of the proposed algorithms, numerical simulations and compar-

isons have been performed. A parking lot equipped with charging units is considered. The

simulated scenario covers 100 days with a sampling time ∆ = 10 minutes. EV arrivals have

been modeled through an exponential distribution with rate of 4 vehicles per hour, while

the desired energy to be charged has been taken from a uniform distribution in the interval

[10, 50] kWh. The parking time has been chosen according to a triangular distribution

with support [tfv −12, tfv +12] with mean value tfv . We suppose that the parking lot is open

to arrivals from 6:00 till 22:00, while departure may occur at any time. The nominal power

P0 has been set to 11 kW, while the maximum power P is 22 kW. Charging efficiency has

been set to 0.9, while the optimization weights εv(t) are chosen according to (15)-(16).

The number of plugged-in vehicles changes during a day. For instance, the evolution

of plugged-in vehicles in the 29-th day of simulation is depicted in Fig. 2. One may notice

that vehicles starts to arrive in the parking lot from 6:00, while after 22:00 no more vehicle

arrives and the number of charging EVs quickly decreases.

In addition to RHP and NCP introduced in Section 4, let us define the following

acronyms. Let us call the procedure described in Section 5 as receding horizon policy-prior

(RHPP), and let the ideal charging policy (ICP) be the procedure aimed at minimizing

the daily peak power assuming all the future realizations of the uncertain variables are

available. It is clear that this charging strategy is unrealistic, since it relies on future

outcomes of stochastic variables. However, ICP will be useful for assessing algorithm

performance since it provides a lower bound for the daily peak power.

To evaluate the effectiveness of RHP, the power schedules of NCP and RHP for the

simulation day 29 are depicted in Fig. 3. As it can be observed, RHP tries to coordinate

the vehicle charging to maintain the power consumption equal to the current peak power
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Figure 2: Number of plugged-in vehicles during the 29-th day of simulation.
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Figure 3: Power consumption of NCP (blue) and RHP (red) in simulation day 29.

γ̂. In Fig. 3, this corresponds to the intervals where a flat behavior occurs. According to

the condition in Line 6 of Algorithm 1, power values below γ̂ are related to situations in

which all the vehicles are charging at the maximum power rate. In the considered day,

RHP is able to lower the NCP peak by 32.6 kW, corresponding to a relative peak power

reduction of about 19%.

In Fig. 4, daily peak powers of NCP and RHP are depicted. As stated in Theorem 1,

RHP cannot perform worse than NCP. Indeed, the daily peak differences between the
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proposed procedure and NCP are represented by the blue bars above the red ones. The

peak power reduction provided by RHP w.r.t. NCP in the simulated 100 days amounts to

20.6 kW, on average.
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Figure 4: Daily peak power of NCP (blue) and RHP (red).
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Figure 5: Daily peak power difference between RHP and RHPP.

Focusing on RHPP, its performance has been compared with that of RHP. In particular,

daily peak power differences between the two procedures are reported in Fig. 5. It can be
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Figure 6: Daily peak power of NCP (blue), RHPP (red) and ICP (yellow), sorted in

ascending order of ICP.

noticed that RHPP performs better than RHP in most of the days. In fact, the peak power

obtained by RHPP is on average 10.8 kW lower than of RHP (31.4 kW lower than NCP).

The effectiveness of the RHPP can be noticed also comparing it with ICP. In Fig. 6,

daily peaks of NCP, RHPP and ICP are reported. For ease of reading, the peaks provided

by ICP are sorted in ascending order, and those obtained by NCP and RHPP are reported

accordingly. It can be noticed that RHPP performs well also when compared with the best

admissible solution. Indeed, knowledge of reliable statistical information about arrivals,

charging time and DEC, makes RHPP capable to provide peak powers close to the those

given by the benchmark charging policy. However, it is worthwhile to remind that the ICP

provides a lower bound on the peak power and it is not feasible from a practical viewpoint

since it depends on the knowledge of actual realizations of stochastic variables.

Finally, to evaluate the improvement given by the introduction of the weights (14) in

the cost function, we will refer to the RHPP procedure. Specifically, in Fig. 7, daily peak

power differences between RHPP without weights and RHPP with weights chosen as in

(15)-(16) is depicted. As it can be noticed, the use of weights leads to a reduction of the

daily peak power, which, in the considered simulation, amounts to 5.2 kW, on average.
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Figure 7: Daily peak power difference between RHPP without weights and RHPP with

weights.

Computational time and scalability issues

To validate the computational feasibility of the proposed algorithms, several simulations

with different EV arrival rates have been performed. Since the time needed to perform a

single iteration differs significantly whether condition in Line 6 of Algorithm 1 holds or not,

we only considered the worst case setting when γ̃ > γ̂. In fact, in this case, the computation

of the solution of a linear program is required. In Fig. 8, the mean time of each iteration is

depicted for different EV arrival rates. It can be observed that the computational burden

scales almost linearly with the EV penetration. It is worthwhile to note that even for

an arrival rate of 50 vehicles per hour both algorithms require computation times much

lower than the sampling time (10 minutes), which shows their actual potential for real

applications. Simulations have been performed using Matlab, the Yalmip toolbox [34] and

the Cplex solver [35], on an Intel Core i7-9700 CPU @3.00 GHz, 16 GB RAM.

7 Conclusions

In this paper, two algorithms aimed at the daily peak power minimization of an EV charging

station have been proposed. The two procedures differ in that the first one does not assume

any info on uncertain variables, while the second one exploits some statistical knowledge
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Figure 8: Mean computation time for an optimization loop.

on vehicles arrivals, departures and desired energy to be charged. Both algorithms have

been formulated in a receding horizon framework and rely on the solution of a linear

programming problem, which provides the optimal charging power for each connected

vehicle at each time step. Numerical simulations and comparisons show the effectiveness

of the devised techniques, as well as the computational feasibility for implementation in

real applications.

Further studies will address the problem of peak power reduction in EV charging sta-

tions coupled with distributed generation or in the presence of demand response, and the

possibility of reducing the peak power at the cost that a fraction of vehicles would not be

fully charged at departure.
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Appendix

Proof of Theorem 1.

The theorem will be proven by induction.

At time t = 0, one has γ̂r(0) = γ̂n(0) = 0.

Let us suppose that at time t− 1 it holds

γ̂r(t− 1) ≤ γ̂n(t− 1). (21)

We want to prove that γ̂r(t) ≤ γ̂n(t). If γ̃ ≤ γ̂r(t− 1), then by the condition in Line 6 of

Algorithm 1, the peak power is not updated and so, by (21) and (18)

γ̂r(t) = γ̂r(t− 1) ≤ γ̂n(t− 1) ≤ γ̂n(t).

If γ̃ > γ̂r(t − 1), the charging schedule provided by RHP is given by the solution of

Problem 1, and according to Line 10 of Algorithm 1, it holds

γ̂r(t) =
∑

v∈V̂ (t)

P r
v (t) . (22)

Let us define the charging command

P̂v(t) = min

{
P0,

Ef
v − Er

v(t)

η∆

}
, v ∈ V̂ (t). (23)

Since RHP provides a charging schedule which guarantees the customer satisfaction, surely

Er
v(t) ≥ En

v (t), and hence by comparing (17) and (23), one has

P̂v(t) ≤ P n
v (t) , ∀v ∈ V̂ (t) . (24)

We have to study two different cases. First, let us consider the case
∑

v∈V̂ (t) P̂v(t) <

γ̂r(t− 1). Since γ̃ > γ̂r(t− 1), then there surely exist P r
v (t) ≥ P̂v(t), v ∈ V̂ (t) such that

∑

v∈V̂ (t)

P r
v (t) = γ̂r(t− 1),

and hence

γ̂r(t) = γ̂r(t− 1) ≤ γ̂n(t− 1) ≤ γ̂n(t) .

It remains to study the case
∑

v∈V̂ (t) P̂v(t) ≥ γ̂r(t − 1). It is easy to note that P̂v(t)

satisfies constraints (11b)-(11e). Moreover, also constraints (11f) are satisfied. In fact,
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by choosing in (11f) the sequence P̂v(k), k = t + 1, . . . , T (t) − 1 like in (23), one has

P̂v(t) ≥ P̂v(k), ∀v ∈ V̂ (t), k = t + 1, . . . , T (t)− 1. Hence, constraints (11f) are satisfied,

and the charging sequence P̂v(t) is a feasible solution of Problem 1, in the sense that it

satisfies all its constraints.

Since the schedule P r
v (t) is the optimal solution of Problem 1, one has

∑
v∈V̂ (t) P

r
v (t) ≤∑

v∈V̂ (t) P̂v(t), and then, by (22), (24) and (18), it holds

γ̂r(t) =
∑

v∈V̂ (t)

P r
v (t) ≤

∑

v∈V̂ (t)

P̂v(t) ≤
∑

v∈V̂ (t)

P n
v (t) ≤ γ̂n(t).
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