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Abstract

In this paper a new recursive algorithm is proposed for tracking parameter changes of a

time-varying linear system. Since a bounded error approach is adopted for modeling both

the measurement noise and the parameter change process, the problem addressed amounts

to the design of a procedure for updating an estimate of the feasible parameter set. The

approximating regions considered are in the form of outbounding orthotopes. The novelty

of the approach lies in the use of a selection technique which keeps track only of a special

subset of the constraints defining the feasible set. These inequalities represent the binding

constraints of suitable linear programs of limited size. The devised algorithm is tested on

several numerical examples, showing remarkable performance both in terms of computational

burden, which is comparable to that of classical recursive estimation algorithms like RLS, and

quality of the set estimate as compared to alternative techniques available in the literature.

Keywords: Set membership estimation; time-varying systems; recursive identification; linear
programming.

1 Introduction

Adaptive tracking of model parameters is a classic research area in the field of system identifi-
cation and adaptive control. By far the most popular approaches are founded on a stochastic
framework assuming that the measurement as well as the process noises are stochastic processes
with partially known statistics (see [1, 2, 3] and references therein). In spite of the extremely rich
literature on stochastic techniques, relatively few contributions tackle the problem in the set mem-

bership framework, where uncertainty is assumed to be unknown but bounded (see [4, 5, 6] and
references therein). In the latter framework, it is usual to study the so-called feasible parameter set

(FPS), defined as the set of model parameters consistent with the measured data and the a priori
knowledge on noise bounds. Assume for instance the case when a linear model is considered and
measurement noise is bounded according to the max norm. In this setup the FPS is represented
by a convex polytope in the parameter space, which can be described either through a set of linear
inequalities or a set of vertices. In either case, the complexity of the FPS generally increases
with the number of available measurements. If we add to this setup the hypothesis that model
parameters change over time, the FPS changes accordingly and its description becomes quickly
intractable in almost any realistic application. This situation arises in any setting where the goal
is to capture the whole set of feasible parameters, assuming that each element of the FPS may
change over time. Notice that the situation is completely different if, like in statistical approaches,
a parameter point estimate is tracked together with its statistics, typically its covariance matrix.

While a large number of contributions is available in the set membership framework for iden-
tification of time-invariant systems, few works have been specifically dedicated to the problem of
tracking time-varying parameters in the bounded error setting. The papers [7, 8] can be recog-
nized as the first ones to propose modified versions of classic recursive schemes, coping with the
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UBB assumption. Adaptations of the celebrated LMS and RLS algorithms have been presented in
[9]. Recursive algorithms computing outer approximations of the FPS have been proposed, based
on different classes of sets such as polyhedra [10], ellipsoids [11, 12, 13, 14], orthotopes [15, 16],
parallelotopes [17] or zonotopes [18, 19]. A method for computing a polytopic set containing
the FPS has been introduced in [20], in the more general context of LPV system identification.
The bounded error approach to parameter tracking has also been widely employed within fault
detection problems (see e.g., [21, 22, 23]).

In this paper, a recursive technique is proposed for bounding the FPS of a time-varying linear
system through an orthotopic approximating region. It is well known that the naive approach
consisting in solving at each step a number of linear programs equal to twice the number of
parameters, provides the minimum bounding orthotope. However, the related computational
burden increases consistently over time. Our purpose is to find an algorithm with the typical
computational burden of classical recursive schemes, like e.g. RLS, providing an estimate of the
bounding orthotope whose quality is comparable with that obtainable through the naive approach.
This target is inspired by the fact that several recursive schemes available in the literature involving
more complex approximating regions, like ellipsoids or parallelotopes, lead to estimates whose
quality may be surprisingly worse than that of the tight outbounding orthotope, because of the
intrinsic conservatism introduced at each time step. In our scheme, the approximating orthotope is
updated by exploiting the information contained in a special subset of the constraints defining the
FPS. Constraint selection at each step is performed according to the concept of binding constraints,
which consist in the constraints which are active at the solution point of a suitable linear program.

The proposed scheme is tested on several numerical examples, each including randomly gen-
erated realizations of both the measurement noise and parameter change process. The obtained
results show a significant improvement of the quality of estimates, measured according to different
indicators, with respect to bounding approximations provided by recursive schemes based on el-
lipsoids or parallelotopes. Moreover, the conservatism of the approximating orthotope compared
to that provided by the naive batch approach turns out to be negligible, in spite of the noticeable
computational burden reduction. Preliminary results in this respect can be found in [24].

The paper is organized as follows. Section 2 introduces the notation and the definitions used
in the paper. The problem formulation is given in Section 3. Section 4 illustrates the proposed
recursive FPS approximation procedure. Three numerical examples are presented in Section 5 to
evaluate the quality of the approximation provided by the proposed approach, while concluding
remarks are given in Section 6.

2 Notation and definitions

Let A ∈ R
m×n. Then, |A| denotes the matrix whose entries are the absolute values of the entries

of A. The jth row of A is denoted by Aj , while if I ⊂ N, AI is the matrix obtained by selecting
the rows of A with indexes in I.

An orthotope, or axis-aligned box, is defined as

O = o(θ, d) = {θ : θ = θ + diag(d)w, ‖w‖∞ ≤ 1}, (1)

where θ, d, w ∈ R
n, di ≥ 0, i = 1, . . . , n, and diag(d) is a diagonal matrix with diagonal equal to

d. We denote by Fi = {θ ∈ O : θi = θi + di} and Fi+n = {θ ∈ O : θi = θi − di}, for i = 1, . . . , n,
the (n− 1)-dimensional faces of the orthotope O. The weighted ℓ∞ unit ball is given by

B∞(ǫ) = {w : |wi| ≤ ǫi, i = 1, . . . , n} = o(0, ǫ). (2)

The symbol ⊕ denotes the Minkowski sum of sets

C1 ⊕ C2 = {θ : θ = α+ β, α ∈ C1, β ∈ C2}.

Trivially, o(θa, da) ⊕ o(θb, db) = o(θa + θb, da + db). The minimum volume orthotope containing
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a set C is denoted by o∗(C). If C is a polytope, o∗(C) can be computed by solving the 2n LPs

βi = max eTi θ ,
s.t.
θ ∈ C

βi+n = min eTi θ ,
s.t.
θ ∈ C

(3)

for i = 1, . . . , n, where the vectors ei denote the columns of the identity matrix. Then, o∗(C) =

o(θ
∗

, d∗), where

θ
∗

i =
βi + βi+n

2
, d∗i =

βi − βi+n

2
, i = 1, . . . , n.

Consider the linear program (LP)
max cTx
s.t.

Ax ≤ b.
(4)

Let S∗ be the solution set of the LP. A constraint Aix ≤ bi is said to be active at x if there
exists a feasible x for which Aix = bi. A constraint Aix ≤ bi is a binding constraint of the LP
if there exists a solution x∗ ∈ S∗ of (4) such that Aix

∗ = bi. The region defined by the binding
constraints of an LP is called binding set (obviously, it contains the entire feasible region of the
LP). Notice that a binding set contains at least n constraints. Moreover, if the constraint set
is bounded there always exists one solution x∗ ∈ S∗ such that at least n linearly independent
constraints are active at x∗.

3 Problem formulation

Consider the time-varying linear regression model

y(t) = ϕT (t)θ(t) + e(t), (5)

where θ(t) ∈ R
n is the parameter vector to be estimated, ϕ(t) is a known vector containing past

values of the system input and output signals, and e(t) is an unknown-but-bounded noise such
that

|e(t)| ≤ δ(t), ∀t, (6)

where δ(t) is a known nonnegative sequence. The parameter vector varies over time according to

θ(t+ 1) = θ(t) + w(t), (7)

where w(t) ∈ R
n is UBB in the weighted ℓ∞ norm, i.e.

|wi(t)| ≤ ǫi(t), ∀t, i = 1, . . . , n, (8)

and ǫi(t) are known nonnegative sequences.
The evolution of the FPS Θ(t) is described according to the following recursion

Θ(t+ 1) = Θ+(t+ 1)
⋂

S(t + 1) (9)

where
Θ+(t+ 1) = Θ(t)⊕ B∞(ǫ(t)) (10)

and
S(t+ 1) = {θ : |y(t+ 1)− ϕT (t+ 1)θ| ≤ δ(t+ 1)} (11)

is the measurement feasibility set at time t+ 1.
The FPS Θ(t) is a generic polytope, whose number of faces tends to grow over time. For

this reason, a wide variety of recursive set approximation techniques have been proposed in the
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literature. They are usually based on a family of sets R of fixed complexity, and proceed by
subsequent approximations satisfying the inclusions

R(t+ 1) ⊇ R+(t+ 1)
⋂

S(t+ 1). (12)

where
R+(t+ 1) ⊇ R(t) ⊕ B∞(ǫ(t)) (13)

By choosing an initial approximation R(0) ⊇ Θ(0), where Θ(0) is the initial FPS (usually
derived from a priori information on the system parameters), one has the guarantee that Θ+(t) ⊆
R+(t) and Θ(t) ⊆ R(t), at every time instant t. Typical choices of the approximating regions
R include orthotopes, ellipsoids, parallelotopes, zonotopes, limited complexity polyhedra. The
computation of R+(t + 1) and R(t + 1) in (12)-(13), can be based on various criteria, such as
volume minimization or other indicators assessing the overall parametric uncertainty.

In this paper, the sets R are orthotopes, defined as in (1). It is well known that if this class
of sets is exploited in the recursive scheme (12)-(13), and the volume is minimized at each step,
the resulting approximation of the FPS is extremely coarse. On the other hand, the minimum
volume orthotope containing the FPS, o∗(Θ(t)), can be computed by solving 2n LPs at each
time t, whose number of constraints increases with t. In the next section, a constraint selection
technique is proposed which allows one to compute a recursive orthotopic approximation of the
FPS by solving a much smaller number of LPs, with a number of constraints which remains
approximately constant over time.

4 Constraint selection technique

In this section, a procedure able to recursively approximate the FPS is reported. First, a proposi-
tion instrumental to the formulation of the proposed algorithm is stated. After that, the devised
procedure is described step-by-step. Finally, the properties of the algorithm are discussed.

Proposition 1 Let C = {θ : Aθ ≤ b} be a polytope in R
n and let o∗(C) = o(θ, d). Then,

C ⊕ B∞(ǫ) ⊆ C
⋂

O

where

C = {θ : Aθ ≤ b+ |A|ǫ} (14)

O = o∗(C)⊕ B∞(ǫ) = o(θ, d+ ǫ). (15)

Proof: Let θ ∈ C⊕B∞(ǫ). Then, there exist α ∈ C and β ∈ B∞(ǫ), such that θ = α+β. Therefore,
one has

Aθ = A(α + β) ≤ b+Aβ ≤ b+ |A|ǫ

which yields θ ∈ C. Moreover, being α ∈ C, one has also α ∈ o∗(C) and hence

θ = α+ β ∈ o∗(C)⊕ B∞(ǫ) = O.

�

Let us now introduce the identification algorithm which will be referred to as Recursive Outer
Bounding Orthotope with Binding Constraints (ROBO-BC). Let us consider separately the time

update step (13) and the measurement update step (12).
ROBO-BC Time Update

Step T0. At a generic time t, let

• C(t) = {θ : A(t)θ ≤ b(t)} be a polytope such that C(t) ⊇ Θ(t);

• O(t) = o(θ(t), d(t)) be an orthotope such that O(t) ⊇ Θ(t);
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• V(t) =
{
v(i)(t), i = 1, . . . , 2n

}
such that v(i)(t) belongs to the ith face of the orthotope

o∗(V(t)) and there are at least n linearly independent constraints in C(t) that are active at
v(i)(t).

Define the approximating set as D(t) , C(t)
⋂
O(t).

Step T1. Define the enlarged set D+(t+ 1) as

D+(t+ 1) = C+(t+ 1)
⋂

O+(t+ 1)

where

C+(t+ 1) = {θ : A(t)θ ≤ b(t) + |A(t)|ǫ(t)}

O+(t+ 1) = O(t) ⊕ B∞(ǫ(t)) = o(θ(t), d(t) + ǫ(t)) .

Step T2. For each v(i)(t), i = 1, . . . , 2n, define

Ii = {jh ∈ N : Ajh(t)v
(i)(t) = bjh(t), h = 1, . . . , n} (16)

as a set of n indexes corresponding to n linearly independent constraints of C(t) that are active at
v(i)(t), and set

v̂(i)(t+ 1) = [AIi
(t)]

−1
[b(t) + |A(t)|ǫ(t)] .

ROBO-BC Measurement Update

Step M0. Let C+(t + 1), O+(t + 1), v̂(i)(t + 1), i = 1, . . . , 2n be given, according to procedure
T0-T2, and let S(t + 1) be the new measurement set at time t + 1. For i = 1, . . . , 2n, define the
sets

C+
i (t+ 1) = {θ : AIi

(t)θ ≤ b(t) + |A(t)|ǫ(t)}

with Ii given by (16). Notice that by construction the constraints in C+
i (t + 1) are a subset of

constraints in C+(t+ 1) that are active at v̂(i)(t+ 1).
Step M1. For each i = 1, . . . , 2n, if v̂(i)(t+ 1) 6∈ S(t+ 1) solve the LP

max (min) eTi θ
s.t.

θ ∈ C+(t+ 1)
⋂
S(t+ 1)

(17)

and set1

• Ci(t+ 1) as the binding set of the LP (17),

• v(i)(t+1) as an element of the solution set of (17) such that n linearly independent binding
constraints of the LP are active at v(i)(t+ 1).

Otherwise, if v̂(i)(t+ 1) ∈ S(t+ 1), set v(i)(t+ 1) = v̂(i)(t+ 1) and Ci(t+ 1) = C+
i (t+ 1).

Step M2. Set

C(t+ 1) =

2n⋂

i=1

Ci(t+ 1)

V(t+ 1) = {v(i)(t+ 1), i = 1, . . . , 2n}

and compute Ô(t+ 1) = o∗(V(t+ 1)) = o(θ̂(t+ 1), d̂(t+ 1)), where

θ̂i(t+ 1) =
v
(i)
i (t+ 1) + v

(i+n)
i (t+ 1)

2
,

1In (17), the notation max(min) means that max holds for i = 1, . . . , n, while min holds for i = n+ 1, . . . , 2n.
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d̂i(t+ 1) =
v
(i)
i (t+ 1)− v

(i+n)
i (t+ 1)

2
,

for i = 1, . . . , n.
Step M3. Set

O(t + 1) = Ô(t+ 1)
⋂

O+(t+ 1) = o(θ(t+ 1), d(t+ 1)),

where

θ(t+ 1) =
u+ l

2
, d(t+ 1) =

u− l

2
,

with

ui = min
{
θ̂i(t+ 1) + d̂i(t+ 1), θ

+

i (t+ 1) + d+i (t+ 1)
}
,

li = max
{
θ̂i(t+ 1)− d̂i(t+ 1), θ

+

i (t+ 1)− d+i (t+ 1)
}
.

Then, proceed with the next time update at time t+ 1.

Notice that the time update step of the algorithm is inspired by the result of Proposition 1,
which states that the exact time update (10) can be approximated by computing the intersection
between two sets: the enlarged version of the polytope Θ(t), according to (14), and the enlarged
bounding box o∗(Θ(t))⊕ B∞(ǫ(t)), given by (15).

After definitions at step T0, one trivially has Θ(t) ⊆ D(t). Step T1 guarantees that Θ+(t+1) ⊆
D+(t+ 1). In fact, by using Proposition 1

Θ+(t+ 1) , Θ(t)⊕ B∞(ǫ(t)) ⊆ D(t) ⊕ B∞(ǫ(t)) =
(
C(t)

⋂
O(t)

)
⊕ B∞(ǫ(t))

= (C(t)⊕ B∞(ǫ(t)))
⋂

(O(t) ⊕ B∞(ǫ(t)))

⊆ C+(t+ 1)
⋂

(o∗(C(t))⊕ B∞(ǫ(t)))
⋂

O+(t+ 1)

⊆ C+(t+ 1)
⋂

O+(t+ 1) = D+(t+ 1).

Notice that, after step M3, C(t + 1), O(t + 1) and V(t + 1) satisfy by construction the same
properties of their counterparts at time t, and hence the procedure can be iterated.

The measurement update (12) has been inspired by the strategy proposed in [15, 25]. The main
idea is that the information provided by the new measurement set S(t+1) contributes to tighten
the ith face of the approximating orthotope O+(t + 1) only if v̂(i)(t + 1) 6∈ S(t + 1). Whenever
this occurs, an LP is solved and only the constraints in the binding set of the LP are deemed to
be useful constraints and are kept in the polytope C(t + 1). Otherwise, if v̂(i)(t + 1) ∈ S(t + 1)
nothing is done and the set of constraints is left unchanged. Notice that instrumentally this allows
one to propagate also a polytopic approximation C(t) of the FPS, besides the orthotopic one.

It should be remarked that the approach proposed in [25] has been modified to cope with
the fact that the system parameters are not constant and hence the approximated FPS must be
enlarged at every time update.

5 Numerical examples

In this section, the ROBO-BC procedure for the estimation of time-varying parameters is compared
to other recursive approaches taken from the literature. In particular, four algorithms will be
considered.

a) A recursive outer bounding ellipsoidal estimator (ROBE), performing the measurement up-
date according to the algorithm proposed in [11] (minimum volume ellipsoid containing the
intersection between an ellipsoid and the measurement set S(t)), and the time update by
first computing the minimum ellipsoid containing B∞(ǫ) and then applying the algorithm in
[26] which provides the optimal bounding ellipsoid for the vector sum of two ellipsoids.
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b) A recursive outer bounding parallelotopic estimator (ROBP), corresponding to the algorithm
proposed in [17].

c) A recursive outer bounding orthotopic estimator, corresponding to the Recursive Central
Estimate (RCE) proposed in [15, 16]. This method was devised for time-invariant systems
and has been adapted to time-varying parameters by using the same time update proce-
dure proposed in Section 4. The comparison with RCE is included because it adopts a set
representation similar to the one used in this paper, but a different updating strategy. In
fact, the proposed technique requires the solution of a single LP including only the binding
constraints for each update of the approximating orthotope, while the RCE relies on a fixed
number of constraints and requires the computation of the inverse of n matrices of dimension
n× n.

d) The Recursive Outer Bounding Orthotope with Full Constraints (ROBO-FC) which differs
from the proposed ROBO-BC algorithm only because all the active constraints in Θ(t) are
kept track of in the polytope C(t). Notice that this technique requires to solve 2n LPs
whenever at least one of the constraints in S(t + 1) intersects the time updated polytope
Θ+(t+1). Performing this check requires the computation of two LPs, so at each time step
the number of solved LPs may range from 2 to 2n + 2. It should be remarked that the
approximation provided by the ROBO-FC algorithm is by construction contained in that of
the ROBO-BC, and therefore is used as a benchmark for all the other techniques (being the
exact estimation of the FPS too computationally demanding).

In order to compare the performance of the different algorithms, the uncertainty associated to
each parameter is reported. For orthotopic estimators, this is given directly by the semi-length
of the corresponding side of the orthotope (the elements of d in (1)). For the ROBE and ROBP
algorithms, the minimum orthotope containing respectively the ellipsoidal and parallelotopic ap-
proximating set is considered.

5.1 Example 1

The first case study is taken from [27]. Consider the FIR model

y(t) = b1(t)u(t) + b2(t)u(t− 1) + e(t) (18)

where the time-varying parameters b1(t), b2(t) have been generated according to

b1(t) = 1.5 + sin(2πt/3000)
b2(t) = 0.5 + sin(2πt/1500)

and e(t) is unknown-but-bounded as in (6). The input signal u(t) has been randomly generated
within the interval [−1, 1]. The bounds on the parameter variations have been considered constant
and set to ǫ(t) = [2π/3000 2π/1500]′, ∀t. The noise bound δ(t) is constant and equal to 1, and
the noise signal e(t) has been generated according to two different distributions (uniform and
Gaussian). All results are averaged over 500 identification experiments with 5000 data points
each.

Figure 1 shows these uncertainties for the parameters b1(t) and b2(t) for a uniformly distributed
noise e(t), while Figure 2 does the same for the case of Gaussian noise. It can be observed that the
proposed technique provides a tighter approximation of the parametric uncertainty with respect
to the ROBE, ROBP and RCE algorithms. Moreover, and more importantly, such approximation
is almost indistinguishable from that given by the ROBO-FC, thus testifying that the constraint
selection technique has captured the essential constraints which contribute to define the true FPS.
However, the computational burden required by the proposed technique is much smaller than
that necessary to keep track of all the active constraints. This is shown in Table 1, reporting the
average number of active constraints and of LPs to be performed per time step.
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Figure 1: Example 1, uniform noise: uncertainty associated to parameters b1(t) and b2(t): ROBO-
FC (black), ROBO-BC (red), ROBP (green), ROBE (cyan), RCE (yellow).

0 1000 2000 3000 4000 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t

d
1

0 1000 2000 3000 4000 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t

d
2

Figure 2: Example 1, Gaussian noise: uncertainty associated to parameters b1(t) and b2(t): ROBO-
FC (black), ROBO-BC (red), ROBP (green), ROBE (cyan), RCE (yellow).

5.2 Example 2

Let us consider a variant of the FIR system in Example 1, where b1 and b2 show a linear drift, i.e.,

b1(t) = 1.5 + 0.002 t
b2(t) = 0.5 + 0.001 t.

Noise e is uniformly distributed in [−0.2, 0.2], while bounds on parameter variations are set to
ǫ(t) = [0.004 0.002]′, ∀t. Notice that, in order to simulate a real scenario, bounds ǫ(t) are overes-
timated w.r.t. actual values by a factor 2. The experiment length is set to 5000 samples. Figure 3
compares the uncertainty (averaged over 500 experiments) of the two unknown parameters ob-
tained with the proposed technique and other recursive algorithms. As in the previous example,
the uncertainty associated to parameters obtained by the proposed algorithm is almost indistin-

Table 1: Example 1: average number of active constraints and LPs.

Unif. noise Gauss. noise
active LPs active LPs

ROBO-BC 4.98 0.25 5.80 0.18
ROBO-FC 5.87 0.80 8.92 0.77
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guishable from that obtained by the ROBO-FC estimator, while the mean number of solved LPs
is greatly reduced, passing from 1.83 to 0.57. Moreover, the devised algorithm clearly outperform
the ROBE, ROBP and RCE algorithms.
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Figure 3: Example 2: uncertainty associated to parameters b1(t) and b2(t): ROBO-FC (black),
ROBO-BC (red), ROBP (green), ROBE (cyan), RCE (yellow).

5.3 Example 3

Consider the time-varying ARX model

y(t) + a1(t)y(t− 1) + a2(t)y(t− 2) = b1(t)u(t− 1) + b2(t)u(t− 2) + e(t)

where the parameter vector θ(t) = [a1(t) a2(t) b1(t) b2(t)]
′ changes over time according to model

(7), with process noise w(t) satisfying (8), with

ǫ(t) = [1/1000 0 1/100 0]′, ∀t

and θ(0) = [0.5 0.3 0.7 0.4]′ (notice that a2(t) and b2(t) are constant parameters, while a1(t)
and b1(t) are time-varying, with different variation rates). The signals w1(t) and w3(t) have been
generated from a uniform random distribution, within the bounds (8). The input u(t) and the
measurement noise e(t) have been generated according to a uniform distribution as in Example 2,
with δ(t) = 0.05, ∀t. Results are averaged over 500 different realizations of u(t), e(t) and w(t).

Figure 4 shows the uncertainties for the auto-regressive parameters a1(t) and a2(t), while
in Figure 5 the uncertainties related to the input parameters b1 and b2 are reported. It can
be observed that the proposed technique outperforms the ROBE, ROBP and RCE algorithms,
and provides a very small overestimation of the parametric uncertainty given by the ROBO-FC
estimator. Indeed, the two orthotopic estimates are almost superimposed for the time-invariant
parameters a2 and b2, while some more conservatism is observed in the approximation of the
time-varying parameters a1 and b1. As long as the computational burden is concerned, Table 2
shows that the average number of active constraints and solved LPs per time step propagated by
the ROBO-BC algorithm is significantly smaller than that employed by the ROBO-FC, for both
uniform and Gaussian distributed noise. Moreover, in the proposed method, the number of active
constraints of each LP remains approximately constant over time, as shown in Figure 6.

In order to analyze the behaviour of the considered algorithms w.r.t. the noise bound δ, a
simulation campaign has been performed by varying δ from 10−3 to 10−1. Twenty-one different
values of δ (logarithmically spaced) have been considered; uniformly distributed noise is assumed,
and results are averaged over 100 identification experiments for each choice of δ.

In Fig. 7, the averaged final uncertainties (after N = 5000 samples) associated to each param-
eter are reported for different values of the noise level δ. Notice that, differently from the other
considered algorithms, the uncertainty obtained by the proposed method remains close to that
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Figure 4: Example 3: uncertainty associated to parameters a1(t) and a2(t): ROBO-FC (black),
ROBO-BC (red), ROBP (green), ROBE (cyan), RCE (yellow).
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Figure 5: Example 3: uncertainty associated to parameters b1(t) and b2(t): ROBO-FC (black),
ROBO-BC (red), ROBP (green), ROBE (cyan), RCE (yellow).
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Figure 6: Example 3, Gaussian noise: average number of active constraints for each solved LP by
the ROBO-FC (black) and by the ROBO-BC method (red).
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Table 2: Example 3: average number of active constraints and LPs.

Uniform noise Gaussian noise
active LPs active LPs

ROBO-BC 12.25 3.84 14.32 3.96
ROBO-FC 19.14 8.72 45.14 9.50

obtained by the ROBO-FC estimator for each value of δ. Regarding the computational burden,
Figures 8 and 9 compare the average number of LPs and active constraints for the ROBO-BC
and the ROBO-FC methods. In Figure 10, the ratio between the number of solved LPs by the
ROBO-FC algorithm and by the proposed method is reported. Notice that, for different values of
the noise level δ, the ROBO-FC method needs to solve a number of LPs going from 130% to 260%
w.r.t. that needed by the ROBO-BC algorithm. Moreover, as reported in Figure 9, the number
of active constraints of each LP is reduced in the proposed approach, leading to an additional
reduction of the computational burden.
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Figure 7: Example 3: Final uncertainty of each parameter: ROBO-FC (black), ROBO-BC (red),
ROBP (green), ROBE (cyan), RCE (yellow).
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Figure 8: Example 3: Mean number of solved LPs at each iteration by the ROBO-FC (black) and
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Figure 9: Example 3: Mean number of constraints for each solved LP by the ROBO-FC (black)
and by the ROBO-BC method (red).
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Figure 10: Example 3: Ratio between the mean number of solved LPs by the ROBO-FC and by
the ROBO-BC method.
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5.4 Example 4

To analyze the behaviour of the proposed algorithm for estimating systems involving a large
number of parameters, a FIR model of order 10 is considered,

y(t) =

10∑

i=1

bi(t)u(t− i) + e(t) .

Initial values of parameters are set to 1, i.e., θ(0) = [1, . . . , 1]′. The parameters bi(t) with odd
indexes are assumed to be constant and equal to 1, while those with even indexes change according
to model (7)-(8), with ǫi(t) = 1/500, ∀t. Signals w(t), u(t) and e(t) are generated as in Example 2,
with δ(t) = 0.1, ∀t. The experiment length is set to 1000 samples. Table 3 reports the uncertainty
associated to each parameter, averaged both with respect to the parameters and to time. A total
number of 100 experiments have been performed. Table 4 provides the average number of active
constraints and solved LPs per iteration for the proposed method and for the ROBO-FC algorithm.
As expected, in the latter case the active constraints increase significantly and one has to solve
a number of LPs per iteration close to 2n + 2. Conversely, such figures are much lower for the
ROBO-BC technique, thus making it viable for online implementation.

Table 3: Example 4: average parametric uncertainty.

Unif. noise Gauss. noise

ROBE 0.4177 0.4552
ROBP 0.5557 0.5556
RCE 0.4738 0.5481
ROBO-BC 0.2115 0.2807
ROBO-FC 0.2078 0.2772

Table 4: Example 4: average number of active constraints and LPs.

Unif. noise Gauss. noise
active LPs active LPs

ROBO-BC 44.89 8.53 55.31 8.99
ROBO-FC 268.79 21.99 398.94 22.00

6 Conclusions

In this paper an algorithm has been provided for tracking parameter changes of a time-varying
linear system. A set membership approach to the recursive estimation problem has been adopted,
where orthotopic approximating regions have been used for outbounding the feasible parameter
set. The devised procedure is based on a constraint selection technique which allows one to keep
a limited number of constraints bounding the feasible set at each step of the recursion. Binding
constraints are used to generate limited size linear programs to be solved at each time step.
Several numerical tests performed on randomly generated experiments show good performance
of the recursive procedure both in terms of computational burden and quality of the obtained
estimate, as compared to alternative techniques available in the literature. Ongoing work is focused
on devising efficient algorithms for tracking the feasible parameter set through more structured
approximating regions like ellipsoids or parallelotopes. Moreover, the extension of the approach
to deal with state estimation of dynamical system is under investigation.
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