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 A B S T R A C T

Within the context of renewable energy communities, this paper focuses on optimal operation of producers 
equipped with energy storage systems in the presence of demand response. A novel strategy for optimal 
scheduling of the storage systems of the community members under price-volume demand response programs, 
is devised. The underlying optimization problem is designed as a low-complexity mixed-integer linear program 
that scales well with the community size. An algorithm for redistributing the demand response rewards 
corresponding to the optimal solution is also developed in order to guarantee fairness among participants. 
The proposed approach is evaluated using two different objective functions through extensive numerical 
simulations. In all cases, economic benefits are demonstrated for producers that participate in a community 
rather than operating independently.
1. Introduction

The need to address the environmental impact of electric energy 
systems and to advance the global transition toward net-zero CO2 emis-
sions, as set forth in initiatives such as the European Green Deal [1], has 
led to extensive investigation of novel paradigms and strategies. This 
requirement stems from the challenge of mitigating climate change and 
ensuring the sustainability and reliability of the energy infrastructure. 
In this respect, renewable energy communities (RECs) and demand re-
sponse (DR) programs stand out as particularly promising tools, due to 
their capacity to address electricity grid and environmental constraints 
while also accounting for socio-economic benefits.

A REC consists of a collective of entities that engage in energy 
exchange through the power grid [2,3]. The primary objective of a 
REC is to deliver social, economic, and environmental benefits to 
its members through the strategic management of distributed energy 
resources, including load profiles, renewable generation assets (such 
as photovoltaic panels and wind turbines), and energy storage sys-
tems [4]. While national regulations often govern REC organization [5], 
individual communities retain some autonomy as far as the operation 
strategy for their activities is concerned. This autonomy enables RECs 
to optimize the collective welfare derived from active participation, 
balancing the technical demands of energy coordination with equitable 
distribution of the resultant benefits among members.
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1.1. Related studies

One of the main objectives of a REC operation strategy is to optimize 
the overall welfare coming from active participation of the entities. In 
this respect, suitable rules must be implemented for the redistribution 
of benefits among participants, ensuring that no member may find it 
advantageous to exit the community [6]. Moreover, the redistribution 
policy should ensure fairness among participants [7].

Demand response programs represent another avenue for reducing 
environmental impact [8–12]. In this framework, participants volun-
tarily adjust their load profiles in response to specific requests by 
an aggregator (e.g., the Distribution System Operator (DSO)), thereby 
providing ancillary services to the grid, such as peak power reduction 
and enhanced network stability [13]. In exchange, a monetary reward 
is granted to participants that fulfill a given DR request. In addition to 
the flexibility provided by load profile shaping, the optimal operation 
of electrical energy storage (EES) systems can contribute to achieving 
DR goals [14,15]. In this respect, RECs have been found to represent an 
important source of DR flexibility, especially when equipped with EES 
facilities [16]. Optimized scheduling of a smart community with shared 
storage in the presence of DR is addressed in [17]. A detailed review 
of DR programs and their potential application to RECs is available in 
the literature [18].
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 Nomenclature
 Symbol Explanation Unit  
 Math notation  
  = {0,… , 𝑇 − 1} Set of time periods 𝑡 in a given time 

horizon
–  

 𝜏𝑠 Duration of a time period (sampling 
time)

[h]  

 (𝑡, 𝑡) = [𝑡, 𝑡) ⊆  Generic time interval –  
 Model variables  
  Set of producer entities with 

storage,  = {1,… , 𝑈}
–  

 𝑆𝑢 Maximum BESS capacity of entity 𝑢 [kWh]  
 𝐸𝑑

𝑢 Maximum BESS discharging energy 
of entity 𝑢 per time slot

[kWh]  

 𝐸𝑐
𝑢 Maximum BESS charging energy of 

entity 𝑢 per time slot
[kWh]  

 𝜂𝑑𝑢 Discharging efficiency of BESS of 
entity 𝑢

–  

 𝜂𝑐𝑢 Charging efficiency of BESS of 
entity 𝑢

–  

 𝑆0
𝑢 Energy level of BESS of entity 𝑢 at 

time 𝑡 = 0
[kWh]  

 𝑆𝑇
𝑢 Energy level of BESS of entity 𝑢 at 

time 𝑡 = 𝑇
[kWh]  

 𝜋𝑔
𝑢 (𝑡) Unitary price of energy sold to the 

grid by entity 𝑢
[e/kWh] 

 𝜋𝑠
𝑢 Unitary cost for operating the BESS 

of entity 𝑢
[e/kWh] 

 𝐸𝑢(𝑡) Energy production of entity 𝑢 [kWh]  
 �̂�𝑢(𝑡) Forecast of 𝐸𝑢(𝑡) [kWh]  
 𝐸𝑔

𝑢 (𝑡) Energy sold to the grid by entity 𝑢 [kWh]  
 𝐸𝑑

𝑢 (𝑡) BESS discharging energy of entity 𝑢 [kWh]  
 𝐸𝑐

𝑢 (𝑡) BESS charging energy of entity 𝑢 [kWh]  
 𝑆𝑢(𝑡) Energy level of BESS of entity 𝑢 [kWh]  
 𝐸𝑙(𝑡) Overall REC loads [kWh]  
 𝐸𝑛(𝑡) Net energy injected into the grid by 

the REC
[kWh]  

 𝐸𝑝(𝑡) Overall energy generation by 
non-schedulable producers

[kWh]  

 𝐽𝑢,0 Net profit of entity 𝑢 when 
operating standalone

[e]  

 𝐽𝑢 Net profit of entity 𝑢 when 
operating within the REC

[e]  

 𝑗 DR request –  
 (𝑡𝑗 , 𝑡𝑗 ) Time horizon of DR request 𝑗 –  
 𝐸𝐷𝑅

𝑗 , 𝐸
𝐷𝑅
𝑗 Lower and upper energy bounds for 

DR request 𝑗

[kWh]  

 𝛾𝑗 Maximum DR reward for DR 
request 𝑗

[e]  

 𝛾𝑗 DR reward for DR request 𝑗 [e]  
 𝐸𝐷𝑅

𝑗 Net energy injected into the grid in 
(𝑡𝑗 , 𝑡𝑗 )

[kWh]  

  DR program,  = {1,… ,𝑅} –  
 𝛾 Total reward for DR program  [e]  
 𝛼 Fraction of 𝛾𝑗 retained by the REC 

manager
–  

 𝛹𝑢 Revenue of entity 𝑢 for selling 
energy to the grid

[e]  

 𝜉𝑢 DR reward assigned to entity 𝑢 [e]  
 𝑧𝑟,1, 𝑧𝑟,2, 𝑧𝑟,3 Binary variables [–]  
2 
This paper deals with the integration of incentive-based DR [19,20] 
in the design of REC operation policies. In particular, we focus on 
the so-called price-volume model. In this paradigm, customers receive 
monetary incentives for maintaining consumption below a specified 
threshold during fixed time intervals. Price-volume DR has been suc-
cessfully applied in various contexts, including load forecasting [21,
22], smart buildings [23–25], electric vehicle charging station man-
agement [26–28], and market optimization [29]. Our study diverges 
from existing research which mainly focuses on load profile shaping, 
both in the general smart grid [30–33] and in the specific REC con-
text [34–36], by investigating how DR requests can be effectively met 
through optimized operation of individual EES systems associated with 
renewable generation sources (e.g., photovoltaic (PV) panels or wind 
turbines) in a REC. Specifically, we assume that the DSO communicates 
a price-volume DR program to the REC at the beginning of each day 
and grants an incentive if the overall community load/generation lies 
within prescribed thresholds in given time intervals. These thresholds 
align with periods where net load reduction supports grid stability. To 
the best of our knowledge, this problem remains unexplored in the 
literature.

1.2. Novelty and contribution

This work deals with the design of an optimal scheduling policy 
that enables renewable energy producers equipped with battery energy 
storage systems (BESS) to participate in a REC and get involved in DR 
programs. The innovations of this paper are outlined in the following 
points.

• A novel mathematical formulation is introduced to address the 
problem of optimal management of storage systems connected 
to renewable generation facilities within a REC in the presence 
of price-volume DR requests. A major feature of such a formu-
lation is that it always guarantees additional economic benefits 
to producers participating in the REC with respect to acting 
autonomously. The optimization problem stemming from the pro-
posed approach turns out to be a low-complexity mixed-integer 
linear program (MILP) involving few binary variables, thus mak-
ing the approach computationally tractable even for large REC 
memberships.

• Two different objective functions are introduced for the afore-
mentioned problem. One is devoted to the maximization of the 
total community revenue from DR, while the other aims to maxi-
mize the total profit of REC producers. Comparisons showing the 
benefits and drawbacks of the two functions are provided.

• An innovative algorithm aimed at partitioning the overall com-
munity DR reward among REC members is designed. Such an 
assignment is based on the distribution of the reward among 
community entities according to a fairness principle.

Extensive numerical simulations are provided to evaluate the effective-
ness of the proposed approach, as well as to emphasize the pros and 
cons of the overall procedure and of the considered objective functions.

1.3. Paper structure

The paper is organized as follows: in Section 2, the considered 
problem is formulated and models of REC entities and DR requests are 
reported. In Section 3, the optimization problem that yields the storage 
system operation policy is designed, and an algorithm for providing a 
fair redistribution of the community DR reward is proposed. Numerical 
examples are presented in Section 4 and discussed in Section 5. Finally, 
conclusions are drawn in Section 6.
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2. Problem formulation and modeling

The REC considered in this paper consists of a set of entities (partic-
ipants)  , each equipped with a renewable generator, e.g., a PV plant, 
and a battery energy storage system, whose operation is scheduled by 
the REC manager via a centralized energy controller. The REC is also 
assumed to include additional entities composed by pure generators 
not connected to a BESS, as well as entities represented by loads. Such 
players contribute to the REC energy balance as a whole, but are not 
subject to scheduling.

2.1. REC entity model

Operation decisions are assumed to be taken at discrete time in-
stants 𝑡 within a given time horizon  = {0,… , 𝑇 −1}, e.g., one day. For 
each 𝑡 ∈  , let 𝐸𝑢(𝑡) represent the amount of energy generated by entity 
𝑢 ∈   in the corresponding time slot, i.e., in the time frame beginning 
at 𝑡 and ending at 𝑡 + 1. Moreover, let 𝐸𝑐

𝑢 (𝑡) and 𝐸𝑑
𝑢 (𝑡) denote the 

controlled variables representing the energy injected into and drawn 
from the BESS, respectively, during time slot 𝑡, and let 𝑆𝑢(𝑡) be the 
BESS energy level at the beginning of the time slot, whose dynamics 
is modeled by the difference equation 

𝑆𝑢(𝑡 + 1) = 𝑆𝑢(𝑡) + 𝜂𝑐𝑢𝐸
𝑐
𝑢 (𝑡) −

1
𝜂𝑑𝑢

𝐸𝑑
𝑢 (𝑡), (1)

where 0 < 𝜂𝑐𝑢 < 1 [0 < 𝜂𝑑𝑢 < 1] represents the charging [discharging] 
efficiency. The controlled variables 𝐸𝑐

𝑢 (𝑡) and 𝐸𝑑
𝑢 (𝑡) are assumed to be 

bounded, i.e., 

0 ≤ 𝐸𝑐
𝑢 (𝑡) ≤ 𝐸

𝑐
𝑢, 0 ≤ 𝐸𝑑

𝑢 (𝑡) ≤ 𝐸
𝑑
𝑢 , (2)

while 𝑆𝑢(𝑡) is bounded by the storage capacity, i.e., 

0 ≤ 𝑆𝑢(𝑡) ≤ �̄�𝑢. (3)

Let 𝐸𝑔
𝑢 (𝑡) be the amount of energy injected into the grid in time slot 

𝑡. The energy balance of participant 𝑢 relative to such time slot is 
therefore expressed by 

𝐸𝑔
𝑢 (𝑡) = 𝐸𝑢(𝑡) − 𝐸𝑐

𝑢 (𝑡) + 𝐸𝑑
𝑢 (𝑡). (4)

The energy amount 𝐸𝑔
𝑢 (𝑡) is sold according to a known pricing signal 

𝜋𝑔
𝑢 (𝑡) assumed known in advance, while the BESS is subject to a unitary 
operation cost 𝜋𝑠

𝑢 . Then, the net profit obtained by entity 𝑢 from energy 
sale over the time horizon   is given by 

𝐽𝑢,0 =
∑

𝑡∈

[

𝜋𝑔
𝑢 (𝑡)𝐸

𝑔
𝑢 (𝑡) − 𝜋𝑠

𝑢
(

𝜂𝑐𝑢𝐸
𝑐
𝑢 (𝑡) +

1
𝜂𝑑𝑢

𝐸𝑑
𝑢 (𝑡)

)

]

. (5)

Finally, the total energy provided to the REC by non-schedulable pro-
ducers is denoted by 𝐸𝑝(𝑡), while the overall load is indicated with 𝐸𝑙(𝑡), 
so that the net energy injected into the grid by the REC in time slot 𝑡
reads 
𝐸𝑛(𝑡) =

∑

𝑢∈
𝐸𝑔
𝑢 (𝑡) + 𝐸𝑝(𝑡) − 𝐸𝑙(𝑡). (6)

2.2. Demand response model

The following demand response model based on price-volume sig-
nals is considered in this paper. A DR program  is modeled as a 
sequence of DR requests sent out by the DSO to the REC manager 
within the time frame  , each one consisting of a time horizon and an 
associated monetary reward function. A suitable reward is granted to 
the REC if the net energy injected into the grid by the REC falls within 
suitable bounds. More specifically, a DR request 𝑗 is defined by the 
following tuple: 

 =
{

(𝑡 , 𝑡 ), 𝐸𝐷𝑅, 𝐸
𝐷𝑅

, 𝛾
}

, (7)
𝑗 𝑗 𝑗 𝑗 𝑗 𝑗

3 
Fig. 1. Overall reward related to the 𝑗−th DR request as a function of the net energy 
injected in the grid.

where (𝑡𝑗 , 𝑡𝑗 ) ⊆   is the time horizon and 𝐸𝐷𝑅
𝑗 , 𝐸

𝐷𝑅
𝑗 , and 𝛾𝑗 are 

positive bounds. Let 

𝐸𝐷𝑅
𝑗 =

∑

𝑡∈(𝑡𝑗 ,𝑡𝑗 )

𝐸𝑛(𝑡) (8)

be the net energy injected into the grid by the REC within the time 
frame (𝑡𝑗 , 𝑡𝑗 ). Then, the reward 𝛾𝑗 corresponding to 𝑗 granted to the 
REC is given by (see Fig.  1) 

𝛾𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾𝑗 if 𝐸𝐷𝑅
𝑗 ≥ 𝐸

𝐷𝑅
𝑗

(𝐸𝐷𝑅
𝑗 −𝐸𝐷𝑅

𝑗 )

(𝐸
𝐷𝑅
𝑗 −𝐸𝐷𝑅

𝑗 )
𝛾𝑗 if 𝐸𝐷𝑅

𝑗 ≤ 𝐸𝐷𝑅
𝑗 ≤ 𝐸

𝐷𝑅
𝑗

0 if 𝐸𝐷𝑅
𝑗 ≤ 𝐸𝐷𝑅

𝑗 .

(9)

The overall reward associated to a given DR program  is given by

𝛾 =
∑

𝑗∶𝑗∈
𝛾𝑗 .

It is assumed that the REC manager redistributes a portion

𝜉 = 𝛼𝛾 (0 < 𝛼 < 1)

of the overall reward 𝛾 among the entities in   according to a fairness 
policy introduced later on, while retaining the remaining fraction to 
cover the profit of the REC manager itself and the reward granted to 
other REC participants (i.e., loads and generators without storage).

3. Optimal REC management under DR program

In this section we present the main contribution of this paper, which 
consists in the design of a three-step optimization procedure aimed 
at optimally operating the BESS resources of the community in the 
presence of DR programs. The key feature of the proposed method is 
to guarantee that for each 𝑢 ∈  , the total profit obtained by joining 
the REC is always greater or equal to the maximum achievable profit 
from energy sales obtained by optimally managing the BESS resources 
in an autonomous fashion, which is derived as a baseline in the first 
step. In the second step, an optimal scheduling of the energy storage 
systems of producers is computed so that a suitable performance index 
is maximized, accounting for the constraints arising from the models 
sketched in the previous section. In the last step, a policy for the 
distribution of the DR rewards among the participants is devised based 
on a fairness principle.

Given a scheduling time horizon  , the proposed three-step design 
procedure is broken down as follows.
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p 1. The optimal perspective profit 𝐽 ∗
𝑢,0 that each single entity 𝑢 ∈

  can achieve over   without joining the REC, i.e., without 
participating in the DR program, is calculated. The overall profit 
𝐽 ∗
0  of all 𝑢 ∈   is computed and exploited in the second step 
as a lower bound constraint on the overall expected profit when 
participating in the REC.

p 2. The optimal scheduling of the control variables of the BESSs 
of the whole REC under the DR program is computed in order 
to maximize a suitable overall REC performance index 𝐻 while 
guaranteeing an overall profit of at least 𝐽 ∗

0 . Possible choices for 
𝐻 are discussed at the end of this section.

p 3. The redistribution of the DR reward obtained using the control 
policy in Step 2 is computed, ensuring both fairness among par-
ticipants and a total (i.e., energy sales plus DR rewards) revenue 
𝐽 ∗
𝑢 ≥ 𝐽 ∗

𝑢,0 for each 𝑢 ∈  .

Let us define 
𝛹𝑢 =

∑

𝑡∈

[

𝜋𝑔
𝑢 (𝑡)𝐸

𝑔
𝑢 (𝑡) − 𝜋𝑠

𝑢
(

𝜂𝑐𝑢𝐸
𝑐
𝑢 (𝑡) +

1
𝜂𝑑𝑢

𝐸𝑑
𝑢 (𝑡)

)

]

, (10)

which represents the net operation profit of entity 𝑢 over the time 
horizon   arising from energy sales. Moreover, let �̂�𝑢(𝑡), 𝑡 ∈   denote 
a forecast of the renewable energy generation of 𝑢. Step 1 of the 
above procedure can be accomplished by solving for each 𝑢 ∈   an 
optimization problem involving the set of decision variables 
𝛩𝑢 =

{

{𝐸𝑔
𝑢 (𝑡), 𝐸𝑐

𝑢 (𝑡), 𝐸𝑑
𝑢 (𝑡), 𝑆𝑢(𝑡), ∀𝑡 ∈  }, 𝑆𝑢(𝑇 )

}

(11)

and formulated as follows. 

Problem 1. 
𝐽 ∗
𝑢,0 = max

𝛩𝑢
𝛹𝑢

 subjected to:

0 ≤ 𝐸𝑐
𝑢 (𝑡) ≤ 𝐸

𝑐
𝑢, 0 ≤ 𝐸𝑑

𝑢 (𝑡) ≤ 𝐸
𝑑
𝑢 (12)

𝑆𝑢(𝑡 + 1) = 𝑆𝑢(𝑡) + 𝜂𝑐𝑢𝐸
𝑐
𝑢 (𝑡) −

1
𝜂𝑑𝑢

𝐸𝑑
𝑢 (𝑡) (13)

0 ≤ 𝑆𝑢(𝑡) ≤ 𝑆𝑢 ∀𝑡 ∈  (14)
𝐸𝑔
𝑢 (𝑡) + 𝐸𝑐

𝑢 (𝑡) = �̂�𝑢(𝑡) + 𝐸𝑑
𝑢 (𝑡) (15)

𝐸𝑐
𝑢 (𝑡)𝐸

𝑑
𝑢 (𝑡) = 0 (16)

𝐸𝑐
𝑢 (𝑡) ≤ �̂�𝑢(𝑡) (17)

𝑆𝑢(0) = 𝑆0
𝑢 , 𝑆𝑢(𝑇 ) = 𝑆𝑇

𝑢 (18)

In Problem  1, constraints (12)–(15) derive from the models in 
Section 2.1, where the generation forecast time series �̂�𝑢(𝑡) is used in 
place of the actual generation 𝐸𝑢(𝑡). Moreover, (16) and (17) are used to 
avoid simultaneous BESS charging/discharging and BESS charging from 
the grid, respectively. Finally, constraints (18) ensure that the initial 
energy level of the storage is reset to a prescribed value at the end of 
the operation horizon. 

Remark 1.  It is not difficult to show that the complementarity con-
straint (16) in Problem  1 is always satisfied at the optimum and 
therefore it can be omitted. In fact, among all feasible solutions for 
which the term 𝜂𝑐𝑢𝐸𝑐

𝑢 (𝑡) −
1
𝜂𝑑𝑢
𝐸𝑑
𝑢 (𝑡) is constant, the ones satisfying either 

𝐸𝑐
𝑢 (𝑡) = 0 or 𝐸𝑑

𝑢 (𝑡) = 0 yield a higher objective value. By neglecting 
constraint (16), Problem 1 turns out to be a linear program.

In order to devise the optimal REC scheduling strategy in Step 2, it is 
first convenient to reformulate the reward policy (9) associated to each 
DR request 𝑗 as a set of linear inequalities involving binary variables. 
Indeed, it is easily seen that 𝐸𝐷𝑅

𝑗  and 𝛾𝑗 satisfy (9) if and only if there 
exist 𝑧𝑗,1, 𝑧𝑗,2, 𝑧𝑗,3 such that

𝑧 , 𝑧 , 𝑧 ∈ {0, 1} (19)
𝑗,1 𝑗,2 𝑗,3

4 
𝑧𝑗,1 + 𝑧𝑗,2 + 𝑧𝑗,3 = 1 (20)

−𝑀𝑧𝑗,1 + 𝐸𝐷𝑅
𝑗 𝑧𝑗,2 + 𝐸

𝐷𝑅
𝑗 𝑧𝑗,3 ≤ 𝐸𝐷𝑅

𝑗 ≤ 𝐸𝐷𝑅
𝑗 𝑧𝑗,1 + 𝐸

𝐷𝑅
𝑗 𝑧𝑗,2 +𝑀𝑧𝑗,3 (21)

−𝑀(1 − 𝑧𝑗,3) ≤ 𝛾𝑗 − 𝛾𝐷𝑅
𝑗 ≤ 𝑀(1 − 𝑧𝑗,3) (22)

−𝑀(1 − 𝑧𝑗,2) ≤ 𝛾𝑗 −
(𝐸𝐷𝑅

𝑗 − 𝐸𝐷𝑅
𝑗 )

(𝐸
𝐷𝑅
𝑗 − 𝐸𝐷𝑅

𝑗 )
𝛾𝐷𝑅
𝑗 ≤ 𝑀(1 − 𝑧𝑗,2) (23)

−𝑀(1 − 𝑧𝑗,1) ≤ 𝛾𝑗 ≤ 𝑀(1 − 𝑧𝑗,1) (24)

where 𝑀 ≫ 0 denotes a constant big enough to avoid inconsistencies 
in the formulation.

The proposed optimal storage scheduling strategy in Step 2 is 
computed via the solution of the following optimization problem, 
where

𝐽 ∗
0 =

∑

𝑢∈
𝐽 ∗
𝑢,0

and the set of decision variables is defined as 
𝛩 =

{

𝛩𝑢, 𝛾𝑗 , 𝑧𝑗,1, 𝑧𝑗,2, 𝑧𝑗,3,∀𝑢 ∈  , ∀𝑗 ∶ 𝑗 ∈ 
}

. (25)

Problem 2. 
𝐻∗ = max

𝛩
𝐻 (26)

 subjected to:
(10), (12)–(18), ∀𝑢 ∈  , ∀𝑡 ∈  (27)
(6), (8), (19)–(24), ∀𝑗 ∶ 𝑗 ∈  (28)
∑

𝑢∈
𝛹𝑢 + 𝛼

∑

𝑗∶𝑗∈
𝛾𝑗 − 𝐽 ∗

0 ≥ 0 (29)

Remark 2.  To avoid complicating the notation, constraint (6) in 
Problem  2 is assumed to be evaluated for 𝐸𝑝(𝑡) and 𝐸𝑙(𝑡) equal to 
suitable forecasts of the respective variables.

Once Problem  2 is solved, the optimal 𝛩∗
𝑢 , 𝑢 ∈   yields the 

optimal scheduling strategy of the BESS resources. Moreover, let 𝛾∗𝑗
and 𝛹∗

𝑢  be the optimal values of 𝛾𝑗 and 𝛹𝑢, respectively. Notice that 𝛹∗
𝑢

represents the operation profit of entity 𝑢 under the optimal policy 𝛩∗
𝑢 , 

not considering any extra reward from DR. Finally, the optimal total 
DR reward for all entities in   is given by 
𝜉∗ = 𝛼

∑

𝑗∶𝑗∈
𝛾∗𝑗 . (30)

Such a reward is to be shared among entities in   according to the 
policy described in the next subsection. 

Remark 3.  From a computational viewpoint, Problem  2 turns out 
to be a mixed-integer linear program involving a number of binary 
variables equal to 3𝑅 being 𝑅 the cardinality of . Since the daily 
number of DR requests amounts to a few units at most, the total number 
of binary variables is low regardless of the community size. Notice that 
the observation concerning the possibility of neglecting the nonlinear 
constraint (16) still stands for Problem  2 if the objective function 𝐻 is 
reasonably defined, e.g., as a positively weighted sum of the profits 𝛹𝑢
and of the DR rewards 𝛾𝑗 , due to the monotonicity of 𝛾𝑗 with respect to 
𝐸𝐷𝑅
𝑗 . This will indeed be the case with the indices proposed later on.

3.1. DR reward redistribution

Let 𝜉∗𝑢 , 𝑢 ∈   denote a partition of 𝜉∗ among the entities of  , i.e., 

∑

𝑢∈
𝜉∗𝑢 = 𝜉∗, 𝜉∗𝑢 ≥ 0. (31)

The total profit of entity 𝑢 ∈   in the presence of DR is then given by
𝐽 ∗ = 𝛹∗ + 𝜉∗.
𝑢 𝑢 𝑢
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As previously discussed, the partitioning is deemed convenient if for all 
𝑢 ∈  , the total profit equals at least the baseline 𝐽 ∗

𝑢,0, i.e., 

𝐽 ∗
𝑢 ≥ 𝐽 ∗

𝑢,0 ∀𝑢 ∈  . (32)

Hence, we look for a partition 𝜉∗𝑢 , 𝑢 ∈   satisfying (31), (32). Many 
possible schemes can be devised to this purpose. In the following, 
we propose a reward assignment based on a fairness principle, which 
guarantees to all entities a reward proportional to their baseline profit. 
To this purpose, we introduce the ratio 

𝜌 =
𝛹∗ + 𝜉∗ − 𝐽 ∗

0
𝐽 ∗
0

(33)

being

𝛹∗ =
∑

𝑢∈
𝛹∗
𝑢 .

By virtue of constraint (29) in Problem  2, it turns out that 𝜌 ≥ 0. Let us 
define 𝜉∗𝑢  as 

𝜉∗𝑢 = (1 + 𝜌)𝐽 ∗
𝑢,0 − 𝛹∗

𝑢 . (34)

This corresponds to a total entity profit

𝐽 ∗
𝑢 = (1 + 𝜌)𝐽 ∗

𝑢,0.

Hence, the partition (34) trivially satisfies (32), while (31) simply 
follows by taking the sum of both sides of (34) over all 𝑢 ∈   and 
using (33).

Clearly, the additional profit gained by 𝑢 by joining the REC is given 
by

𝛿𝑢 = 𝜌𝐽 ∗
𝑢,0.

Note that fairness among entities is guaranteed by the proposed sharing 
policy since the extra profit obtained by each producer 𝛿𝑢 is propor-
tional to the profit achieved if operating autonomously. In other words, 
𝜌 denotes the ratio between the additional profit and the baseline, for 
each entity.

It is worth remarking that reward distribution policies different from 
the one proposed here can be easily devised. In fact, the computations 
in steps 1 and 2 are independent of the particular distribution strategy 
implemented in step 3.

3.2. Performance indices

Depending on the main aims of the community (e.g., maximizing 
the REC manager profit, maximize the overall revenue of entities, 
etc.), several objective functions 𝐻 can be defined for Problem  2. The 
following two choices are proposed and compared in this paper:

• REC manager interest: the objective function is taken equal to the 
revenue of the REC manager, i.e., 

𝐻 = 𝐻𝑀 = (1 − 𝛼)
∑

𝑗∶𝑗∈
𝛾𝑗 . (35)

Note that maximizing 𝐻𝑀  is equivalent to maximizing the overall 
DR reward gained by the community.

• Overall entities’ interest : the considered objective function is the 
total profit of the entities 𝑢 ∈  , i.e., 

𝐻 = 𝐻𝐸 =
∑

𝑢∈
𝛹𝑢 + 𝛼

∑

𝑗∶𝑗∈
𝛾𝑗 . (36)

Different choices of the performance index 𝐻 are indeed possible, as 
well as different definitions of the reward redistribution policy. Such 
extensions will be the topic of further research.
5 
4. Test cases

This section offers two examples to validate the proposed approach. 
The first one is a simple illustrative example aimed at showing the 
main features of the procedure, while the second one has the purpose 
to evaluate the performance and the computational feasibility of the 
proposed technique in a larger scale practical setting. In all simulations, 
the optimization horizon   is assumed to span 24 hours with a sampling 
time of 𝜏𝑠 = 15 minutes. In both examples, the parameters of the energy 
storage systems as well as the energy generation profiles of the various 
entities have been obtained by a suitable scaling of the real data used 
in [37]. For all entities 𝑢, the considered initial and final BESS energy 
levels are 𝑆0

𝑢 = 𝑆𝑇
𝑢 = 0, the charging and discharging efficiencies are set 

to 𝜂𝑐𝑢 = 𝜂𝑑𝑢 = 0.95, and the unit price of the energy sold to the grid 𝜋𝑔
𝑢 (𝑡)

is set as the time series depicted in green in Fig.  2, while the unitary 
cost for operating the storage system is 𝜋𝑠

𝑢 = 0.01 e/kWh. Simulations 
are performed assuming the availability of suitable forecasts of the 
generation profiles of each PV producer. The generation data cover 
the period from April 1, 2019 to April 30, 2019, for a total of 30
days. Simulations and optimization of Problems  1 and 2 have been 
implemented in Python and solved using the CPLEX solver [38] on an 
Intel i7-11700@3.60 GHz, 16 GB of RAM. Results from the simulations 
are discussed in Section 5.

Example 1.  In this illustrative example, a community composed of 
two PV producers equipped with a BESS is considered. The nominal 
peak power of the PV plant of the first entity is set to 𝑃 1 = 700 kW, 
with a battery capacity 𝑆1 = 500 kWh. In contrast, the second entity 
can supply generation with 𝑃 2 = 300 kW peak power, with a battery 
capacity 𝑆2 = 250 kWh. We assume two DR requests for each day. The 
parameters associated with each request are provided in Table  1. Such 
DR requests are assumed to remain the same in all the considered days.

In Table  2, the following daily amounts are reported for 5 simulation 
days: the optimal total daily profit of entities when operating outside 
the REC (𝐽 ∗

0 ), the total daily extra profit of the entities when joining 
the REC (𝛿1 + 𝛿2), and the total daily DR reward received at REC level 
(𝛾∗1 + 𝛾∗2 ). Results for both objective functions 𝐻𝐸 and 𝐻𝑀  introduced 
in Section 3.2 are reported. The individual profit for each entity under 
Problem  1 (𝐽 ∗

𝑢,0) and Problem  2 (𝐽 ∗
𝑢 ) for both objective functions, as 

well as the corresponding 𝜌 are reported in Table  3. The time evolution 
of relevant energy signals concerning Entity 1 (along with that of 
energy selling price) in a representative day (day 24) are reported in 
Fig.  2, assuming the entity operates individually without joining the 
REC (Problem  1). The case of the same entity participating in the REC 
according to the proposed scheduling under the objective function 𝐻𝐸

is depicted in Fig.  3. The daily extra profits gained by both entities 
under the objective functions 𝐻𝐸 and 𝐻𝑀 , are illustrated in Fig.  4. Fig. 
5 shows the daily reward for the two DR requests 1 and 2, under 
the two objective functions 𝐻𝐸 and 𝐻𝑀 .

Example 2.  In this example, a community composed of 30 PV pro-
ducers equipped with energy storage systems is considered. The peak 
power 𝑃 𝑢 of the PV plant of each entity and the corresponding battery 
capacity 𝑆𝑢 are shown in Table  5.

Two DR requests are considered for each day, with random start and 
duration, so that 𝑡𝑗 and 𝑡𝑗 can differ each day (𝑡2 > 𝑡1). The lower and 
upper energy bounds for DR requests are fixed, and they equal to 𝐸𝐷𝑅

1 =
𝐸𝐷𝑅

2 = −10000 kWh, 𝐸𝐷𝑅
1 = 10000 kWh and 𝐸𝐷𝑅

2 = 50000 kWh, while 
both 𝛾1 and 𝛾2 are fixed to 3000e. For a representative day (day 3), 
the total load of the community and the total generation by producers 
not equipped with a BESS are reported in Fig.  6, while the net energy 
injected into the grid is depicted in Fig.  7. Table  6 summarizes the 
profit of each unit both when working individually and when joining 
the community, for three days of simulation. Finally, the overall extra 
profit and DR reward of all entities are reported in Table  7.
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Fig. 2. Results for Entity 1 on day 24 under Problem  1. Energy production forecast �̂�𝑢(𝑡) (blue), sold energy 𝐸𝑔
𝑢 (𝑡) (dashed red), energy selling price 𝜋𝑔

𝑢 (𝑡) (green), storage energy 
level 𝑆𝑢(𝑡) (purple), and time periods of DR requests (yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 3. Example  1. Results for Entity 1 on day 24 under Problem 2 with 𝐻 = 𝐻𝐸 . Energy production forecast �̂�𝑢(𝑡) (blue), sold energy 𝐸𝑔
𝑢 (𝑡) (dashed red), energy selling price 

𝜋𝑔
𝑢 (𝑡) (green), storage energy level 𝑆𝑢(𝑡) (purple), and time periods of DR requests (yellow). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 4. Example  1. Daily additional profits 𝛿1 and 𝛿2 under the objective functions 𝐻𝐸 (top) and 𝐻𝑀 (bottom).

Energy 326 (2025) 136076 
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Table 1
Example  1. Set of DR requests for all days.
 Request ID 𝑡𝑗 𝑡𝑗 𝐸𝐷𝑅

𝑗 [kWh] 𝐸
𝐷𝑅
𝑗 [kWh] 𝛾𝑗 [𝑒] 𝛼  

 1 08:00 09:00 0 800 65 0.85 
 2 17:00 18:00 0 1400 65 0.85 
Table 2
Example  1. Total daily amounts related to two different objective functions 𝐻 , in 5 simulated days.
 𝐻 = 𝐻𝐸 𝐻 = 𝐻𝑀

 Date 𝐽 ∗
0 [e] 𝛿1 + 𝛿2[e] 𝛾∗1 + 𝛾∗2 [e] 𝛿1 + 𝛿2[e] 𝛾∗1 + 𝛾∗2 [e] 

 04–01 438.33 40.59 74.56 13.84 82.15  
 04–02 355.10 23.63 47.48 2.08 62.49  
 04–03 403.71 34.39 67.28 12.35 77.46  
 04–04 406.58 32.68 64.60 15.65 75.59  
 04–05 375.59 29.11 61.20 0.58 72.08  
Table 3
Example  1. Profit of each entity working outside the REC and profit and fairness index for different objective functions 𝐻 , in 5 simulated days.
 𝐻 = 𝐻𝐸 𝐻 = 𝐻𝑀

 Date 𝐽 ∗
1,0[e] 𝐽 ∗

2,0[e] 𝐽 ∗
1 [e] 𝐽 ∗

2 [e] 𝜌 𝐽 ∗
1 [e] 𝐽 ∗

2 [e] 𝜌  
 04–01 306.48 131.85 334.86 144.06 0.092 316.15 136.01 0.0316 
 04–02 248.55 106.55 265.09 113.64 0.066 250.01 107.18 0.0050 
 04–03 282.25 121.46 306.29 131.81 0.085 290.88 125.18 0.0031 
 04–04 284.28 122.30 307.13 132.13 0.080 295.233 127.01 0.0385 
 04–05 262.87 112.72 283.24 121.46 0.077 263.27 112.9 0.0015 
Fig. 5. Example  1. Daily DR reward profiles for requests 1 and 2, under the objective functions 𝐻𝐸 (top) and 𝐻𝑀 (bottom). Maximum achievable DR reward 𝛾1 + 𝛾2 (orange), 
actual DR reward at community level 𝛾∗1 + 𝛾∗2  (blue), DR reward of Entity 1 𝜉∗1 (red) and 2 𝜉∗2 (yellow), and total reward of entities 𝜉∗ = 𝜉∗1 + 𝜉∗2 (green). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Example  1. Extra profits and achieved DR rewards under 𝐻𝐸 and 𝐻𝑀 , for different values of the maximum DR reward.
 𝛾𝑗 = 40[e] 𝛾𝑗 = 100[e]

 𝐻 = 𝐻𝐸 𝐻 = 𝐻𝑀 𝐻 = 𝐻𝐸 𝐻 = 𝐻𝑀

 Date 𝐽 ∗
0 [e] 𝛿1 + 𝛿2[e] 𝛾⋆1 + 𝛾⋆2 [e] 𝛿1 + 𝛿2[e] 𝛾⋆1 + 𝛾⋆2 [e] 𝛿1 + 𝛿2[e] 𝛾⋆1 + 𝛾⋆2 [e] 𝛿1 + 𝛿2[e] 𝛾⋆1 + 𝛾⋆2 [e]  04–01 438.33 19.13 30.2 0.0 50.55 77.77 126.38 57.16 126.38  

 04–02 355.10 10.08 18.1 0.0 38.45 51.41 96.13 37.37 96.13  
 04–03 403.71 15.01 27.31 0.0 47.67 69.29 119.17 44.21 119.17  
 04–04 406.58 14.13 26.16 3.59 46.52 66.68 116.29 62.90 116.29  
 04–05 375.59 11.68 24.00 0.55 44.36 61.50 110.89 56.74 110.89  
5. Discussion

In this section, the results of the simulations provided in the above 
examples are commented in detail. First, let us focus on Example  1. 
From Table  2, one can notice that the total extra profit of entities (𝛿1 +
𝛿 ) is consistently higher under the objective function 𝐻𝐸 compared to 
2

7 
𝐻𝑀 , across all days. On the contrary, the community daily DR reward 
(𝛾∗1 + 𝛾∗2 ), and hence the revenue of the REC manager, is higher when 
the objective function 𝐻𝑀  is employed. Such results are consistent with 
the goals of the two objective functions, as reported in Section 3.2. 
As shown in Table  3, the proposed DR reward redistribution approach 
ensures that all entities receive a reward proportional to the individual 
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Table 5
Example  2. Values of entity parameters.
 Entity 1 2 3 4 5 6 7 8 9 10  
 𝑃 𝑢 548 412 652 592 364 320 468 588 540 556 
 𝑆𝑢 603 277 744 377 291 169 344 711 298 717 
 Entity 11 12 13 14 15 16 17 18 19 20  
 𝑃 𝑢 516 600 412 400 356 360 472 416 476 464 
 𝑆𝑢 403 563 334 342 370 377 324 245 270 253 
 Entity 21 22 23 24 25 26 27 28 29 30  
 𝑃 𝑢 524 696 584 440 328 528 320 364 648 388 
 𝑆𝑢 474 846 624 344 213 527 181 435 499 402 
Table 6
Example  2. Profit of all entities acting individually (𝐽 ∗

𝑖,0) and joining the community (𝐽 ∗
𝑖 ), 𝑖 = 1,… , 30 under 𝐻𝐸 , in 3 simulation days.

 Date 𝐽 ∗
1,0 𝐽 ∗

2,0 𝐽 ∗
3,0 𝐽 ∗

4,0 𝐽 ∗
5,0 𝐽 ∗

6,0 𝐽 ∗
1 𝐽 ∗

2 𝐽 ∗
3 𝐽 ∗

4 𝐽 ∗
5 𝐽 ∗

6  
 04–01 242.18 180.15 288.2 258.55 159.79 139.27 351.66 261.59 418.48 375.43 232.02 202.24 
 04–02 194.64 146.24 231.58 210.07 129.28 113.1 281.56 211.55 334.99 303.88 187.02 163.62 
 04–03 222.17 165.89 264.33 238.06 147.19 128.2 298.25 222.69 354.85 319.57 197.59 172.1  
 Date 𝐽 ∗

7,0 𝐽 ∗
8,0 𝐽 ∗

9,0 𝐽 ∗
10,0 𝐽 ∗

11,0 𝐽 ∗
12,0 𝐽 ∗

7 𝐽 ∗
8 𝐽 ∗

9 𝐽 ∗
10 𝐽 ∗

11 𝐽 ∗
12  

 04–01 205.04 259.91 235.2 245.76 226.41 264.58 297.73 377.40 341.52 356.86 328.76 384.19 
 04–02 166.2 208.84 191.04 197.48 183.27 213.10 240.43 302.11 276.35 285.67 265.11 308.27 
 04–03 188.84 238.39 216.5 225.41 208.55 243.2 253.50 320.02 290.64 302.60 279.96 326.48 
 Date 𝐽 ∗

13,0 𝐽 ∗
14,0 𝐽 ∗

15,0 𝐽 ∗
16,0 𝐽 ∗

17,0 𝐽 ∗
18,0 𝐽 ∗

13 𝐽 ∗
14 𝐽 ∗

15 𝐽 ∗
16 𝐽 ∗

17 𝐽 ∗
18  

 04–01 180.94 175.92 157.26 159.04 206.48 181.41 262.74 255.44 228.36 230.94 299.83 263.42 
 04–02 146.33 142.07 126.44 127.86 167.56 147.39 211.68 205.51 182.91 184.96 242.39 213.21 
 04–03 166.68 162.04 144.33 145.95 190.14 167.01 223.75 217.52 193.75 195.93 255.25 224.20 
 Date 𝐽 ∗

19,0 𝐽 ∗
20,0 𝐽 ∗

21,0 𝐽 ∗
22,0 𝐽 ∗

23,0 𝐽 ∗
24,0 𝐽 ∗

19 𝐽 ∗
20 𝐽 ∗

21 𝐽 ∗
22 𝐽 ∗

23 𝐽 ∗
24  

 04–01 207.44 202.06 230.81 307.65 258.03 193.06 301.21 293.40 335.16 446.72 374.68 280.35 
 04–02 168.51 164.12 186.11 247.2 207.42 156.27 243.76 237.40 269.22 357.60 300.05 226.07 
 04–03 190.96 186.0 212.34 282.17 236.76 177.84 256.35 249.69 285.06 378.79 317.84 238.73 
 Date 𝐽 ∗

25,0 𝐽 ∗
26,0 𝐽 ∗

27,0 𝐽 ∗
28,0 𝐽 ∗

29,0 𝐽 ∗
30,0 𝐽 ∗

25 𝐽 ∗
26 𝐽 ∗

27 𝐽 ∗
28 𝐽 ∗

29 𝐽 ∗
30  

 04–01 143.31 233.18 139.44 160.9 284.22 171.39 208.10 338.60 202.48 233.63 412.71 248.87 
 04–02 116.4 187.53 113.28 129.28 230.16 137.80 168.39 271.28 163.86 187.02 332.93 199.35 
 04–03 131.96 214.06 128.37 147.57 261.79 157.30 177.15 287.36 172.32 198.10 351.43 211.17 
Table 7
Example  2. Total daily amounts related to two different objective functions 𝐻 , in 5 simulated days.
 𝐻 = 𝐻𝐸 𝐻 = 𝐻𝑀

 Date 𝐽 ∗
0

∑

𝑢∈
𝛿𝑢

∑

𝑗∶𝑗∈
𝛾∗𝑗

∑

𝑢∈
𝛿𝑢

∑

𝑗∶𝑗∈
𝛾∗𝑗  

 04–01 6297.61 2846.95 3996.31 2550.03 3996.31 
 04–02 5086.64 2271.51 2469.96 1937.66 2853.52 
 04–03 5790.00 1982.63 2573.94 1767.63 2601.74 
 04–04 5829.33 1884.17 2415.16 1559.73 2525.93 
 04–05 5378.23 3006.71 3118.36 2667.43 3488.99 
Fig. 6. Example  2 Overall REC loads (blue), overall energy generation by non-schedulable producers (red) on day 3. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
profits obtained when operating independently. However, the factor 𝜌
is considerably smaller when considering the objective function 𝐻𝑀 , 
which implies a reduction of the extra profit for all entities.

Fig.  2 , which refers to standalone operation, reveals that during 
the early hours of the day, when the selling price is low, the entity 
prioritizes storing its energy production, while discharging starts oc-
curring around 10:00 to take advantage higher selling prices. By 14:00, 
the BESS is fully discharged to avoid selling the stored energy at lower 
prices. On the other hand, when joining the REC, both entities stop 
8 
charging and start exporting their energy production once the first 
DR request horizon begins (see Fig.  3). During this period, Entity 1 
exports 294 kWh, while Entity 2 exports 126 kWh. After the first DR 
request ends, entities resume charging due to low energy price and 
later export to the grid during the period with highest energy price. 
Between 15:15 and 17:00 charging is restarted again, thus allowing 
for subsequent discharge. This strategy enables Entities 1 and 2 to 
provide 729 kWh and 318 kWh, respectively, during the second DR 
request. From Fig.  4 it is apparent that both 𝛿  and 𝛿  are higher 
1 2
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Fig. 7. Example  2 Net energy injected into the grid by the REC under 𝐻𝐸 (blue), and period of DR requests (yellow) on day 3. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
when the objective function is set to 𝐻𝐸 compared to 𝐻𝑀 . This result 
is expected, as 𝐻𝐸 is designed to maximize the total revenue of the 
entities, whereas 𝐻𝑀  focuses on maximizing the revenue of the REC 
manager, which naturally leads to lower extra profits for the entities. 
Fig.  4 also shows that a fair redistribution of rewards occurs among 
the entities, that is, the additional profit from REC participation is 
proportional to their respective individual revenue when operating 
independently, i.e., outside the REC. This ensures that the additional 
profits 𝛿1 and 𝛿2 are allocated equitably, reflecting the contribution 
provided by each entity to the REC. Notice that, when the objective 
function 𝐻𝑀  is used, 𝛿1 = 𝛿2 = 0 on some days, that is, the profit of 
the entities joining the REC equals the profit they would gain if acting 
individually.

Regarding the DR rewards assigned to the entities, Fig.  5 shows 
that when optimizing 𝐻𝑀 , the total community reward is no less than 
that obtained by using 𝐻𝐸 , as expected. However, even if optimizing 
𝐻𝑀 , the REC is in general unable to provide the upper DR request 
energy bounds (i.e., 𝛾∗1 + 𝛾∗2 < 𝛾1 + 𝛾2). Clearly, the sum of the rewards 
assigned to the two entities is less than the total reward received by 
the community, since a fraction of it is retained by the REC manager 
according to (30).

The sensitivity of the proposed method with respect to the DR 
reward bound 𝛾𝑗 is explored in Table  4. When the DR reward bound 𝛾𝑗
is increased from 40 to 100e, the achieved DR rewards 𝛾∗1 + 𝛾∗2  under 
both objectives 𝐻𝐸 and 𝐻𝑀  are the same. This basically means that the 
DR reward is large enough to make fulfillment of DR requests always 
advantageous regardless of all costs and energy losses arising when 
operating storage. So, any further increase in 𝛾𝑗 will provide the same 
BESS control commands and consequently the same amount of energy 
injected into the grid.

Concerning Example  2, in Fig.  7 it can be observed that entities 
discharge their storage systems during the DR periods to increase the 
energy injected into the grid. This contributes to achieving the REC 
monetary reward, which is then shared among entities, thus allowing 
them to substantially increase their profit compared to the baseline, 
see Tables  6 and 7. Regarding the two considered objective functions 
𝐻𝐸 and 𝐻𝑀 , they yield behaviors similar to those in Example  1, 
i.e., favoring the entity profit and the total DR reward, respectively.

Example  2 allows one to evaluate the computational burden of 
the proposed procedure. Indeed, it turns out that the algorithm is 
computationally tractable even in the presence of a large number of 
entities. In fact, the average time needed to solve 30 instances of 
Problem  1 and one instance of Problem  2 for the time frame of one day 
is about 0.15 s on average, thus allowing this technique to be practically 
adopted in real-world scenarios. The low computational effort of the 
whole procedure is due to two reasons: first, Problem  1 which needs to 
be solved for each entity is a linear program, and so it can be efficiently 
solved by standard tools; second, although Problem  2 is a MILP, the low 
number of involved integer variables allows it to be quickly solved at 
the optimum.

Summarizing, the obtained results highlight the possibility of ex-
ploiting the potential of DR to increase the benefits associated to REC 
9 
participation. In this specific context, DR turns out to be a viable alter-
native/complement to commonly employed incentive-based paradigms 
such as those presented in [37]. On the downside, the proposed opti-
mization framework is expected to be sensitive to uncertainty in load 
and generation forecasts. In this respect, stochastic formulations explic-
itly accounting for such uncertainty can help improve robustness of 
storage operation policies and are the subject of current investigation. 
Finally, although the proposed formulation is reasonably general, a fur-
ther effort is necessary in order to tailor the performance objective and 
the problem constraints to specific local regulations and to the presence 
of different types of players within the REC such as, e.g., prosumers.

6. Conclusion and future research

In this paper, the potential of coordinating storage operations inside 
a REC in the presence of DR programs has been investigated. Under 
the assumption that the REC is involved in price-volume DR programs, 
a novel 3-step procedure has been proposed to optimize individual 
storage operation with respect to objective functions that represent 
overall community benefit. The proposed approach guarantees both 
an increased profit for REC producers compared to optimally acting 
outside the community, and the redistribution of DR rewards among 
participants according to a fairness principle. The optimization proce-
dure involves the solution of an LP for each schedulable entity and of 
one MILP with only few integer variables irrespective of the community 
size, thus making the approach viable for large-scale problem instances. 
Extensive numerical simulations have been provided showing the effec-
tiveness of the proposed method and comparing the results under two 
different objective functions.

The results obtained in this work explored the potential of DR in the 
management of RECs and showed that DR programs can be efficiently 
handled in an optimal fashion within this context, both as an alternative 
and as a complement to commonly used incentive-based models.

Future work will focus on the extension of the proposed procedure 
to different performance indices and reward redistribution policies 
accounting for specific local regulations. A further development will 
address the presence of REC prosumers and stochastic behavior of par-
ticipating entities, as well as uncertainty affecting load and generation 
profiles.
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