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 A B S T R A C T

Renewable energy communities constitute one of the most promising tools to contribute to the green energy 
transition and to provide social, environmental, and economic benefits to their members. These goals are 
pursued through the cooperative efforts of the community participants to increase the local energy self-
consumption. In this paper, the optimal operation of energy storage system in an incentive-based energy 
community is addressed. By exploiting the flexibility provided by the storage facilities, the problem of 
minimizing the community energy bill by taking advantage of incentives related to local self-consumption 
is formulated. Conditions for the convenience of using storage systems inside an energy community, and 
explicit optimal solutions for managing such systems are analytically derived. Robustness of the solution 
against uncertainty affecting consumption and generation profiles of the community members is investigated. 
Numerical simulations are provided to assess the performance and the feasibility of the proposed solution.
1. Introduction

The Net Zero plan of the European community aims at achieving 
climate neutrality by 2050 [1]. One of the most promising solutions 
relies on the paradigm of renewable energy communities (RECs). As 
defined by the European Union [2], an energy community is a legal 
entity where participation is established on a voluntary and open basis, 
with the primary purpose of ensuring environmental, social and eco-
nomic benefits to its members and shareholders. These benefits may be 
obtained by providing auxiliary services through renewable generation 
facilities, energy storage systems and electric vehicles. Thus, a REC 
can contribute to reducing gas emissions, triggering renewable self-
consumption mechanisms, and increasing environmental sustainability. 
Additionally, it allows citizens to play an active role in the energy 
transition, fostering virtuous behaviors and economic growth.

1.1. Related works

Generally, an energy community is characterized by a massive adop-
tion of renewable resources, ensuring the self-consumption mechanism 
either through local markets [3,4], or by exploiting community incen-
tives introduced by state or regional regulations [5,6]. The former ap-
proach is focused on establishing energy trading operations among all 
community members, where local prices are usually computed accord-
ing to distributed-like approaches, including ADMM algorithms [7], 
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and blockchain technologies [8]. The latter relies on incentives granted 
to the community based on the cooperation of its members [9], or on 
the community virtual self-consumption [10], defined as the minimum 
between the overall energy demand of the community and the total 
renewable energy generated within the REC.

In [11], it is shown that energy communities may help to provide 
environmental benefits and cost reductions for their users, leading 
to a higher social acceptability and an increase of community self-
consumption [12]. Moreover, the optimal coordination of community 
members can provide lower operation costs [13]. Since acting towards 
the community generally leads to cheaper energy bills, fair redistribu-
tion schemes are employed to allow that every member can benefit by 
joining the community [14]. The economic benefits of RECs are also 
analyzed in the context of buildings [15], while in [16] it is shown that 
building performance in the community system can be improved by 
employing optimization routines. Nevertheless, the optimal allocation 
of renewable resources may allow to reduce investment costs while 
considering different aspects of the community system, such as electric 
mobility [17], and local conditions for the installation of photovoltaic 
or wind turbine facilities [18].

Energy storage systems can play a crucial role in achieving high lev-
els of community self-resiliency. Actually, to enhance the community 
operation, they can be employed as a shared resource [19], or operated 
through coordinated efforts of private users [20]. However, their opti-
mal operation must consider different aspects, including power flow 
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modeling [21] and uncertainties in renewable generation or consump-
tion profiles [22]. Concerning uncertainty-aware approaches, two-stage 
formulations [22,23] and robust approaches [24] are employed to 
handle uncertain variables. Also, risk-constrained procedures have been 
developed to satisfy grid requirements [25] and design a community 
storage facility [26].

1.2. Contribution

This paper is focused on incentive-based RECs, where the com-
munity is assumed to be composed of consumers, producers and pro-
sumers, while the incentive provided to the REC is granted on the basis 
of the virtual self-consumption in each time period of the day. For in-
stance, such framework complies with the Italian regulation, where the 
virtual self-consumption is computed on an hourly basis. We suppose 
that prosumers and producers can be equipped with energy storage 
units that can be used to provide flexibility to the community. To 
manage the energy flows inside the community, a central entity, called 
REC manager, is engaged to manage the energy storage systems. Using 
load and renewable generation profiles provided by REC members, it 
operates the storage systems to achieve the following objectives:

• minimize the energy bought from the grid by each prosumer;
• coordinate the storage systems to minimize the community en-
ergy cost.

Thus, the optimal control problem is formulated, and optimality 
conditions are derived to find the optimal storage schedule. The main 
contributions of the proposed study are:

• closed-form solution for the optimal charging/discharging strat-
egy which makes the solution nicely scalable for RECs of arbitrary 
size, featuring negligible runtimes;

• optimization procedure useful for designing and building a REC, 
with reference to quantification of the economic convenience of 
exploiting storage systems depending on the level of uncertainty 
and the optimal sizing and management of storage systems of the 
REC;

• adaptation of the previous solutions to the case of uncertain load 
and generation profiles according to a worst-case approach.

To validate the effectiveness of the optimal solution obtained, numer-
ical simulations involving renewable energy communities of large size 
are performed.

1.3. Novelty

Due to the high relevance to REC’s design and operation, there are 
several recent works in the literature that address this topic. In fact, 
many research works are related to optimal management of shared
storage systems inside RECs, like in [27], where the influence of the 
variability of power demand on the total operating and maintenance 
costs of a community is investigated through a multi-objective analysis. 
In [28], it is analytically proved that the optimal control of a shared 
storage system over a horizon of several days is equivalent to solving 
many optimization problems over a single day, thus reducing the over-
all complexity. In the recent work [29], authors address the problem 
of operating shared storage systems in a REC to maximize the overall 
self-consumption while preserving battery lifespan. To this purpose, a 
two-layer optimal control model composed of a planner and a real-time 
controller is proposed.

Differently from the above-mentioned contributions, in this paper it 
is assumed that no shared batteries are available, whereas prosumers 
and producers can be equipped with their own energy storage units that 
can be operated to provide flexibility to the community. In this context, 
the case of distributed storage systems is analyzed in [30], where a 
mixed-integer linear programming (MILP) problem is formulated to 
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reduce the total costs of the aggregation for supply and storage, while 
maximizing profits and additional ancillary services provided to the 
grid. Optimal operation of storage systems in RECS under demand 
response programs is considered in [31,32], where the optimal battery 
management is provided through the solution of low-complexity MILP 
problems. A community energy management system under demand 
response programs is also considered in [33], where the devised energy 
management system operates on two levels: the community controller 
level and the consumer level. To reduce the overall expected cost, bat-
tery energy usage is optimized through a genetic algorithm. Contrary 
to the previously cited works, in this paper a closed-form solution for 
the optimization problem aimed at the management of energy storage 
systems is provided. So, the obtained management strategy turns out to 
be easily implementable in real applications. Moreover, explicit worst-
case scenarios are derived to apply the storage optimal control law in 
a robust optimization framework.

1.4. Notation

For a given optimization problem, the superscript ∗ denotes all 
the quantities related to the optimal solution ∗. Accordingly, all the 
variables related to a given feasible solution ̃ are denoted with the 
superscript ̃.

A flowchart illustrating the main topics treated in each section of 
the paper is reported in Fig.  1.

2. Materials and methods

2.1. Problem formulation

The problem is formulated in a discrete time setting, where the 
storage operation is performed over one day, divided into 𝑇  time 
indexes and represented by the set  = {0, 1,… , 𝑇 − 1}. Consider a 
renewable energy community composed of a set   of members (or 
entities). For a given community member 𝑢 ∈  , let 𝑙𝑢(𝑡) be the 
load between time 𝑡 and 𝑡 + 1, whereas 𝑟𝑢(𝑡) be the renewable energy 
generated in the same time interval. In general, an entity can be a 
consumer, a producer or a prosumer. A consumer is characterized by 
its load (𝑙𝑢(𝑡) ≥ 0, 𝑟𝑢(𝑡) = 0, ∀𝑡), a producer by the generated renewable 
energy (𝑙𝑢(𝑡) = 0, 𝑟𝑢(𝑡) ≥ 0, ∀𝑡), while a prosumer involves both 
consumption and generation (𝑙𝑢(𝑡) ≥ 0, 𝑟𝑢(𝑡) ≥ 0, ∀𝑡).

Assume that a fraction of producers and prosumers are equipped 
with an energy storage system, and let them be gathered into the set 
𝑠 ⊆  . Consumers are not considered in this set because it is assumed 
that a storage can contribute to the community only by using renewable 
sources (see for instance the Italian regulations [34]). Thus, 5 kinds of 
entities are considered, which represent all the possible combinations 
of load, generation and storage, as depicted in Fig.  2.

Let 𝜌𝑢(𝑡) = 𝑟𝑢(𝑡)−𝑙𝑢(𝑡); for a given entity 𝑢 ∈ 𝑠 the maximum amount 
of energy that can be charged into the storage between 𝑡 and 𝑡 + 1 is 

𝑒𝑢(𝑡) = max{𝜌𝑢(𝑡), 0}. (1)

Note that 𝑒𝑢(𝑡) denotes the surplus between the generated and the con-
sumed energy; the remaining generated energy is supposed to supply 
the entity load. In this paper, the storage capacity and maximum power 
rates are left as variables of the optimization problem. In fact, one 
of the targets of the proposed study is to provide information on the 
storage system size allowing for the minimization of the cost of the 
REC. This knowledge provide crucial information on how to build the 
REC structure and plan its operation. Note that such assumptions can 
be relaxed in practical applications by enforcing a posteriori feasible 
bounds on storage capacities and charging/discharging power rates, as 
reported in Section 3.
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Fig. 1. Flowchart of paper structure.

Given an entity 𝑢 ∈ 𝑠, let 𝑒𝑐𝑢(𝑡) be the energy charged into the 
storage while 𝑒𝑑𝑢 (𝑡) be the energy drawn from the storage between 𝑡
and 𝑡 + 1. The energy stored at time 𝑡 + 1 is expressed as 
𝑠𝑢(𝑡 + 1) = 𝑠𝑢(𝑡) + 𝜂𝑒𝑐𝑢(𝑡) −

1
𝜂
𝑒𝑑𝑢 (𝑡), (2)

where 𝜂 < 1 denotes the battery efficiency. It is assumed that 
𝑠 (0) = 𝑠 (𝑇 ) = 0. (3)
𝑢 𝑢

3 
Fig. 2. Entity types in the considered community.

Clearly, 𝑒𝑐𝑢(𝑡) is a positive quantity and it is bounded by the surplus of 
generated energy, i.e., 
0 ≤ 𝑒𝑐𝑢(𝑡) ≤ 𝑒𝑢(𝑡) ∀𝑡. (4)

On the other hand, since 𝑠𝑢(𝑡) ≥ 0, 𝑒𝑑𝑢 (𝑡) is positive and cannot exceed 
the stored energy, that is 
0 ≤ 𝑒𝑑𝑢 (𝑡) ≤ 𝜂𝑠𝑢(𝑡) ∀𝑡. (5)

Finally, to avoid situations of simultaneous charging and discharg-
ing, the following complementary constraint will be imposed 
𝑒𝑐𝑢(𝑡) ⋅ 𝑒

𝑑
𝑢 (𝑡) = 0 ∀𝑡. (6)

In this paper, the storage devices will be used to fulfill two main 
purposes:

• optimize the prosumer operation by minimizing the amount of 
energy drawn from the grid;

• optimize the community operation by exploiting the incentive 
provided by the community self-consumption.

The formulation of the former task is reported in Section 2.1.1, while 
the latter is detailed in Section 2.1.2.

2.1.1. Prosumer self load balancing
To minimize the amount of electricity bought from the grid, it is 

assumed that prosumers first want to balance their own load by ex-
ploiting their storage facilities; after that, they operate them to increase 
the community self-consumption. To describe the former operation, 
hereafter named as self load balancing, for each prosumer 𝑢 ∈ 𝑠, the 
set of time indexes   is partitioned into two sets
+
𝑢 = {𝑡 ∈  ∶ 𝜌𝑢(𝑡) ≥ 0},

−
𝑢 = {𝑡 ∈  ∶ 𝜌𝑢(𝑡) < 0},

that define the time periods in which renewable energy surplus is 
available or not.

To provide self load balancing, the following control strategy is 
enforced

𝑒𝑐𝑢(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min

⎧

⎪

⎨

⎪

⎩

𝑒𝑢(𝑡),−
1
𝜂
𝑠̂𝑢(𝑡) −

1
𝜂2

∑

𝜏>𝑡
𝜏∈−

𝑢

𝜌𝑢(𝜏)

⎫

⎪

⎬

⎪

⎭

if 𝑡 ∈ +
𝑢 ,

0 else,

(7)

𝑒𝑑𝑢 (𝑡) =

{

min
{

𝜂𝑠̂𝑢(𝑡),−𝜌𝑢(𝑡)
}

if 𝑡 ∈ −
𝑢 , (8)
0 else,
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Fig. 3. Profile 𝜌𝑢(𝑡) (blue dashed) and the resulting profile 𝜌′𝑢(𝑡) (red), obtained 
by a given prosumer 𝑢 ∈ 𝑠 after applying the self load balancing operation.

𝑠̂𝑢(𝑡 + 1) = 𝑠̂𝑢(𝑡) + 𝜂𝑒𝑐𝑢(𝑡) −
1
𝜂
𝑒𝑑𝑢 (𝑡), (9)

𝑠̂𝑢(0) = 0, (10)

where 𝑒𝑐𝑢(𝑡), 𝑒𝑑𝑢 (𝑡), and 𝑠̂𝑢(𝑡) denote the charging command, the discharg-
ing command and the energy stored during the self load balancing 
operation, respectively. In (7), the charging command is designed in 
a way such that the energy stored does not exceed future loads, while 
in (8), the discharging command is used to balance the load at each 
time step. In the next proposition, some useful properties of the self 
load balancing strategy are reported.

By applying the strategy reported in (7)–(10), for a given prosumer 
𝑢 ∈ 𝑠, the original profile 𝜌𝑢(𝑡) changes. Such modified profile is 
denoted by 𝜌′𝑢(𝑡) = 𝜌𝑢(𝑡) − 𝑒𝑐𝑢(𝑡) + 𝑒

𝑑
𝑢 (𝑡). Then, the remaining renewable 

generation surplus may be further used by the storage system to provide 
additional flexibility to the community. An example of prosumer load 
balancing is shown in Fig.  3.

Note that this balancing procedure does not affect producers since 
they do not have loads, or consumers since they are not equipped with 
storage units. So, 𝜌′𝑢(𝑡) = 𝜌𝑢(𝑡) for all 𝑢 ∈ 𝑠 except for prosumers 
equipped with storage systems.

Since the storage device has been used to change the prosumer 
profile, Eqs. (2)–(6) need be adapted accordingly to be used later for 
REC purposes. Specifically, variables and constraints for the community 
operation follow

𝑠′𝑢(𝑡 + 1) = 𝑠′𝑢(𝑡) + 𝜂𝑒
𝑐′
𝑢 (𝑡) −

1
𝜂
𝑒𝑑

′
𝑢 (𝑡) ∀𝑢 ∈ 𝑠,∀𝑡, (11)

𝑠′𝑢(0) = 𝑠′𝑢(𝑇 ) = 0, (12)

0 ≤ 𝑒𝑐
′
𝑢 (𝑡) ≤ 𝑒′𝑢(𝑡) ∀𝑢 ∈ 𝑠,∀𝑡, (13)

0 ≤ 𝑒𝑑
′

𝑢 (𝑡) ≤ 𝜂𝑠′𝑢(𝑡) ∀𝑢 ∈ 𝑠,∀𝑡, (14)

𝑒𝑐
′
𝑢 (𝑡) ⋅ 𝑒

𝑑 ′
𝑢 (𝑡) = 0 ∀𝑢 ∈ 𝑠,∀𝑡, (15)

where 
𝑒′𝑢(𝑡) = max{𝜌′𝑢(𝑡), 0} = 𝑒𝑢(𝑡) − 𝑒𝑐𝑢(𝑡) ∀𝑢 ∈ 𝑠,∀𝑡. (16)

In (11)–(16), the prime symbol is used to denote variables involving 
quantities obtained after the self load balancing operation. So, 𝑒𝑐′𝑢 (𝑡)
and 𝑒𝑑 ′

𝑢 (𝑡) denote the charging/discharging commands of entity 𝑢 to 
be applied for maximizing the incentive gained at community level, 
assuming the self load balancing operations have been accomplished. 
Therefore, it is mandatory to show that the storage operations for 
self load balancing and REC incentive maximization are compatible, 
i.e., their superposition satisfies (2)–(6). Such a statement is formalized 
in the following theorem. 

Theorem 1.  Let 𝑒𝑐𝑢(𝑡), 𝑒𝑑𝑢 (𝑡), 𝑠̂𝑢(𝑡) in (7)–(10) and 𝑒𝑐
′
𝑢 (𝑡), 𝑒𝑑

′
𝑢 (𝑡), 𝑠′𝑢(𝑡)

satisfying (11)–(15) be given. Then, the superimposed solution
𝑒𝑐𝑢(𝑡) = 𝑒𝑐𝑢(𝑡) + 𝑒

𝑐′
𝑢 (𝑡)

𝑒𝑑 (𝑡) = 𝑒𝑑 (𝑡) + 𝑒𝑑
′
(𝑡)
𝑢 𝑢 𝑢

4 
𝑠𝑢(𝑡) = 𝑠̂𝑢(𝑡) + 𝑠′𝑢(𝑡)

satisfies (2)–(6), ∀𝑡 ∈  .

Proof.  See Appendix  A. □

Remark 1. Theorem  1 allows a prosumer to proceed sequentially: 
first, the storage commands needed to provide self load balancing are 
computed for the whole time horizon, allowing for the computation of 
the modified profile 𝜌′𝑢; then, the storage commands maximizing the 
REC incentive are computed on the basis of 𝜌′𝑢. The actual commands 
to be applied will be the sum of those obtained in the previous two 
steps, whose feasibility is guaranteed by Theorem  1.

2.1.2. Community level aggregation
This subsection is focused on the energy balance related to the 

overall community, once the self load balancing operations have been 
computed. At a given time 𝑡, the overall energy demand 𝐿(𝑡) required 
by all community entities is 
𝐿(𝑡) =

∑

𝑢∈
max{−𝜌′𝑢(𝑡), 0}, (17)

whereas the surplus within the community 𝑅(𝑡) is 
𝑅(𝑡) =

∑

𝑢∈
max{𝜌′𝑢(𝑡), 0}. (18)

After the self load balancing procedure, for each time step 𝑡, an entity 
𝑢 contributes to 𝐿(𝑡) if its load exceeds the generation, i.e., 𝜌′𝑢(𝑡) < 0, 
while contributes to 𝑅(𝑡) if there is a generation surplus, i.e., 𝜌′𝑢(𝑡) > 0. 
Therefore, the self-consumption at community level at time 𝑡 is given 
by 
𝐴0(𝑡) = min{𝐿(𝑡), 𝑅(𝑡)}, (19)

that represents the energy demand that is matched by the energy 
generation inside the community. Since monetary incentive will be 
granted to the REC on the basis of the community self-consumption, 
the aim is to operate the storage systems of its entities to increase such 
reward.

Concerning storage units, the stored energy at community level is
𝑆(𝑡) =

∑

𝑢∈𝑠

𝑠′𝑢(𝑡),

whereas the related charging and discharging energy commands are 
given by
𝐸𝑐 (𝑡) =

∑

𝑢∈𝑠

𝑒𝑐
′
𝑢 (𝑡),

𝐸𝑑 (𝑡) =
∑

𝑢∈𝑠

𝑒𝑑
′

𝑢 (𝑡).

Define 
𝐸(𝑡) =

∑

𝑢∈𝑠

𝑒′𝑢(𝑡) =
∑

𝑢∈𝑠

max{𝜌′𝑢(𝑡), 0}. (20)

Then, at REC level, the constraints related to the storage can be 
rewritten as
𝑆(𝑡 + 1) = 𝑆(𝑡) + 𝜂𝐸𝑐 (𝑡) − 1

𝜂
𝐸𝑑 (𝑡) ∀𝑡, (21)

0 ≤ 𝐸𝑐 (𝑡) ≤ 𝐸(𝑡) ∀𝑡, (22)

0 ≤ 𝐸𝑑 (𝑡) ≤ 𝜂𝑆(𝑡) ∀𝑡. (23)

𝑆(0) = 𝑆(𝑇 ) = 0, (24)

Since the storage systems are charged with energy produced by 
renewable generators, the net renewable energy injected into the grid at 
community level is obtained by the following energy balance equation
𝐺(𝑡) = 𝑅(𝑡) − 𝐸𝑐 (𝑡) + 𝐸𝑑 (𝑡) ∀𝑡. (25)
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So, the REC self-consumption in the presence of storage at time 𝑡 is 
defined as 
𝐴𝑠(𝑡) = min{𝐿(𝑡), 𝐺(𝑡)} = min{𝐿(𝑡), 𝑅(𝑡) − 𝐸𝑐 (𝑡) + 𝐸𝑑 (𝑡)}. (26)

Hereafter, the analysis will be done with quantities aggregated at 
community level, by employing expressions (17)–(26). In the following, 
it will be shown how to optimally operate the entity storage systems in 
order to minimize the REC overall cost.

2.2. Optimal storage operation

Let 𝑐𝑝 and 𝑐𝑠 be the energy purchase and selling prices, respec-
tively. Moreover, let 𝑘 < 𝑐𝑝 be the unitary incentive price for the 
self-consumed energy within the community. The objective of the 
community is to minimize its energy cost, which is defined as 
𝐽 =

∑

𝜏∈
(𝑐𝑝𝐿(𝜏) − 𝑐𝑠𝐺(𝜏) − 𝑘𝐴𝑠(𝜏)) . (27)

Let  be the vector containing all the storage charging/discharging 
control signals at community level in  , that is
 = [𝐸𝑐 (0),… , 𝐸𝑐 (𝑇 − 1), 𝐸𝑑 (0),… , 𝐸𝑑 (𝑇 − 1)].

Thus, the optimal storage schedule is the minimizer of the following 
optimization problem. 

Problem 1. 
∗ = argmin


𝐽

s.t. (21) − (26).

It is worth recalling a lemma proved in [20], which states that 𝐸𝑐∗ (𝑡)
and 𝐸𝑑∗ (𝑡) cannot be greater than 0 at the same time.

Lemma 1.  Let 𝐸𝑐∗ (𝑡) and 𝐸𝑑∗ (𝑡), ∀𝑡 ∈   be the optimal charging and 
discharging control signals for Problem  1. Then, 
𝐸𝑐

∗
(𝑡) ⋅ 𝐸𝑑

∗
(𝑡) = 0, ∀𝑡 ∈  . (28)

Remark 2.  It is worthwhile to highlight that, since the community stor-
age systems are distributed among the community entities, 𝐸𝑐 (𝑡) and 
𝐸𝑑 (𝑡) may be both non-zero for a generic feasible solution of Problem 
1. However, thanks to Lemma  1 the optimal solution is such that the 
storage units are acting as a unique virtual storage of the community. 
In fact, the optimal solution provides a control signal which requires 
all the storage devices to be charged (or discharged) simultaneously, 
avoiding situations in which a storage system is charging when another 
one is discharging.

Since 𝑆(0) = 0, the explicit dynamics of the storage system can be 
written as 

𝑆(𝑡) =
∑

𝜏∈

(

𝜂𝐸𝑐 (𝜏) − 1
𝜂
𝐸𝑑 (𝜏)

)

, ∀𝑡∈{0,… , 𝑇 }. (29)

So, constraint 𝑆(𝑇 ) = 0 can be represented by 
𝜂2

∑

𝜏∈
𝐸𝑐 (𝜏) =

∑

𝜏∈
𝐸𝑑 (𝜏). (30)

By (25) and (30), the following equation holds
∑

𝜏∈
𝐺(𝜏) =

∑

𝜏∈
𝑅(𝜏) −

1 − 𝜂2

𝜂2
∑

𝜏∈
𝐸𝑑 (𝜏),

and hence the objective function (27) can be written as

𝐽 =
∑

𝜏∈

(

𝑐𝑝𝐿(𝜏) − 𝑐𝑠𝑅(𝜏) + 𝑐𝑠
1 − 𝜂2

𝜂2
𝐸𝑑 (𝜏) − 𝑘𝐴𝑠(𝜏)

)

.

Define 

𝛼 = 𝑐𝑠
1 − 𝜂2

> 0. (31)

𝜂2
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Since neither the energy demand 𝐿(𝑡) nor the energy generation 𝑅(𝑡) de-
pend on the decision variables, one can aim to minimize the following 
function 
𝐽 =

∑

𝜏∈

(

𝛼𝐸𝑑 (𝜏) − 𝑘𝐴𝑠(𝜏)
)

. (32)

Therefore, the optimal solution of Problem  1 coincides with the optimal 
solution of the following problem. 

Problem 2. 
∗ = argmin


𝐽

s.t. (21) − (26).

To derive the optimal solution of the problem, it is convenient to 
focus on the value of 𝑘, i.e., on the unitary incentive on the REC self-
consumed energy. Actually, depending on the value of 𝑘, it may be 
convenient or not to use the storage systems to optimize the community 
operation.

The following proposition derives conditions under which the trivial 
solution 𝐸𝑑 (𝑡) = 𝐸𝑐 (𝑡) = 0, ∀𝑡 ∈   is optimal.

Proposition 1.  If 𝑘 ≤ 𝛼, then the optimal solution of Problem  2 is 
𝐸𝑑 (𝑡) = 𝐸𝑐 (𝑡) = 0, ∀𝑡 ∈  .

Proof.  See Theorem 1 of [20]. □

Remark 3. Proposition  1 provides a threshold value on 𝑘 as an 
indicator for the convenience of using the storage. In fact, if 𝑘 ≤ 𝛼 the 
best solution does not require the usage of storage systems to minimize 
the REC cost. For this reason, from now on, the case 𝑘 > 𝛼 is considered.

Theorem 2.  Consider Problem  2, and let 𝐸𝑐∗ (𝑡) and 𝐸𝑑∗ (𝑡) be the optimal 
charging and discharging control signals for ∀𝑡 ∈  . It holds that

𝐸𝑐
∗
(𝑡) = 0  if 𝐿(𝑡) ≥ 𝑅(𝑡), (33)

𝐸𝑑
∗
(𝑡) = 0  if 𝐿(𝑡) ≤ 𝑅(𝑡), (34)

𝐸𝑐
∗
(𝑡) ≤ 𝑅(𝑡) − 𝐿(𝑡)  if 𝐿(𝑡) ≤ 𝑅(𝑡), (35)

𝐸𝑑
∗
(𝑡) ≤ 𝐿(𝑡) − 𝑅(𝑡)  if 𝐿(𝑡) ≥ 𝑅(𝑡). (36)

Proof.  See Appendix  B. □

Notice that Theorem  2 states that a candidate solution to Problem 
2 must satisfy (33)–(34) that automatically enforces condition (28).

Corollary 1.  Let ∗ be the optimal solution of Problem  2. Then, 

𝐴𝑠
∗
(𝑡) = 𝐴0(𝑡) + 𝐸𝑑

∗
(𝑡) =

{

𝐿(𝑡)  if 𝐿(𝑡) ≤ 𝑅(𝑡)
𝑅(𝑡) + 𝐸𝑑∗ (𝑡)  if 𝐿(𝑡) ≥ 𝑅(𝑡).

(37)

Proof.  See Appendix  C. □

Let the time indices be divided in two sets, depending on the fact 
that the REC load is less or greater than generation:
+ = {𝑡 ∈  ∶𝑅(𝑡) ≥ 𝐿(𝑡)},

− = {𝑡 ∈  ∶𝑅(𝑡) < 𝐿(𝑡)}.

By Corollary  1, and by adding (33)–(36) to the constraints of 
Problem  2, the objective function in (32) can be rewritten as
𝐽 = 𝛼

∑

𝜏∈
𝐸𝑑 (𝜏) − 𝑘

∑

𝜏∈

(

𝐴0(𝜏) + 𝐸𝑑 (𝜏)
)

= −𝑘
∑

𝜏∈
𝐴0(𝜏) + (𝛼 − 𝑘)

∑

𝜏∈−

𝐸𝑑 (𝜏),

where the last equality comes from (34).
Since 𝐴0(𝑡) is known and constant, and 𝑘 > 𝛼, the optimal solution of 

Problem  2 coincides with the optimal solution of the following problem. 
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Problem 3. 
∗ = argmax



∑

𝑡∈−
𝐸𝑑 (𝑡) (38)

s.t.

𝑆(𝑡 + 1) = 𝑆(𝑡) + 𝜂𝐸𝑐 (𝑡) − 1
𝜂
𝐸𝑑 (𝑡) ∀𝑡 ∈  , (39)

0 ≤ 𝐸𝑐 (𝑡) ≤ 𝐸(𝑡) ∀𝑡 ∈  , (40)

0 ≤ 𝐸𝑑 (𝑡) ≤ 𝜂𝑆(𝑡) ∀𝑡 ∈  , (41)

𝐸𝑐 (𝑡) ≤ 𝑅(𝑡) − 𝐿(𝑡), 𝐸𝑑 (𝑡) = 0 ∀𝑡 ∈ +, (42)

𝐸𝑑 (𝑡) ≤ 𝐿(𝑡) − 𝑅(𝑡), 𝐸𝑐 (𝑡) = 0 ∀𝑡 ∈ −, (43)

𝑆(0) = 𝑆(𝑇 ) = 0. (44)

Note that the optimality conditions reported in Theorem  2 are 
summarized by constraints (42)–(43).

Since the objective function of Problem  3 involves only 𝐸𝑑 (𝑡), it is 
apparent that the optimal solution maximizes the overall discharged 
energy. Operatively, at a given time 𝑡 ∈ − the optimal control signal 
is to choose 𝐸𝑑 (𝑡) as bigger as possible. Thanks to (41)–(43), the optimal 
solution results 
𝐸𝑑

∗
(𝑡) = min{𝐿(𝑡) − 𝑅(𝑡), 𝜂𝑆(𝑡)}, 𝐸𝑐

∗
(𝑡) = 0, ∀𝑡 ∈ −. (45)

On the contrary, when 𝑡 ∈ + by (34) one has 𝐸𝑑 (𝑡) = 0. Note that the 
choice of the control variables at these time steps does not influence 
the objective function. Thus, the optimal charging control signal will be 
that maximizing the charging energy while satisfying the constraints.

By (30) it holds
𝑡−1
∑

𝜏=0
𝐸𝑐 (𝜏) + 𝐸𝑐 (𝑡) +

𝑇−1
∑

𝜏=𝑡+1
𝐸𝑐 (𝜏) =

∑

𝜏∈

(

𝐸𝑑 (𝜏)
𝜂2

)

,

and hence 

𝐸𝑐 (𝑡) =
𝑡−1
∑

𝜏=0

(

𝐸𝑑 (𝜏)
𝜂2

− 𝐸𝑐 (𝜏)
)

+
𝑇−1
∑

𝜏=𝑡

(

𝐸𝑑 (𝜏)
𝜂2

)

−
𝑇−1
∑

𝜏=𝑡+1
𝐸𝑐 (𝜏). (46)

By (29), one has

−
𝑆(𝑡)
𝜂

=
𝑡−1
∑

𝜏=0

(

𝐸𝑑 (𝜏)
𝜂2

− 𝐸𝑐 (𝜏)
)

.

Since 𝐸𝑐 (𝑡) ≥ 0, ∀𝑡, from (46) it follows

𝐸𝑐 (𝑡) ≤ −
𝑆(𝑡)
𝜂

+
𝑇−1
∑

𝜏=𝑡

(

𝐸𝑑 (𝜏)
𝜂2

)

.

Moreover, by (41) and (43) one has 0 ≤ 𝐸𝑑 (𝑡) ≤ 𝐿(𝑡) − 𝑅(𝑡), and then 

𝐸𝑐 (𝑡) ≤ −
𝑆(𝑡)
𝜂

+
∑

𝜏∈− ,𝜏>𝑡

𝐿(𝜏) − 𝑅(𝜏)
𝜂2

∀𝑡 ∈ +. (47)

So, by (40), (42) and (47) the maximum, and thus the optimal, charging 
control signal is 

𝐸𝑐
∗
(𝑡)=min

{

𝐸(𝑡), 𝑅(𝑡) − 𝐿(𝑡),−
𝑆(𝑡)
𝜂

+
∑

𝜏∈− ,𝜏>𝑡

𝐿(𝑡) − 𝑅(𝑡)
𝜂2

}

. (48)

Remark 4.  It is worthwhile to note that the optimal
charging/discharging commands given in (45) and (48) represent the 
closed-form solution of Problem  1. This makes it possible to drastically 
reduce the computational burden of the storage optimal control law, 
thus allowing the procedure to be applied to large RECs, as shown in 
Section 3.

2.2.1. Distributed solution derivation
The solution of Problem  1 is obtained by using aggregated quantities 

of community storage systems, rather than exploiting charging/dis-
charging commands of each single storage unit. Nevertheless, in the 
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following, it will be shown how to retrieve a distributed optimal 
solution starting from the aggregated one. In particular, consider the 
quantities:

𝛾(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝐸𝑐∗ (𝑡)
𝐸(𝑡)

if 𝐸𝑐∗ (𝑡) > 0

0 otherwise
∀𝑡, (49)

𝛿(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝐸𝑑∗ (𝑡)
𝜂𝑆∗(𝑡) if 𝐸𝑑∗ (𝑡) > 0

0 otherwise
∀𝑡, (50)

that denote how close are the charging and discharging commands to 
their respective upper bounds.

Then, an optimal distributed solution is provided in the following 
proposition. 

Proposition 2.  Let the optimal solution of Problem  1 be given, and let
𝑒𝑐

∗
𝑢 (𝑡) = 𝛾(𝑡)𝑒𝑐

′

𝑢 (𝑡) ∀𝑢 ∈ 𝑠, ∀𝑡, (51)

𝑒𝑑
∗
𝑢 (𝑡) = 𝜂𝛿(𝑡)𝑠∗𝑢(𝑡) ∀𝑢 ∈ 𝑠, ∀𝑡. (52)

be the charging/discharging commands for each storage unit, where 

𝑠∗𝑢(𝑡) =
𝑡−1
∑

𝜏=0

(

𝜂𝑒𝑐
∗
𝑢 (𝜏) − 1

𝜂
𝑒𝑑

∗
𝑢 (𝜏)

)

∀𝑢 ∈ 𝑠, ∀𝑡, (53)

denotes the energy stored at time 𝑡 by applying (51) and (52). Then, (51) 
and (52) provide a distributed optimal solution of Problem  1.

Proof.  See Theorem 2 of [20]. □

Therefore, the overall distributed storage operation can be obtained 
by using (7)–(9) that leads to the following equations
𝑒𝑐𝑢(𝑡) = 𝑒𝑐

∗
𝑢 (𝑡) + 𝑒𝑐𝑢(𝑡),

𝑒𝑑𝑢 (𝑡) = 𝑒𝑑
∗
𝑢 (𝑡) + 𝑒𝑑𝑢 (𝑡),

𝑠𝑢(𝑡) = 𝑠∗𝑢(𝑡) + 𝑠̂
𝑐
𝑢(𝑡).

which, by Theorem  1, satisfy (2)–(6).

2.3. Optimal operation under uncertain profiles

The above results have been obtained assuming that 𝜌′𝑢(𝑡), ∀𝑢 ∈ 
are known. However, in real settings, only forecasts of such quantities 
may be available, affected by a wide range of uncertainties. So, in 
this subsection, the uncertainty related to profiles 𝜌′𝑢(𝑡) is modeled and 
handled according to a robust framework. Specifically, an additive 
unknown-but-bounded (UBB) uncertainty 𝜉𝑢(𝑡) ∈

[

0, 𝜉𝑢(𝑡)
]

 is consid-
ered, where 𝜉𝑢(𝑡) is a known upper bound. This bound is either known 
a priori on the basis of knowledge on the system, or it is estimated 
by historical data. So, the resulting perturbed entity profile can be 
modeled as 
𝜔𝑢(𝑡) = 𝜌′𝑢(𝑡) + 𝜉𝑢(𝑡). (54)

Remark 5.  For ease of exposition, it is supposed that 𝜉𝑢(𝑡) is non-
negative. However, it is possible to seamlessly adapt the overall reason-
ing to uncertainties that can take negative values. Such an adjustment 
is reported at the end of this subsection.

According to (54), all the aggregated quantities involving 𝜌′𝑢(𝑡) need 
be adapted to take into account the uncertainty 𝜉𝑢(𝑡) in their profiles. 
In particular, 𝐿(𝑡), 𝑅(𝑡) and 𝐸(𝑡) defined in (17), (18) and (20), need be 
replaced with
𝐿𝜉 (𝑡) =

∑

𝑢∈
max{0,−𝜔𝑢(𝑡)}, (55)

𝑅𝜉 (𝑡) =
∑

max{0, 𝜔𝑢(𝑡)}, (56)

𝑢∈
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𝐸
𝜉
(𝑡) =

∑

𝑢∈𝑠

max{0, 𝜔𝑢(𝑡)}. (57)

In order to find the worst-case uncertainty realization, define the 
following uncertain variables
𝛥𝐿(𝑡) =

∑

𝑢∈
min{𝜉𝑢(𝑡),−𝜌′𝑢(𝑡)}−min{0,−𝜌′𝑢(𝑡)}, (58)

𝛥𝑅(𝑡) =
∑

𝑢∈
max{𝜉𝑢(𝑡),−𝜌′𝑢(𝑡)}−max{0,−𝜌′𝑢(𝑡)}, (59)

𝛥𝐸 (𝑡) =
∑

𝑢∈𝑠

max{𝜉𝑢(𝑡),−𝜌′𝑢(𝑡)}−max{0,−𝜌′𝑢(𝑡)}. (60)

Note that, since 𝜉𝑢(𝑡) ≥ 0, one has that 𝛥𝑅(𝑡) ≥ 0, 𝛥𝐿(𝑡) ≥ 0 and 𝛥𝐸 (𝑡) ≥ 0.
Consider the community objective function expressed as in (27). 

By inserting the uncertainty in 𝐿(𝑡) and 𝐺(𝑡), the community cost is 
formulated as 
𝐽 𝜉 =

∑

𝜏∈
𝑐𝑝𝐿𝜉 (𝜏) − 𝑐𝑠𝐺𝜉 (𝜏) − 𝑘min{𝐿𝜉 (𝜏), 𝐺𝜉 (𝜏)}, (61)

where 
𝐺𝜉 (𝑡) = 𝑅𝜉 (𝑡) + 𝐸𝑑 (𝑡) − 𝐸𝑐 (𝑡). (62)

Concerning optimization constraints, (22) becomes 

0 ≤ 𝐸𝑐 (𝑡) ≤ 𝐸
𝜉
(𝑡) ∀𝑡 ∈  , (63)

which depends on the uncertainty due to (57).
Let  be a vector collecting all the uncertain variables 𝜉𝑢(𝑡), ∀𝑡 ∈

 , ∀𝑢 ∈  , then the robust optimization problem to be solved is as 
follows. 

Problem 4. 
[∗, ∗] = argmin


max


𝐽 𝜉

s.t. (21), (23), (24),
(61) − (63).

The worst-case realization of the uncertainty ∗ in Problem  4 is 
reported in the following theorem. 

Theorem 3.  Consider Problem  4. Then, the worst-case realization of the 
uncertainty is ∗ = 0, i.e., 𝜉∗𝑢 (𝑡) = 0, ∀𝑡 ∈  , ∀𝑢 ∈  .

Proof.  See Appendix  D. □

Now, it is possible to generalize the reasoning to any kind of 
bounded uncertainty such that 𝜉𝑢(𝑡) ∈ [𝜉

𝑢
(𝑡), 𝜉𝑢(𝑡)], where 𝜉𝑢(𝑡) <

𝜉𝑢(𝑡), ∀𝑡 ∈  , ∀𝑢 ∈  . 

Corollary 2.  Consider Problem  4 and assume that the uncertain variable 
is such that 𝜉𝑢(𝑡) ∈ [𝜉

𝑢
(𝑡), 𝜉𝑢(𝑡)], where 𝜉𝑢(𝑡) < 𝜉𝑢(𝑡), ∀𝑡 ∈  , ∀𝑢 ∈  . 

Then, the worst-case uncertainty is 𝜉∗𝑢 (𝑡) = 𝜉
𝑢
(𝑡), ∀𝑡 ∈  , ∀𝑢 ∈  .

Proof.  See Appendix  E. □

Remark 6.  These above results are obtained by using profiles 𝜌′𝑢(𝑡), 
which represent the entity profile after performing the self load balanc-
ing operation. However, by (7), the lower 𝑒𝑢(𝑡), the lower the energy 
charged. Therefore, the least amount of energy shifted to balance the 
prosumer load is related to the self load balancing operation applied to 
the profile 𝜌𝑢(𝑡) + 𝜉𝑢(𝑡).

3. Numerical results

To evaluate the performance of the proposed solution under dif-
ferent scenarios, two examples are provided: a simplified one and an 
example based on a realistic energy community. The former example 
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Fig. 4. Illustrative example. Load (blue) and generation (red) profiles of the 
community entities.

Fig. 5. Illustrative example. Load (blue) and generation (red) profiles at 
community level.

involving three players only shows how the single load/generation 
profiles are combined together to provide the overall REC profile. On 
the other hand, the realistic example involving a community of 60 
entities is aimed at assessing the performance of the proposed approach 
in a realistic scenario. Finally, the computational feasibility is validated 
by considering different community sizes. For all the examples, the 
optimization time horizon spans over 24 h with a sampling time of 
5 min, i.e., 𝑇 = 288. Both prosumers and producers are assumed to 
be equipped with storage units whose efficiency is set to 𝜂 = 0.9. Grid 
prices are supposed to be 𝑐𝑝 = 0.35 e/kWh and 𝑐𝑠 = 0.18 e/kWh, 
whereas the incentive is set to 𝑘 = 0.12 e/kWh. Note that, since 
𝛼 = 𝑐𝑠(1 − 𝜂2)∕𝜂2 = 0.042 e/kWh, Proposition  1 confirms that the 
incentive 𝑘 is chosen to foster storage utilization.

3.1. Illustrative example

In this example, a simplified community structure involving one 
consumer, one prosumer, and one producer is considered. The load 
and generation profiles of the community entities are depicted in Fig. 
4. Then, by aggregating at community level, community load and 
generation are reported in Fig.  5.

These aggregated profiles show generation surplus during the mid 
hours of the day, and load excess in other periods. Note that the load 
peak occurring around 20:00 is due to the self load balancing operation 
performed by the prosumer.

By exploiting (45) and (48), the energy surplus is employed to 
balance the load during the last part of the day. This behavior is 
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Fig. 6. Illustrative example. Storage level of charge (blue) and related charg-
ing (red) and discharging (yellow) control signals at community level.

Fig. 7. Illustrative example. Self-consumption profiles 𝐴0(𝑡) (yellow) and 𝐴𝑠∗(𝑡)
(purple).

Table 1
Community cost and incentive.
 Illustrative example Large-scale example
 No storage Optimal No storage Optimal  
 Cost [e] 90.45 79.51 (−12.1%) 19901 18065 (−9.2%) 
 Incentive [e] 16.21 33.93 (+109.3%) 6069 8901 (+46.7%)  

evident by analyzing the storage dynamics and the related charging and 
discharging control signals in Fig.  6. Moreover, as stated by Corollary 
1, the obtained storage schedule is such that the self-consumption 𝐴0(𝑡)
is maintained (enhanced) when the storage is charging (discharging), 
as illustrated in Fig.  7. Thus, the obtained profile closely follows the 
load until the storage is fully discharged. The optimal storage operation 
in this setup is capable of reducing the community cost of about 
12%, while the incentive gained (and directly the community self-
consumption) is more than doubled. Community costs and incentives 
concerning both setups are summarized in Table  1.

3.2. Realistic example

In this example, a large energy community is simulated over 10 
days. The investigated setup involves:

• 30 consumers,
• 10 prosumers with storage system,
• 10 prosumers without storage system,
• 7 producers with storage system,
• 3 producers without storage system.

Load profiles are derived from real-world data involving both residen-
tial and commercial entities. For renewable generation, a unique profile 
8 
Fig. 8. Realistic example. Normalized generation profile in the simulation 
period.

Fig. 9. Realistic example. Load (blue) and generation (red) profiles at com-
munity level.

obtained from real recordings of a PV plant is utilized. If a prosumer 
is considered, the corresponding generation profile is scaled according 
to the user load profile. On the other hand, for a producer, the peak 
power production is randomly set to 50, 75 or 100 kW. The normalized 
PV profile is depicted in Fig.  8.

To assess the performance of the proposed approach, first the opti-
mal solution related to the deterministic setting is investigated, where 
no uncertainties are considered. Then, the sensitivity of the solution is 
evaluated according to different magnitudes of uncertainty.

3.2.1. Deterministic results
After performing the load balancing operation and aggregating 

at community level, 𝐿(𝑡) and 𝑅(𝑡) profiles are obtained. Time plots 
concerning these profiles are depicted in Fig.  9.

Similarly to the previous setup, for most of the days the generation 
is exceeding the energy demand of the community in the mid hours of 
the day. Therefore, for each day, the optimal strategy is such that the 
renewable energy generation is shifted by the storage facilities during 
evening hours. This behavior can be also noted in Fig.  10, where the 
optimal self-consumption profile 𝐴𝑠∗(𝑡) is compared with its counterpart 
𝐴0(𝑡). In fact, the storage facilities are operated so as to increase the 
community self-consumption during the last periods of the day. As 
shown in Table  1, the optimal solution is capable of reducing the 
community cost by about 9%, while the community self-consumption 
is increased by almost 47%.

Finally, the optimal solution involves storage quantities that are 
feasible for real-world settings. To support this statement, for each 
storage system, the maximum capacity 𝑠𝑢 = max𝑡 𝑠𝑢(𝑡) and the maximum 
charging/discharging power 𝑝𝑢 are analyzed, where 𝑝𝑢 can be roughly 
approximated as

𝑝𝑢 =
1
12

max
𝑡

(

𝑒𝑐𝑢(𝑡) + 𝑒
𝑑
𝑢 (𝑡)

)

,

where 1
12  is the sampling time expressed in hours.

Storage capacities are compared with the daily energy surplus 
(i.e., ∑𝜏∈𝑇 𝑒𝑢(𝜏)), while power rates are validated by considering the 
ratio between 𝑠  and 𝑝 .
𝑢 𝑢
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Fig. 10. Realistic example. Self-consumption profiles 𝐴0(𝑡) (yellow) and 𝐴𝑠∗(𝑡)
(purple).

In the investigated scenario, storage capacities are at most 3% 
higher than the average daily energy surplus, while they are smaller 
than 40% of the maximum daily surplus. Concerning power rates, the 
ratio between the capacity and the maximum charging/discharging 
power is always above 2 h, which is consistent with the state-of-the-art 
technologies [35].

3.2.2. Uncertainty analysis
To show how the problem solution is affected by uncertainty, the 

profile of each user is perturbed by a random variable having sym-
metric support. For each user 𝑢 ∈  , the maximum perturbation is 
chosen according to 𝛼max𝑡 |𝜌𝑢(𝑡)|, where 𝛼 denotes a given uncertainty 
level. The nominal profile of a consumer, a prosumer, and a producer 
compared with different levels of uncertainty is shown in Fig.  11. 
Since the energy profiles of consumers and producers have fixed signs, 
their uncertain profiles are constrained to be negative or positive, 
respectively. Notice that the profile of the consumer reported in Fig. 
11 refers to an entity which drastically reduces its consumption during 
weekend, like, e.g., an administrative office. Clearly, by Corollary  2, 
the worst-case uncertainty corresponds to its lowest value which is the 
lower bound of the uncertainty band for all the depicted cases. So, the 
self load balancing and the community operations are performed using 
the lowest profiles obtained for different values of 𝛼.

Performance is evaluated by analyzing the percentage of savings 
and the community self-consumption obtained by employing the worst-
case scenarios with and without storage systems. The graphical ten-
dency of savings for different values of 𝛼 is depicted in Fig.  12. As 
expected, the optimization performance deteriorates when the uncer-
tainty increases. In particular, for 𝛼 ≥ 0.17 the potential savings drop 
below 1%, becoming negligible beyond 𝛼 = 0.25. Focusing on self-
consumption, the energy self-consumed with and without storage at 
REC level, according to different magnitudes of uncertainty, is shown 
in Fig.  13. As one may notice, the role of the storage system becomes 
increasingly marginal as the uncertainty affecting community profiles 
grows.

3.3. Computational analysis

Regarding computational aspects, the overall procedure shows very 
small computation times for the considered problem size. The analysis 
has been carried out by considering communities involving 10, 100, 
1000, and 10000 entities. For each of these configurations, 40% of 
entities are supposed to be equipped with storage systems. Perfor-
mance indicators investigated are: i) optimization time, defined as the 
time required to solve a single optimization problem instance; and 
ii) operation time, which represents the time needed to perform load 
balancing, optimize community operation, and generate a distributed 
optimal solution. The figure representing optimization and operation 
times as functions of the community size are reported in Fig.  14. Thanks 
to the closed-form solution for optimal storage operation derived in 
9 
Section 2.2, even for the largest community size involving 10000 
entities, the average optimization time is below 600 μs, and also the 
operation time remains negligible compared to a daily time scale.1

3.4. Discussion

Simulation results show how storage facilities can contribute to the 
effective operation of an energy community. The illustrative example 
highlights the key aspects of the optimal solution, which exploits the 
energy surplus of the community to increase the self-consumption later 
in the day. On the other hand, the realistic example demonstrates 
the potential benefits by considering a community configuration that 
is closer to real-world settings. Moreover, the uncertainty analysis 
showed how the optimal solution behaves in more realistic settings. By 
optimally operating the storage facilities, both the reported examples 
show that it is possible to provide economic savings and substantially 
increase the community self-consumption. From the computational 
viewpoint, the devised technique shows high scalability with respect 
to the REC size. The proposed technical results provides further tools 
to analyze the role of energy storage systems in energy communities, 
by providing insights into their potential benefits.

4. Conclusions

In this work, the contribution of storage facilities for enhancing 
the REC operation is analyzed. The load/generation profiles of the 
community entities are merged on the basis of member typology. Then, 
the problem is formulated as a linear program where the objective is 
the minimization of the community cost by exploiting the storage units 
installed within the REC entities. To this purpose, the minimum value 
of the self-consumption incentive for triggering the storage operation 
is derived. Successively, necessary conditions for the optimal storage 
scheduling are devised. Specifically, the optimal storage operation turns 
out to be the energy schedule that maximizes the community self-
consumption. Next, the overall procedure is adapted to an uncertain 
framework where load and generation profiles are affected by additive 
uncertainties.

Numerical results show a consistent cost reduction with respect 
to scenarios not involving storage units. Most notably, in both the 
considered examples, the community self-consumption is considerably 
increased when the proposed method is employed, leading to several 
environmental benefits. Focusing on the uncertain setup, the optimal 
storage operation is analyzed according to different levels of uncer-
tainty. The optimal solution shows good performance for limited values 
of uncertainty, while the presence of a storage system is no longer 
useful when dealing with high perturbations.

Future research directions will be focused on adapting the optimal 
operation in real-time settings through receding horizon techniques, 
as well as enriching the proposed framework with more complex el-
ements such as electric vehicles, shiftable loads, and demand response 
programs.
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Fig. 11. Realistic example. Nominal profile 𝜌𝑢(𝑡) (blue) of different community entities compared with uncertainty levels of 𝛼 amounting to 5% (orange), 10% 
(yellow), 15% (purple).
Fig. 12. Realistic example. Percentage of savings as a function of 𝛼.

Fig. 13. Realistic example. Community self-consumption with and without 
storage systems as a function of 𝛼.
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Appendix A. Proof of Theorem  1

In order to prove Theorem  1, the following lemmas are introduced.

Lemma 2.  The self load balancing control strategy in (7)–(10) enjoys the 
following properties 

𝑒𝑐𝑢(𝑡) ≥ 0 ∀𝑡 ∈  , (A.1)

𝑒𝑑𝑢 (𝑡) ≥ 0 ∀𝑡 ∈  , (A.2)

0 ≤ 𝑠̂𝑢(𝑡) ≤ −1
𝜂

∑

𝜏≥𝑡
𝜏∈−

𝑢

𝜌𝑢(𝜏) ∀𝑡 ∈  , (A.3)

𝑠̂𝑢(𝑇 ) = 0. (A.4)
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Proof.  The lemma is proven by induction. At time 𝑡 = 0, by (10) one 
has 𝑠̂𝑢(0) = 0 and so 𝑒𝑑𝑢 (0) = 0. Moreover,

𝑒𝑐𝑢(0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min

⎧

⎪

⎨

⎪

⎩

𝑒𝑢(0),−
1
𝜂2

∑

𝜏>0
𝜏∈−

𝑢

𝜌𝑢(𝜏)

⎫

⎪

⎬

⎪

⎭

if 𝜌𝑢(0) ≥ 0,

0 else,

which is a non-negative quantity.
Now, assuming that at a given time 𝑡
𝑒𝑐𝑢(𝑡) ≥ 0,

𝑒𝑑𝑢 (𝑡) ≥ 0,

0 ≤ 𝑠̂𝑢(𝑡) ≤ −1
𝜂
∑

𝜏≥𝑡
𝜏∈−

𝑢

𝜌𝑢(𝜏), (A.5)

it will be shown that the set of inequalities still hold at time 𝑡 + 1.
Consider 𝑠̂𝑢(𝑡+1). Since by (8) it holds that 𝑒𝑑𝑢 (𝑡) ≤ 𝜂𝑠̂𝑢(𝑡), by (9) one 

gets 𝑠̂𝑢(𝑡+1) ≥ 0 and hence 𝑒𝑑𝑢 (𝑡+1) ≥ 0, which prove the left hand side 
of (A.2) and (A.3), respectively. To prove the right hand side of (A.3), 
suppose that 𝑡 ∈ −

𝑢 , then 𝑒𝑐𝑢(𝑡) = 0 and 𝑒𝑑𝑢 (𝑡) ≥ 0. By (8), the energy 
stored at time 𝑡 + 1 is

𝑠̂𝑢(𝑡 + 1) = 𝑠̂𝑢(𝑡) −
1
𝜂
𝑒𝑑𝑢 (𝑡) = max

{

0, 𝑠̂𝑢(𝑡) +
1
𝜂
𝜌𝑢(𝑡)

}

and by (A.5) one gets

𝑠̂𝑢(𝑡 + 1) ≤ max

⎧

⎪

⎨

⎪

⎩

0,−1
𝜂
∑

𝜏≥𝑡+1
𝜏∈−

𝑢

𝜌𝑢(𝜏)

⎫

⎪

⎬

⎪

⎭

= −1
𝜂
∑

𝜏≥𝑡+1
𝜏∈−

𝑢

𝜌𝑢(𝜏).

Now, consider the case 𝑡 ∈ +
𝑢 , which implies 𝑒𝑐𝑢(𝑡) ≥ 0 and 𝑒𝑑𝑢 (𝑡) = 0. 

Then, by (7) one has

0 ≤ 𝑒𝑐𝑢(𝑡) ≤ −1
𝜂
𝑠̂𝑢(𝑡) −

1
𝜂2

∑

𝜏>𝑡
𝜏∈−

𝑢

𝜌𝑢(𝜏),

which implies, by (9)

𝑠̂𝑢(𝑡 + 1) ≤ −1
𝜂
∑

𝜏>𝑡
𝜏∈−

𝑢

𝜌𝑢(𝜏) = −1
𝜂
∑

𝜏≥𝑡+1
𝜏∈−

𝑢

𝜌𝑢(𝜏).

To prove (A.1), two cases are distinguished. If 𝑡 + 1 ∈ −
𝑢 , it holds 

𝑒𝑐𝑢(𝑡 + 1) = 0. If 𝑡 + 1 ∈ +
𝑢 , by (A.3) one has 

𝑠̂𝑢(𝑡 + 1) ≤ −1
𝜂
∑

𝜏≥𝑡+1
𝜏∈−

𝑢

𝜌𝑢(𝜏) = −1
𝜂
∑

𝜏>𝑡+1
𝜏∈−

𝑢

𝜌𝑢(𝜏) (A.6)

and hence, 

− 1
𝜂
𝑠̂𝑢(𝑡 + 1) − 1

𝜂2
∑

𝜏>𝑡+1
𝜏∈−

𝑢

𝜌𝑢(𝜏) ≥ 0. (A.7)

Due to (A.7) and since 𝑒𝑢(𝑡) ≥ 0 for all 𝑡 ∈  , from (7) it holds 
𝑒𝑐𝑢(𝑡+1) ≥ 0. Since ∄𝜏 ∈ −

𝑢  such that 𝜏 ≥ 𝑇 , (A.3) implies 𝑠̂(𝑇 ) = 0. □

Lemma 3.  Let 𝑒𝑐𝑢(𝑡), 𝑒𝑑𝑢 (𝑡), 𝑠̂𝑢(𝑡) in (7)–(10) be given. If 𝑒′𝑢(𝑡) = 0, ∀𝑡 ∈ 
then 𝑒𝑑 ′

𝑢 (𝑡) = 0, ∀𝑡 ∈  . Otherwise, let
𝑡+𝑢 = min

𝑡∶𝑒′𝑢(𝑡)>0
𝑡,

then

𝑒𝑑
′

𝑢 (𝑡) = 0 ∀𝑡 ≤ 𝑡+𝑢 , 𝑡 ∈  (A.8)

𝑒𝑐𝑢(𝑡) = 0 ∀𝑡 > 𝑡+𝑢 , 𝑡 ∈  . (A.9)

Proof.  Consider the case 𝑒′𝑢(𝑡) = 0, ∀𝑡 ∈  . By (13) it follows that for 
all 𝑡 ∈   one has 𝑒𝑐′𝑢 (𝑡) = 0, and hence also 𝑠′𝑢(𝑡) = 0, which implies 
𝑒𝑑 ′ (𝑡) = 0.
𝑢

11 
Assume now there exists 𝑡+𝑢 . Then, one has 𝑒′𝑢(𝑡) = 0, ∀𝑡 < 𝑡+𝑢 . By 
repeating the same reasoning as above, one gets 𝑒𝑑 ′

𝑢 (𝑡) = 0, ∀𝑡 < 𝑡+𝑢 . 
Moreover, since 𝑠′𝑢(𝑡+𝑢 ) = 0 one has 𝑒𝑑 ′

𝑢 (𝑡+𝑢 ) = 0, which proves (A.8).
Since 𝑒′𝑢(𝑡+𝑢 ) > 0, one has 𝑒𝑐𝑢(𝑡+𝑢 ) < 𝑒𝑢(𝑡+𝑢 ) and by exploiting (7) one 

gets 

𝑒𝑐𝑢(𝑡
+
𝑢 ) = −1

𝜂
𝑠̂𝑢(𝑡+𝑢 ) −

1
𝜂2

∑

𝜏>𝑡+𝑢
𝜏∈−

𝑢

𝜌𝑢(𝜏). (A.10)

Thus, by (9)

𝑠̂𝑢(𝑡+𝑢 + 1) = −1
𝜂
∑

𝜏>𝑡+𝑢
𝜏∈−

𝑢

𝜌𝑢(𝜏). (A.11)

By employing (9), the stored energy at time 𝑇  can be written as 

𝑠̂𝑢(𝑇 ) = 𝑠̂𝑢(𝑡+𝑢 + 1) +
𝑇−1
∑

𝜏=𝑡+𝑢 +1

(

𝜂𝑒𝑐𝑢(𝜏) −
1
𝜂
𝑒𝑑𝑢 (𝜏)

)

. (A.12)

Thanks to (A.4), and by combining (A.11)–(A.12), it must hold that 

−1
𝜂
∑

𝜏>𝑡+𝑢
𝜏∈−

𝑢

𝜌𝑢(𝜏) + 𝜂
𝑇−1
∑

𝜏=𝑡+𝑢 +1

𝑒𝑐𝑢(𝜏) =
1
𝜂

𝑇−1
∑

𝜏=𝑡+𝑢 +1

𝑒𝑑𝑢 (𝜏) ≤ −1
𝜂
∑

𝜏>𝑡+𝑢
𝜏∈−

𝑢

𝜌𝑢(𝜏), (A.13)

where the inequality in (A.13) holds if and only if 𝑒𝑐𝑢(𝑡) = 0, ∀𝑡 > 𝑡+𝑢 . □

Proof of Theorem  1.  By (9) and (11) it holds that
𝑠𝑢(𝑡 + 1) = 𝑠̂𝑢(𝑡 + 1) + 𝑠′𝑢(𝑡 + 1)

= 𝑠̂𝑢(𝑡) + 𝑠′𝑢(𝑡) + 𝜂
(

𝑒𝑐𝑢(𝑡) + 𝑒
𝑐′
𝑢 (𝑡)

)

− 1
𝜂

(

𝑒𝑐𝑢(𝑡) + 𝑒
𝑑 ′
𝑢 (𝑡)

)

= 𝑠𝑢(𝑡) + 𝜂𝑒𝑐𝑢(𝑡) −
1
𝜂
𝑒𝑑𝑢 (𝑡),

and hence (2) holds. Moreover, by using (10), (12) and (A.4), Eq. (3) 
follows directly.

Concerning 𝑒𝑐𝑢(𝑡) and 𝑒𝑐
′
𝑢 (𝑡), by substituting (16) in (13), one has

𝑒𝑐𝑢(𝑡) + 𝑒
𝑐′
𝑢 (𝑡) ≤ 𝑒𝑢(𝑡).

By (A.1) one has 𝑒𝑐𝑢(𝑡) ≥ 0, and then (4) holds.
By (8) and (A.2) one has 0 ≤ 𝑒𝑑𝑢 (𝑡) ≤ 𝜂𝑠̂𝑢(𝑡). Thus, by exploiting (14), 

it follows that
0 ≤ 𝑒𝑑𝑢 (𝑡) + 𝑒

𝑑 ′
𝑢 (𝑡) ≤ 𝜂𝑠̂𝑢(𝑡) + 𝜂𝑠′𝑢(𝑡)

and hence (5) holds.
In order to prove (6), notice that by (7) and (8) one has 𝑒𝑐𝑢(𝑡) ⋅𝑒𝑑𝑢 (𝑡) =

0, whereas (15) states 𝑒𝑐′𝑢 (𝑡) ⋅ 𝑒𝑑
′

𝑢 (𝑡) = 0, for all 𝑡 ∈  . So, it is sufficient 
to show that 
𝑒𝑐𝑢(𝑡) ⋅ 𝑒

𝑑 ′
𝑢 (𝑡) = 0 ∀𝑡 ∈  , (A.14)

𝑒𝑐
′
𝑢 (𝑡) ⋅ 𝑒

𝑑
𝑢 (𝑡) = 0 ∀𝑡 ∈  . (A.15)

Condition (A.14) follows directly from Lemma  3. If 𝑡 ∈ +
𝑢 , by (8) one 

has 𝑒𝑑𝑢 (𝑡) = 0 and hence 𝑒𝑐′𝑢 (𝑡)⋅𝑒𝑑𝑢 (𝑡) = 0. Consider 𝑡 ∈ −
𝑢 , that is 𝜌𝑢(𝑡) < 0. 

By (1) and (7) one has 𝑒𝑢(𝑡) = 0 and 𝑒𝑐𝑢(𝑡) = 0, respectively. Then, by 
(16), 𝑒′𝑢(𝑡) = 0 which, by (13), implies 𝑒𝑐′𝑢 (𝑡) = 0. Thus, (A.15) holds 
∀𝑡 ∈  . □

Appendix B. Proof of Theorem  2

To prove Theorem  2, the following lemmas are introduced.

Lemma 4.  Let 𝐸𝑐∗ (𝑡) and 𝐸𝑑∗ (𝑡), ∀𝑡 ∈   be the optimal charging and dis-
charging control signals for Problem  2. Let 𝑡1 ∈   be such that 𝐸𝑐∗ (𝑡1) > 0
and set 𝑡2 = min{𝑡 > 𝑡1 ∶𝐸𝑑

∗ (𝑡) > 0}. Let 0 < 𝜀 < min{𝐸𝑐∗ (𝑡1),
1
𝜂2
𝐸𝑑∗ (𝑡2)}, 

and let ̃ be a charging/discharging policy composed by the following control 
signals:

𝐸𝑐 (𝑡 ) = 𝐸𝑐
∗
(𝑡 ) − 𝜀, 𝐸𝑐 (𝑡) = 𝐸𝑐

∗
(𝑡), ∀𝑡 ≠ 𝑡 ,
1 1 1
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𝐸𝑑 (𝑡2) = 𝐸𝑑
∗
(𝑡2) − 𝜂2𝜀, 𝐸𝑑 (𝑡) = 𝐸𝑑

∗
(𝑡), ∀𝑡 ≠ 𝑡2,

Then, ̃ is a feasible solution for Problem  2.

Proof.  First, notice that 𝑡2 always exists. In fact, since 𝑆∗(𝑡1 + 1) > 0
and 𝑆∗(𝑇 ) = 0, there exists a time 𝑡 = 𝑡1 +1,… , 𝑇 −1 where the storage 
is discharged.

Now, the feasibility of ̃ is proved. For any time 𝑡 < 𝑡1 the two 
solutions are identical. At time 𝑡1 one has 0 < 𝐸𝑐 (𝑡1) < 𝐸𝑐∗ (𝑡1) and 
by Lemma  1 𝐸𝑑 (𝑡1) = 𝐸𝑑∗ (𝑡1) = 0. So, the charging control signal 
at 𝑡1 is feasible. For any time 𝑡1 < 𝑡 < 𝑡2 both solutions involve the 
same charging control signals, while 𝐸𝑑 (𝑡) = 𝐸𝑑∗ (𝑡) = 0. At time 𝑡2, 
the storage is discharged by 𝐸𝑑 (𝑡2). In order to be feasible, it must 
be guaranteed 𝐸𝑑 (𝑡2) ≤ 𝜂𝑆(𝑡2), according to (23). Since 𝐸𝑑 (𝑡) = 0 for 
𝑡 = 𝑡1 + 1,… , 𝑡2 − 1, one has

𝑆(𝑡2) = 𝑆∗(𝑡1) + 𝜂𝐸𝑐 (𝑡1) + 𝜂
𝑡2−1
∑

𝜏=𝑡1+1
𝐸𝑐

∗
(𝜏) = 𝑆∗(𝑡1) + 𝜂

𝑡2−1
∑

𝜏=𝑡1

𝐸𝑐
∗
(𝜏) − 𝜂𝜀.

So,

𝑆(𝑡2 + 1) = 𝑆∗(𝑡1) + 𝜂
𝑡2−1
∑

𝜏=𝑡1

𝐸𝑐
∗
(𝜏) − 𝜂𝜀 − 1

𝜂
𝐸𝑑 (𝑡2)

= 𝑆∗(𝑡1) + 𝜂
𝑡2−1
∑

𝜏=𝑡1

𝐸𝑐
∗
(𝜏) − 𝜂𝜀 − 1

𝜂
(𝐸𝑑

∗
(𝑡2) − 𝜂2𝜀)

= 𝑆∗(𝑡1) + 𝜂
𝑡2−1
∑

𝜏=𝑡1

𝐸𝑐
∗
(𝜏) − 1

𝜂
𝐸𝑑

∗
(𝑡2) = 𝑆∗(𝑡2 + 1).

Since 𝑆(𝑡2 +1) = 𝑆∗(𝑡2 +1), and because the two solutions are identical 
from time 𝑡2 + 1 onwards, ̃ is a feasible solution for Problem  2. □

Lemma 5.  Let 𝐸𝑐∗ (𝑡) and 𝐸𝑑∗ (𝑡), ∀𝑡 ∈   be the optimal charging and dis-
charging control signals for Problem  2. Let 𝑡2 ∈   be such that 𝐸𝑑∗ (𝑡2) > 0
and set 𝑡1 = max{𝑡 < 𝑡2 ∶ 𝐸𝑐∗ (𝑡) > 0}. Let 0 < 𝜀 < min{𝜂2𝐸𝑐∗ (𝑡1), 𝐸𝑑

∗ (𝑡2)}
and let ̃ be a charging/discharging policy composed by the following control 
signals:

𝐸𝑐 (𝑡1) = 𝐸𝑐
∗
(𝑡1) −

1
𝜂2
𝜀, 𝐸𝑐 (𝑡) = 𝐸𝑐

∗
(𝑡), ∀𝑡 ≠ 𝑡1,

𝐸𝑑 (𝑡2) = 𝐸𝑑
∗
(𝑡2) − 𝜀, 𝐸𝑑 (𝑡) = 𝐸𝑑

∗
(𝑡), ∀𝑡 ≠ 𝑡2,

Then, ̃ is a feasible solution for Problem  2.

Proof.  The proof follows the same reasoning as that of Lemma  4. □

Proof of Theorem  2.  First, (33) is proven. Let 𝑡1 ∈   be such that 
𝐿(𝑡1) ≥ 𝑅(𝑡1). By contradiction assume 𝐸𝑐

∗ (𝑡1) > 0. Let ̃ be defined as 
in Lemma  4, so it is a feasible solution for Problem  2. Let 𝐽 ∗ be the 
optimal cost of Problem  2, while 𝐽 be the cost related to ̃. Notice that 
𝐽 ∗ and 𝐽 differ only in the terms depending on 𝑡1 and 𝑡2. Moreover, by 
Lemma  1, 𝐸𝑑∗ (𝑡1) = 𝐸𝑐∗ (𝑡2) = 𝐸𝑑 (𝑡1) = 𝐸𝑐 (𝑡2) = 0. Thus,
𝐽 ∗ − 𝐽 = −𝑘

(

𝐴𝑠∗ (𝑡1) − 𝐴𝑠(𝑡1)
)

+ 𝛼
(

𝐸𝑑∗ (𝑡2) − 𝐸𝑑 (𝑡2)
)

− 𝑘
(

𝐴𝑠∗ (𝑡2) − 𝐴𝑠(𝑡2)
)

.

Since 𝐿(𝑡1) ≥ 𝑅(𝑡1), by (26) one has
𝐴𝑠

∗
(𝑡1) = 𝑅(𝑡1) − 𝐸𝑐

∗
(𝑡1),

𝐴𝑠(𝑡1) = 𝑅(𝑡1) − 𝐸𝑐 (𝑡1) = 𝑅(𝑡1) − 𝐸𝑐
∗
(𝑡1) + 𝜀.

and hence
𝐽 ∗ − 𝐽 = 𝑘𝜀 + 𝛼𝜂2𝜀 − 𝑘

(

𝐴𝑠
∗
(𝑡2) − 𝐴𝑠(𝑡2)

)

.

By definition
𝐴𝑠(𝑡2) = min{𝐿(𝑡2), 𝑅(𝑡2) + 𝐸𝑑 (𝑡2)} = min{𝐿(𝑡2), 𝑅(𝑡2) + 𝐸𝑑

∗
(𝑡2) − 𝜂2𝜀}

= min{𝐿(𝑡2) + 𝜂2𝜀,𝑅(𝑡2) + 𝐸𝑑
∗
(𝑡2)} − 𝜂2𝜀 ≥ 𝐴𝑠

∗
(𝑡2) − 𝜂2𝜀.

Then,

𝐽 ∗ − 𝐽 ≥ 𝑘𝜀 + 𝛼𝜂2𝜀 − 𝑘𝜂2𝜀 = 𝑘𝜀(1 − 𝜂2) + 𝛼𝜂2𝜀 > 0.
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Since 𝐽 ∗ > 𝐽 a contradiction occurs. To prove (34), a specular reason-
ing can be repeated by exploiting Lemma  5.

Now, (35) is proven. Let 𝑡1 ∈   be such that 𝐿(𝑡1) ≤ 𝑅(𝑡1). By 
contradiction assume 𝐸𝑐∗ (𝑡1) > 𝑅(𝑡1) − 𝐿(𝑡1). Let ̃ be defined as in 
Lemma  4 and assume 0 < 𝜀 < min{𝐸𝑐∗ (𝑡1),

1
𝜂2
𝐸𝑑∗ (𝑡2), 𝐸𝑐

∗ (𝑡1) − 𝑅(𝑡1) +
𝐿(𝑡1)}. Since 𝑅(𝑡1) ≥ 𝐿(𝑡1) one has 𝐸𝑐

∗ (𝑡1) > 𝐸𝑐∗ (𝑡1) − 𝑅(𝑡1) + 𝐿(𝑡1). So, 
choosing 𝜀 such that 0 < 𝜀 < min{ 1

𝜂2
𝐸𝑑∗ (𝑡2), 𝐸𝑐

∗ (𝑡1)−𝑅(𝑡1)+𝐿(𝑡1)} leads 
to a feasible solution to Problem  2.

Let 𝐽 ∗ be the optimal cost of Problem  2, while 𝐽 be the cost related 
to ̃. Notice that 𝐽 ∗ and 𝐽 differ only in the terms depending on 𝑡1 and 
𝑡2. Moreover, by Lemma  1, 𝐸𝑑

∗ (𝑡1) = 𝐸𝑐∗ (𝑡2) = 𝐸𝑑 (𝑡1) = 𝐸𝑐 (𝑡2) = 0. 
Thus,

𝐽 ∗−𝐽 = −𝑘
(

𝐴𝑠∗ (𝑡1) − 𝐴𝑠(𝑡1)
)

+𝛼
(

𝐸𝑑∗ (𝑡2) − 𝐸𝑑 (𝑡2)
)

−𝑘
(

𝐴𝑠∗ (𝑡2) − 𝐴𝑠(𝑡2)
)

.

Since 𝐸𝑐∗ (𝑡1) > 𝑅(𝑡1) − 𝐿(𝑡1) one has
𝐴𝑠

∗
(𝑡1) = min{𝐿(𝑡1), 𝑅(𝑡1) − 𝐸𝑐

∗
(𝑡1)}

= min{𝐿(𝑡1) − 𝑅(𝑡1),−𝐸𝑐
∗
(𝑡1)} + 𝑅(𝑡1) = 𝑅(𝑡1) − 𝐸𝑐

∗
(𝑡1).

Recalling that 𝜀 < 𝐸𝑐∗ (𝑡1) − 𝑅(𝑡1) + 𝐿(𝑡1)
𝐴𝑠(𝑡1) = min{𝐿(𝑡1), 𝑅(𝑡1) − 𝐸𝑐(𝑡1)} = min{𝐿(𝑡1) − 𝑅(𝑡1),−𝐸𝑐∗ (𝑡1) + 𝜀} + 𝑅(𝑡1)

= min{𝐸𝑐∗ (𝑡1) − 𝑅(𝑡1) + 𝐿(𝑡1), 𝜀} +𝑅(𝑡1) − 𝐸𝑐∗ (𝑡1) = 𝑅(𝑡1) − 𝐸𝑐∗ (𝑡1) + 𝜀.

Thus 𝐴𝑠∗ (𝑡1) − 𝐴𝑠(𝑡1) = −𝜀 and hence

𝐽 ∗ − 𝐽 = 𝑘𝜀 + 𝛼𝜂2𝜀 − 𝑘
(

𝐴𝑠
∗
(𝑡2) − 𝐴𝑠(𝑡2)

)

.

By definition
𝐴𝑠(𝑡2) = min{𝐿(𝑡2), 𝑅(𝑡2) + 𝐸𝑑 (𝑡2)} = min{𝐿(𝑡2), 𝑅(𝑡2) + 𝐸𝑑

∗
(𝑡2) − 𝜂2𝜀}

= min{𝐿(𝑡2) + 𝜂2𝜀,𝑅(𝑡2) + 𝐸𝑑
∗
(𝑡2)} − 𝜂2𝜀 ≥ 𝐴𝑠

∗
(𝑡2) − 𝜂2𝜀.

Then,

𝐽 ∗ − 𝐽 ≥ 𝑘𝜀 + 𝛼𝜂2𝜀 − 𝑘𝜂2𝜀 = 𝑘𝜀(1 − 𝜂2) + 𝛼𝜂2𝜀 > 0.

Since 𝐽 ∗ > 𝐽 a contradiction occurs. To prove (36), a specular rea-
soning can be repeated by exploiting Lemma  5 and by setting 𝜀 <
𝐸𝑑∗ (𝑡2) − 𝐿(𝑡2) + 𝑅(𝑡2). □

Appendix C. Proof of Corollary  1

Proof.  Consider the case 𝐿(𝑡) ≤ 𝑅(𝑡). By (34), 𝐸𝑑∗ (𝑡) = 0, and by (35), 
one has 𝐸𝑐∗ (𝑡) ≤ 𝑅(𝑡) − 𝐿(𝑡). Thus,
𝐴𝑠

∗
(𝑡) = min{𝐿(𝑡), 𝑅(𝑡) − 𝐸𝑐

∗
(𝑡)} = 𝐿(𝑡).

Analyze the case 𝐿(𝑡) ≥ 𝑅(𝑡). By (33), 𝐸𝑐∗ (𝑡) = 0 and hence
𝐴𝑠

∗
(𝑡) = min{𝐿(𝑡), 𝑅(𝑡) + 𝐸𝑑

∗
(𝑡)}.

By (36), 𝐸𝑑∗ (𝑡) ≤ 𝐿(𝑡) − 𝑅(𝑡) and hence 𝐴𝑠∗(𝑡) = 𝑅(𝑡) + 𝐸𝑑∗ (𝑡). □

Appendix D. Proof of Theorem  3

In order to prove Theorem  3, the following lemma is introduced.

Lemma 6.  Let 𝐿𝜉 (𝑡), 𝑅𝜉 (𝑡) and 𝐸𝜉 (𝑡) be defined as in (55)–(57). Then, 
they can be written as 
𝐿𝜉 (𝑡) = 𝐿(𝑡) − 𝛥𝐿(𝑡), (D.1)

𝑅𝜉 (𝑡) = 𝑅(𝑡) + 𝛥𝑅(𝑡), (D.2)

𝐸
𝜉
(𝑡) = 𝐸(𝑡) + 𝛥𝐸 (𝑡), (D.3)

where 𝛥𝐿(𝑡), 𝛥𝑅(𝑡) and 𝛥𝐸 (𝑡) are defined as in (58)–(60).

Proof.  To prove (D.1), by exploiting (54) it is possible to write (55) as
𝐿𝜉 (𝑡) =

∑

max{0,−𝜔𝑢(𝑡)} =
∑

max{0,−𝜌′𝑢(𝑡) − 𝜉𝑢(𝑡)}

𝑢∈ 𝑢∈
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=
∑

𝑢∈
max{0,−𝜌′𝑢(𝑡)} + max{−𝜉𝑢(𝑡), 𝜌′𝑢(𝑡)} + min{0,−𝜌′𝑢(𝑡)}

=
∑

𝑢∈
max{0,−𝜌′𝑢(𝑡)} − min{𝜉𝑢(𝑡),−𝜌′𝑢(𝑡)} + min{0,−𝜌′𝑢(𝑡)}.

Concerning (D.2), a similar reasoning can be made. In particular, it is 
possible to write
𝑅𝜉 (𝑡) =

∑

𝑢∈
max{0, 𝜔𝑢(𝑡)} =

∑

𝑢∈
max{0, 𝜌′𝑢(𝑡) + 𝜉𝑢(𝑡)}

=
∑

𝑢∈
max{0, 𝜌′𝑢(𝑡)} + max{𝜉𝑢(𝑡),−𝜌′𝑢(𝑡)} + min{0, 𝜌′𝑢(𝑡)}

=
∑

𝑢∈
max{0, 𝜌′𝑢(𝑡)} + max{𝜉𝑢(𝑡),−𝜌′𝑢(𝑡)} − max{0,−𝜌′𝑢(𝑡)}.

By (17) and (58), the aggregated load under uncertainty can be written 
as

𝐿𝜉 (𝑡) = 𝐿(𝑡) − 𝛥𝐿(𝑡),

while, by (18) and (59), it holds that
𝑅𝜉 (𝑡) = 𝑅(𝑡) + 𝛥𝑅(𝑡).

Finally, the derivation of (D.3) follows the same reasoning of (D.2) 
applied to the set 𝑠. □

Proof of Theorem  3.  By exploiting Lemma  6 and (62), it is possible 
to write (61) as
𝐽 𝜉 =

∑

𝜏∈
𝑐𝑝𝐿(𝜏) − 𝑐𝑝𝛥𝐿(𝑡) − 𝑐𝑠𝑅(𝑡) − 𝑐𝑠𝛥𝑅(𝑡) − 𝑐𝑠𝐸𝑑 (𝑡)+

𝑐𝑠𝐸𝑐 (𝑡) − 𝑘min{𝐿(𝑡) − 𝛥𝐿(𝑡), 𝑅(𝑡) + 𝛥𝑅(𝑡) + 𝐸𝑑 (𝑡) − 𝐸𝑐 (𝑡)}.

Note that, 𝑅(𝑡), 𝐿(𝑡), 𝐸𝑑 (𝑡) and 𝐸𝑐 (𝑡) do not involve any uncertainty. 
So, the optimal solution ∗ will be the same achieved by removing the 
terms independent on the uncertainty from 𝐽 𝜉 . Then, one has
argmax


𝐽 𝜉 = argmax


𝐽 𝜉

where

𝐽 𝜉 =
∑

𝜏∈
(𝑘−𝑐𝑝)𝛥𝐿(𝑡)−𝑐𝑠𝛥𝑅(𝑡)−𝑘min{𝐿(𝑡), 𝑅(𝑡)+𝛥𝐿(𝑡)+𝛥𝑅(𝑡)+𝐸𝑑 (𝑡)−𝐸𝑐(𝑡)}.

Note that, since 𝑘 < 𝑐𝑝, the coefficients multiplying the uncertain terms 
𝛥𝐿(𝑡) and 𝛥𝑅(𝑡) are negative. Thus, the highest value of 𝐽 𝜉 is attained 
for the lowest values of 𝛥𝐿(𝑡) and 𝛥𝑅(𝑡), i.e., for 𝛥𝐿(𝑡) = 𝛥𝑅(𝑡) = 0, ∀𝑡. 
Moreover, by exploiting (58) and (59), it holds that
𝛥𝐿(𝑡) = 𝛥𝑅(𝑡) = 0, ∀𝑡 ⟹ 𝜉𝑢(𝑡) = 0, ∀𝑡, ∀𝑢 ∈  .

Finally, by using (60), constraint (63) can be written as
0 ≤ 𝐸𝑐 (𝑡) ≤ 𝐸(𝑡) + 𝛥𝐸 (𝑡) ∀𝑡 ∈  .

Since 𝛥𝐸 (𝑡) ≥ 0, ∀𝑡 ∈  , the worst-case realization of the uncertainty 
is the one that provides the smallest feasible set. Such a condition is 
obtained when 𝛥𝐸 (𝑡) = 0, ∀𝑡 ∈  . Then, the worst-case realization is 
again attained by imposing 𝜉𝑢(𝑡) = 0, ∀𝑡 ∈  , ∀𝑢 ∈ 𝑠. □

Appendix E. Proof of Corollary  2

Proof.  By (54), for a given 𝑢 ∈   and 𝑡 ∈  , the perturbed profile is
𝜔𝑢(𝑡) = 𝜌′𝑢(𝑡) + 𝜉𝑢(𝑡).

Define the new variables
𝜙𝑢(𝑡) = 𝜌′𝑢(𝑡) + 𝜉𝑢(𝑡),

𝜓𝑢(𝑡) = 𝜉𝑢(𝑡) − 𝜉𝑢(𝑡).

Clearly, 𝜓𝑢(𝑡) ∈ [0, 𝜉𝑢(𝑡) − 𝜉𝑢(𝑡)], and 𝜔𝑢(𝑡) = 𝜙𝑢(𝑡) + 𝜓𝑢(𝑡). By Theorem 
3, one has that 𝜓∗

𝑢 (𝑡) = 0 leads to the worst-case realization of the 
uncertainty. Therefore, the associated perturbed profile is equal to
𝜔∗(𝑡) = 𝜙 (𝑡) = 𝜌′ (𝑡) + 𝜉 (𝑡),
𝑢 𝑢 𝑢 𝑢
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where the worst-case uncertainty corresponds to 𝜉∗𝑢 (𝑡) = 𝜉
𝑢
(𝑡). □

Data availability

Data will be made available on request.
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