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Renewable energy communities constitute one of the most promising tools to contribute to the green energy
transition and to provide social, environmental, and economic benefits to their members. These goals are
pursued through the cooperative efforts of the community participants to increase the local energy self-
consumption. In this paper, the optimal operation of energy storage system in an incentive-based energy

community is addressed. By exploiting the flexibility provided by the storage facilities, the problem of
minimizing the community energy bill by taking advantage of incentives related to local self-consumption
is formulated. Conditions for the convenience of using storage systems inside an energy community, and
explicit optimal solutions for managing such systems are analytically derived. Robustness of the solution
against uncertainty affecting consumption and generation profiles of the community members is investigated.
Numerical simulations are provided to assess the performance and the feasibility of the proposed solution.

1. Introduction

The Net Zero plan of the European community aims at achieving
climate neutrality by 2050 [1]. One of the most promising solutions
relies on the paradigm of renewable energy communities (RECs). As
defined by the European Union [2], an energy community is a legal
entity where participation is established on a voluntary and open basis,
with the primary purpose of ensuring environmental, social and eco-
nomic benefits to its members and shareholders. These benefits may be
obtained by providing auxiliary services through renewable generation
facilities, energy storage systems and electric vehicles. Thus, a REC
can contribute to reducing gas emissions, triggering renewable self-
consumption mechanisms, and increasing environmental sustainability.
Additionally, it allows citizens to play an active role in the energy
transition, fostering virtuous behaviors and economic growth.

1.1. Related works

Generally, an energy community is characterized by a massive adop-
tion of renewable resources, ensuring the self-consumption mechanism
either through local markets [3,4], or by exploiting community incen-
tives introduced by state or regional regulations [5,6]. The former ap-
proach is focused on establishing energy trading operations among all
community members, where local prices are usually computed accord-
ing to distributed-like approaches, including ADMM algorithms [7],
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and blockchain technologies [8]. The latter relies on incentives granted
to the community based on the cooperation of its members [9], or on
the community virtual self-consumption [10], defined as the minimum
between the overall energy demand of the community and the total
renewable energy generated within the REC.

In [11], it is shown that energy communities may help to provide
environmental benefits and cost reductions for their users, leading
to a higher social acceptability and an increase of community self-
consumption [12]. Moreover, the optimal coordination of community
members can provide lower operation costs [13]. Since acting towards
the community generally leads to cheaper energy bills, fair redistribu-
tion schemes are employed to allow that every member can benefit by
joining the community [14]. The economic benefits of RECs are also
analyzed in the context of buildings [15], while in [16] it is shown that
building performance in the community system can be improved by
employing optimization routines. Nevertheless, the optimal allocation
of renewable resources may allow to reduce investment costs while
considering different aspects of the community system, such as electric
mobility [17], and local conditions for the installation of photovoltaic
or wind turbine facilities [18].

Energy storage systems can play a crucial role in achieving high lev-
els of community self-resiliency. Actually, to enhance the community
operation, they can be employed as a shared resource [19], or operated
through coordinated efforts of private users [20]. However, their opti-
mal operation must consider different aspects, including power flow
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modeling [21] and uncertainties in renewable generation or consump-
tion profiles [22]. Concerning uncertainty-aware approaches, two-stage
formulations [22,23] and robust approaches [24] are employed to
handle uncertain variables. Also, risk-constrained procedures have been
developed to satisfy grid requirements [25] and design a community
storage facility [26].

1.2. Contribution

This paper is focused on incentive-based RECs, where the com-
munity is assumed to be composed of consumers, producers and pro-
sumers, while the incentive provided to the REC is granted on the basis
of the virtual self-consumption in each time period of the day. For in-
stance, such framework complies with the Italian regulation, where the
virtual self-consumption is computed on an hourly basis. We suppose
that prosumers and producers can be equipped with energy storage
units that can be used to provide flexibility to the community. To
manage the energy flows inside the community, a central entity, called
REC manager, is engaged to manage the energy storage systems. Using
load and renewable generation profiles provided by REC members, it
operates the storage systems to achieve the following objectives:

» minimize the energy bought from the grid by each prosumer;
» coordinate the storage systems to minimize the community en-
ergy cost.

Thus, the optimal control problem is formulated, and optimality
conditions are derived to find the optimal storage schedule. The main
contributions of the proposed study are:

+ closed-form solution for the optimal charging/discharging strat-
egy which makes the solution nicely scalable for RECs of arbitrary
size, featuring negligible runtimes;

optimization procedure useful for designing and building a REC,
with reference to quantification of the economic convenience of
exploiting storage systems depending on the level of uncertainty
and the optimal sizing and management of storage systems of the
REG;

adaptation of the previous solutions to the case of uncertain load
and generation profiles according to a worst-case approach.

To validate the effectiveness of the optimal solution obtained, numer-
ical simulations involving renewable energy communities of large size
are performed.

1.3. Novelty

Due to the high relevance to REC’s design and operation, there are
several recent works in the literature that address this topic. In fact,
many research works are related to optimal management of shared
storage systems inside RECs, like in [27], where the influence of the
variability of power demand on the total operating and maintenance
costs of a community is investigated through a multi-objective analysis.
In [28], it is analytically proved that the optimal control of a shared
storage system over a horizon of several days is equivalent to solving
many optimization problems over a single day, thus reducing the over-
all complexity. In the recent work [29], authors address the problem
of operating shared storage systems in a REC to maximize the overall
self-consumption while preserving battery lifespan. To this purpose, a
two-layer optimal control model composed of a planner and a real-time
controller is proposed.

Differently from the above-mentioned contributions, in this paper it
is assumed that no shared batteries are available, whereas prosumers
and producers can be equipped with their own energy storage units that
can be operated to provide flexibility to the community. In this context,
the case of distributed storage systems is analyzed in [30], where a
mixed-integer linear programming (MILP) problem is formulated to
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reduce the total costs of the aggregation for supply and storage, while
maximizing profits and additional ancillary services provided to the
grid. Optimal operation of storage systems in RECS under demand
response programs is considered in [31,32], where the optimal battery
management is provided through the solution of low-complexity MILP
problems. A community energy management system under demand
response programs is also considered in [33], where the devised energy
management system operates on two levels: the community controller
level and the consumer level. To reduce the overall expected cost, bat-
tery energy usage is optimized through a genetic algorithm. Contrary
to the previously cited works, in this paper a closed-form solution for
the optimization problem aimed at the management of energy storage
systems is provided. So, the obtained management strategy turns out to
be easily implementable in real applications. Moreover, explicit worst-
case scenarios are derived to apply the storage optimal control law in
a robust optimization framework.

1.4. Notation

For a given optimization problem, the superscript * denotes all
the quantities related to the optimal solution S*. Accordingly, all the
variables related to a given feasible solution S are denoted with the
superscript™

A flowchart illustrating the main topics treated in each section of
the paper is reported in Fig. 1.

2. Materials and methods
2.1. Problem formulation

The problem is formulated in a discrete time setting, where the
storage operation is performed over one day, divided into T time
indexes and represented by the set 7 = {0,1,...,T — 1}. Consider a
renewable energy community composed of a set U" of members (or
entities). For a given community member u € U, let /,(r) be the
load between time ¢ and 7 + 1, whereas r,(¢) be the renewable energy
generated in the same time interval. In general, an entity can be a
consumer, a producer or a prosumer. A consumer is characterized by
its load (/,(r) > 0, r,(r) = 0, V1), a producer by the generated renewable
energy (I,(t) = 0, r,(t) > 0, V), while a prosumer involves both
consumption and generation (/,(t) > 0, r,(t) >0, V7).

Assume that a fraction of producers and prosumers are equipped
with an energy storage system, and let them be gathered into the set
U, C U'. Consumers are not considered in this set because it is assumed
that a storage can contribute to the community only by using renewable
sources (see for instance the Italian regulations [34]). Thus, 5 kinds of
entities are considered, which represent all the possible combinations
of load, generation and storage, as depicted in Fig. 2.

Let p,(t) = r,(t)—1,(?); for a given entity u € U, the maximum amount
of energy that can be charged into the storage between ¢ and 7 + 1 is

2,(t) = max{p, (1), 0). €

Note that ¢,(r) denotes the surplus between the generated and the con-
sumed energy; the remaining generated energy is supposed to supply
the entity load. In this paper, the storage capacity and maximum power
rates are left as variables of the optimization problem. In fact, one
of the targets of the proposed study is to provide information on the
storage system size allowing for the minimization of the cost of the
REC. This knowledge provide crucial information on how to build the
REC structure and plan its operation. Note that such assumptions can
be relaxed in practical applications by enforcing a posteriori feasible
bounds on storage capacities and charging/discharging power rates, as
reported in Section 3.
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Fig. 1. Flowchart of paper structure.

Given an entity u € U], let ¢ (r) be the energy charged into the
storage while ¢?(r) be the energy drawn from the storage between
and ¢ + 1. The energy stored at time 7 + 1 is expressed as

1
Sult + 1) = 5,(0) + neS() - Zeﬁ o), 2
where 7 < 1 denotes the battery efficiency. It is assumed that

5,(0) = 5,(T) = 0. 3
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Fig. 2. Entity types in the considered community.

Clearly, eS() is a positive quantity and it is bounded by the surplus of
generated energy, i.e.,

0<ei(t)<e,n Vvt (€©))

On the other hand, since s,(7) > 0, efj () is positive and cannot exceed
the stored energy, that is

0 <ed(t) <ns,(t) V. 6)

Finally, to avoid situations of simultaneous charging and discharg-
ing, the following complementary constraint will be imposed

@ -edn=0 v (6)

In this paper, the storage devices will be used to fulfill two main
purposes:

» optimize the prosumer operation by minimizing the amount of
energy drawn from the grid;

» optimize the community operation by exploiting the incentive
provided by the community self-consumption.

The formulation of the former task is reported in Section 2.1.1, while
the latter is detailed in Section 2.1.2.

2.1.1. Prosumer self load balancing

To minimize the amount of electricity bought from the grid, it is
assumed that prosumers first want to balance their own load by ex-
ploiting their storage facilities; after that, they operate them to increase
the community self-consumption. To describe the former operation,
hereafter named as self load balancing, for each prosumer u € U, the
set of time indexes 7 is partitioned into two sets

Ry ={teT:pm20},
R ={teT:p,) <0},

u

that define the time periods in which renewable energy surplus is
available or not.

To provide self load balancing, the following control strategy is
enforced

inqe,(t),— 1) — if te RT,
PIOT b Kl 2 P HEER, @)
TER,/
0 else,
éﬁ(t) _ min {r]&u(t), —pu(t)} ifreRr,, @)
0 else,
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Fig. 3. Profile p,(#) (blue dashed) and the resulting profile p!(t) (red), obtained
by a given prosumer u € U, after applying the self load balancing operation.

8,0+ 1) =38,(0+ne,(n) - %éﬂ(t), 9

5,00=0, (10)

where & (1), ég (1), and §,(7) denote the charging command, the discharg-
ing command and the energy stored during the self load balancing
operation, respectively. In (7), the charging command is designed in
a way such that the energy stored does not exceed future loads, while
in (8), the discharging command is used to balance the load at each
time step. In the next proposition, some useful properties of the self
load balancing strategy are reported.

By applying the strategy reported in (7)—(10), for a given prosumer
u € U, the original profile p,(r) changes. Such modified profile is
denoted by p/ (1) = p, (1) — &) + éfj(t). Then, the remaining renewable
generation surplus may be further used by the storage system to provide
additional flexibility to the community. An example of prosumer load
balancing is shown in Fig. 3.

Note that this balancing procedure does not affect producers since
they do not have loads, or consumers since they are not equipped with
storage units. So, p/(t) = p,(7) for all u € U except for prosumers
equipped with storage systems.

Since the storage device has been used to change the prosumer
profile, Egs. (2)-(6) need be adapted accordingly to be used later for
REC purposes. Specifically, variables and constraints for the community
operation follow

s+ 1) = (1) + neS (1) — %ej’(z) Yu € U, V1, an
s'(0) = s(T) = 0, 12)
0<e(n<e Yu e Ui, (13)
0<el (1) <ns' (0 Yu e U, i, a4
-’ 1)=0 Vu e U, 1, (15)
where

e (1) = max{p/(1),0} =2,(t) — 6°(t) Vu € U, V. (16)

In (11)—(16), the prime symbol is used to denote variables involving
quantities obtained after the self load balancing operation. So, ei/(t)
and ej/(t) denote the charging/discharging commands of entity u to
be applied for maximizing the incentive gained at community level,
assuming the self load balancing operations have been accomplished.
Therefore, it is mandatory to show that the storage operations for
self load balancing and REC incentive maximization are compatible,
i.e., their superposition satisfies (2)—(6). Such a statement is formalized
in the following theorem.

Theorem 1. Let &(1), &¢%(1), §,(t) in (7)~(10) and €< (1), ! (1), s.(1)
satisfying (11)—(15) be given. Then, the superimposed solution
(1) = &) + ¢ (1)

diy=élw+e 1)

u
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5,0 = 8,(0) + si,(0)

satisfies (2)-(6), Vt € T.
Proof. See Appendix A. [

Remark 1. Theorem 1 allows a prosumer to proceed sequentially:
first, the storage commands needed to provide self load balancing are
computed for the whole time horizon, allowing for the computation of
the modified profile p; ; then, the storage commands maximizing the
REC incentive are computed on the basis of p/. The actual commands
to be applied will be the sum of those obtained in the previous two
steps, whose feasibility is guaranteed by Theorem 1.

2.1.2. Community level aggregation

This subsection is focused on the energy balance related to the
overall community, once the self load balancing operations have been
computed. At a given time ¢, the overall energy demand L(r) required
by all community entities is

L@ = Y, max{p,(),0}, an

uel’

whereas the surplus within the community R(?) is

R = Z max{p/ (1), 0}. (18)
uel’

After the self load balancing procedure, for each time step ¢, an entity

u contributes to L(¢) if its load exceeds the generation, i.e., p; ) <0,

while contributes to R(?) if there is a generation surplus, i.e., p;(t) > 0.

Therefore, the self-consumption at community level at time 7 is given

by

A%(#) = min{ L(t), R®)}, 19)

that represents the energy demand that is matched by the energy
generation inside the community. Since monetary incentive will be
granted to the REC on the basis of the community self-consumption,
the aim is to operate the storage systems of its entities to increase such
reward.

Concerning storage units, the stored energy at community level is

NOESWAO

uels
whereas the related charging and discharging energy commands are
given by

E‘) =) e 0,

uely

Eln =Y 0.
uely

Define

En= Y =Y max{p,®,0}. (20
uel; uev;

Then, at REC level, the constraints related to the storage can be
rewritten as

St+1)=8@0)+nE@) - %Ed 6} vit, 21)
0<E‘(t) < EQ V1, (22)
0< EYn < S vt (23)
50) = S(T) =0, (24)

Since the storage systems are charged with energy produced by
renewable generators, the net renewable energy injected into the grid at
community level is obtained by the following energy balance equation

G()= R(t)— E‘t) + E4(t) vt (25)
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So, the REC self-consumption in the presence of storage at time 7 is
defined as

A*() = min{ L(1), G®)} = min{L(t), R(t) — E°(t) + E*(1)}. (26)

Hereafter, the analysis will be done with quantities aggregated at
community level, by employing expressions (17)—(26). In the following,
it will be shown how to optimally operate the entity storage systems in
order to minimize the REC overall cost.

2.2. Optimal storage operation

Let ¢? and ¢* be the energy purchase and selling prices, respec-
tively. Moreover, let k < c¢? be the unitary incentive price for the
self-consumed energy within the community. The objective of the
community is to minimize its energy cost, which is defined as

J= 2 (P L(7) — ¢*G(1) — kA (7). @7

teT
Let S be the vector containing all the storage charging/discharging
control signals at community level in 7, that is

S =[E(0), ..., ES(T — 1), EX0), ..., E4(T - 1)].

Thus, the optimal storage schedule is the minimizer of the following
optimization problem.

Problem 1.
S* = in J
arg min

s.t. (21) — (26).

It is worth recalling a lemma proved in [20], which states that E<" (r)
and E?"(t) cannot be greater than 0 at the same time.

Lemma 1. Let ES (1) and EY (1), Vi € T be the optimal charging and
discharging control signals for Problem 1. Then,

ECw)-E"(1)=0, VieT. (28)

Remark 2. It is worthwhile to highlight that, since the community stor-
age systems are distributed among the community entities, E¢() and
E?(t) may be both non-zero for a generic feasible solution of Problem
1. However, thanks to Lemma 1 the optimal solution is such that the
storage units are acting as a unique virtual storage of the community.
In fact, the optimal solution provides a control signal which requires
all the storage devices to be charged (or discharged) simultaneously,
avoiding situations in which a storage system is charging when another
one is discharging.

Since S(0) = 0, the explicit dynamics of the storage system can be
written as

st=Y <1’]EC(T)— lEd(r)>, vre(0,...,T}. (29)
teT n
So, constraint S(T) = 0 can be represented by
Y E(r)= ), E4). (30)
teT teT

By (25) and (30), the following equation holds

)
Y 60= 3, R~ =L 3, Eeo,

teT teT teT

and hence the objective function (27) can be written as

2
J= z <c”L(T) —¢*R(r) + cSI—Z”Ed(r) - kAS(T)> .
T€T n
Define

2
51_’1

a=c
”2

> 0. (€29)
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Since neither the energy demand L(¢) nor the energy generation R(¢) de-
pend on the decision variables, one can aim to minimize the following
function

J =Y (aB (1) - kA'(D)). (32)
teT

Therefore, the optimal solution of Problem 1 coincides with the optimal

solution of the following problem.

Problem 2.
S* = i
arg min J

s.t. (21) — (26).

To derive the optimal solution of the problem, it is convenient to
focus on the value of k, i.e., on the unitary incentive on the REC self-
consumed energy. Actually, depending on the value of k, it may be
convenient or not to use the storage systems to optimize the community
operation.

The following proposition derives conditions under which the trivial
solution E9(f) = E°(r) =0, Vt € T is optimal.

Proposition 1. If k < a, then the optimal solution of Problem 2 is

E‘(t)=E‘(t)=0, VtT.
Proof. See Theorem 1 of [20]. O

Remark 3. Proposition 1 provides a threshold value on k as an
indicator for the convenience of using the storage. In fact, if k < « the
best solution does not require the usage of storage systems to minimize
the REC cost. For this reason, from now on, the case k > «a is considered.

Theorem 2. Consider Problem 2, and let E¢*(¢) and E" (t) be the optimal
charging and discharging control signals for Vt € T. It holds that

EC(H=0  if L() > RO, (33)
ET(H)=0  if L(t) < RQ), (34
EC() <R - L@ if L) < R, (35)
E" () <Lt - R® if LG) > R@). (36)

Proof. See Appendix B. []

Notice that Theorem 2 states that a candidate solution to Problem
2 must satisfy (33)—(34) that automatically enforces condition (28).

Corollary 1. Let S* be the optimal solution of Problem 2. Then,

L) if L(t) < R()

37
R®+EC @ if LO) 2 RQ). @7

A1) = A°0) + ET (1) = {

Proof. See Appendix C. []

Let the time indices be divided in two sets, depending on the fact
that the REC load is less or greater than generation:

Rt ={teT:R@t > L)},
R-={teT:R(t) < L@}

By Corollary 1, and by adding (33)-(36) to the constraints of
Problem 2, the objective function in (32) can be rewritten as

J=a ) Bl -k Y (A%0)+ E'D) = -k Y, A(0)+ (@—k) Y, E'(x),
€T €T €T TER™
where the last equality comes from (34).

Since A%(¢) is known and constant, and k > a, the optimal solution of
Problem 2 coincides with the optimal solution of the following problem.
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Problem 3.
S* = arg max z EY1) (38)
teER™
s.t.

S+ 1) = S@) +nE() — %E"(I) VieT, (39)
0< E‘() < E) vieT, (40)
0< EYn < S VieT, 41)
E°(t) < R(t) - L(t), E%(t)=0 Vi e RY, (42)
EY(1) < L(1) - R@®), E‘(H)=0 VieR™, (43)
S(0) = S(T) =0. 44

Note that the optimality conditions reported in Theorem 2 are
summarized by constraints (42)-(43).

Since the objective function of Problem 3 involves only E?(r), it is
apparent that the optimal solution maximizes the overall discharged
energy. Operatively, at a given time r € R~ the optimal control signal
is to choose E?(r) as bigger as possible. Thanks to (41)—-(43), the optimal
solution results

EY(t) = min{L(t) - R®),nS(®}, ES(t)=0, VieR". (45)

On the contrary, when t € R* by (34) one has E“(f) = 0. Note that the

choice of the control variables at these time steps does not influence

the objective function. Thus, the optimal charging control signal will be

that maximizing the charging energy while satisfying the constraints.
By (30) it holds

1—1 T-1
Z;)E”(T)+E”(r)+ Z ES(r) = Z <%>

T=1+1 €T
and hence
-1 d T-1 d T-1
Fo=y <E @) _EC(T)> £y (E ET)> - Y E@. (46)
=0 n 7=t n r=t+1

By (29), one has

t—1

S d
_5® _ Z <En_§r) _ EC(1)> i

n =0
Since E¢(t) > 0, Vt, from (46) it follows
T-1
¢ S() < Ed(7)>
ES() < ——=> + — ).
n=<-= ; p
Moreover, by (41) and (43) one has 0 < E4(f) < L(t) — R(t), and then
S(1) L(z) — R(z)
X T

E‘(t) < ——— +
TER™, 7>t n

vie RT. (47)

So, by (40), (42) and (47) the maximum, and thus the optimal, charging
control signal is

Ec*‘(;):min{ Fo), R(t) — L), -¥ + Y L®) - RO } (48)

2
TER ™, 7>t n

Remark 4. It is worthwhile to note that the optimal
charging/discharging commands given in (45) and (48) represent the
closed-form solution of Problem 1. This makes it possible to drastically
reduce the computational burden of the storage optimal control law,
thus allowing the procedure to be applied to large RECs, as shown in
Section 3.

2.2.1. Distributed solution derivation

The solution of Problem 1 is obtained by using aggregated quantities
of community storage systems, rather than exploiting charging/dis-
charging commands of each single storage unit. Nevertheless, in the
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following, it will be shown how to retrieve a distributed optimal
solution starting from the aggregated one. In particular, consider the
quantities:

EO jfgr@)>0
y() =4 EO i, (49)
0 otherwise

ET@ e opdr
8(t) =4 15*© if B0 >0 vt, (50)
0 otherwise

that denote how close are the charging and discharging commands to
their respective upper bounds.

Then, an optimal distributed solution is provided in the following
proposition.

Proposition 2. Let the optimal solution of Problem 1 be given, and let
e (1) = ()2, (1)
el (1) = ns(0)s (1)

be the charging/discharging commands for each storage unit, where

Vue v, Vi, (51)
Vue U, vt (52)

-1

i = (nef‘*(f) - 1eg* (r)> Yue U, V1, (53)
=0 n

denotes the energy stored at time t by applying (51) and (52). Then, (51)

and (52) provide a distributed optimal solution of Problem 1.

Proof. See Theorem 2 of [20]. [

Therefore, the overall distributed storage operation can be obtained
by using (7)-(9) that leads to the following equations

(1) = e () + &),
ed (1) = e¥ (1) + &(n),
5,(1) = 550 + 55(0).

which, by Theorem 1, satisfy (2)-(6).
2.3. Optimal operation under uncertain profiles

The above results have been obtained assuming that p; @), Vvuelr
are known. However, in real settings, only forecasts of such quantities
may be available, affected by a wide range of uncertainties. So, in
this subsection, the uncertainty related to profiles p/(r) is modeled and
handled according to a robust framework. Specifically, an additive
unknown-but-bounded (UBB) uncertainty &,(f) € [O,Eu(t)] is consid-

ered, where Eu(t) is a known upper bound. This bound is either known
a priori on the basis of knowledge on the system, or it is estimated
by historical data. So, the resulting perturbed entity profile can be
modeled as

w, (1) = pl (1) + &,(0). (54)

Remark 5. For ease of exposition, it is supposed that &,(r) is non-
negative. However, it is possible to seamlessly adapt the overall reason-
ing to uncertainties that can take negative values. Such an adjustment
is reported at the end of this subsection.

According to (54), all the aggregated quantities involving p/ (1) need
be adapted to take into account the uncertainty &,(r) in their profiles.
In particular, L(¢), R(t) and E(t) defined in (17), (18) and (20), need be
replaced with

Liy = )} max{0,-,0)}, (55)
uel”
RE() =) max{0,m,(1)}, (56)

uev’
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E@=Y max{0.w,0). 7
ueU
In order to find the worst-case uncertainty realization, define the

following uncertain variables

Ak =Y min{&, (1), —p, (1)} —min{0, -, (1)}, (58)
uevr’

ARy =Y max{&,(n), —p, (1} —max{0, =/, (1)}, (59)
uel’

AF @)=Y max{,(1), —p, (1)} —max {0, —p,(1)}. (60)
uely

Note that, since &,(f) > 0, one has that 4%(¢) > 0, AL(r) > 0 and 4% (r) > 0.

Consider the community objective function expressed as in (27).
By inserting the uncertainty in L(+) and G(), the community cost is
formulated as

JE = Z P LE(7) — ¢*G4(r) — kmin{ L% (1), G*(7)}, (61)
€T

where

G:(t) = RE(t) + EC(t) — ES(p). (62)

Concerning optimization constraints, (22) becomes
0<E‘W<E®W VieT, 63)

which depends on the uncertainty due to (57).

Let £ be a vector collecting all the uncertain variables &,(r), V¢ €
T, Yu € U, then the robust optimization problem to be solved is as
follows.

Problem 4.
* ok : 7é
[S%,E%] arg min max J
s.t. (21),(23), (24),
(61) — (63).

The worst-case realization of the uncertainty £* in Problem 4 is
reported in the following theorem.

Theorem 3. Consider Problem 4. Then, the worst-case realization of the
uncertainty is £* =0, ie, &) =0, Vi €T, Vu e V.

Proof. See Appendix D. []

Now, it is possible to generalize the reasoning to any kind of
bounded uncertainty such that &,(r) € [éu(t), £,()], where i " <

(D, VIET, Vuel.

Corollary 2. Consider Problem 4 and assume that the uncertain variable
is such that &,(t) € [gu @), &,(0], where éu(t) < &M,V ET, Yuel.
Then, the worst-case uncertainty is £(t) = éiu o), VteT, Vuel.

Proof. See Appendix E. []

Remark 6. These above results are obtained by using profiles p] (1),
which represent the entity profile after performing the self load balanc-
ing operation. However, by (7), the lower ¢,(¢), the lower the energy
charged. Therefore, the least amount of energy shifted to balance the
prosumer load is related to the self load balancing operation applied to
the profile p,(t) + fu(t).

3. Numerical results
To evaluate the performance of the proposed solution under dif-

ferent scenarios, two examples are provided: a simplified one and an
example based on a realistic energy community. The former example
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Fig. 4. Illustrative example. Load (blue) and generation (red) profiles of the
community entities.
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Fig. 5. Illustrative example. Load (blue) and generation (red) profiles at
community level.

involving three players only shows how the single load/generation
profiles are combined together to provide the overall REC profile. On
the other hand, the realistic example involving a community of 60
entities is aimed at assessing the performance of the proposed approach
in a realistic scenario. Finally, the computational feasibility is validated
by considering different community sizes. For all the examples, the
optimization time horizon spans over 24 h with a sampling time of
5 min, i.e., T = 288. Both prosumers and producers are assumed to
be equipped with storage units whose efficiency is set to n = 0.9. Grid
prices are supposed to be ¢?» = 0.35 €/kWh and ¢* = 0.18 €/kWh,
whereas the incentive is set to k = 0.12 €/kWh. Note that, since
a = (1 — #¥)/n* = 0.042 €/kWh, Proposition 1 confirms that the
incentive k is chosen to foster storage utilization.

3.1. Illustrative example

In this example, a simplified community structure involving one
consumer, one prosumer, and one producer is considered. The load
and generation profiles of the community entities are depicted in Fig.
4. Then, by aggregating at community level, community load and
generation are reported in Fig. 5.

These aggregated profiles show generation surplus during the mid
hours of the day, and load excess in other periods. Note that the load
peak occurring around 20:00 is due to the self load balancing operation
performed by the prosumer.

By exploiting (45) and (48), the energy surplus is employed to
balance the load during the last part of the day. This behavior is
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Fig. 6. Illustrative example. Storage level of charge (blue) and related charg-
ing (red) and discharging (yellow) control signals at community level.

S

Energy [kWh)]

0 I I I I
0 5 10 15 20

Time of the day

Fig. 7. Illustrative example. Self-consumption profiles A°(f) (yellow) and A*(r)
(purple).

Table 1
Community cost and incentive.

lustrative example Large-scale example

No storage

Cost [€] 90.45
Incentive [€] 16.21

Optimal No storage

79.51 (-12.1%) 19901
33.93 (+109.3%) 6069

Optimal

18065 (-9.2%)
8901 (+46.7%)

evident by analyzing the storage dynamics and the related charging and
discharging control signals in Fig. 6. Moreover, as stated by Corollary
1, the obtained storage schedule is such that the self-consumption A%()
is maintained (enhanced) when the storage is charging (discharging),
as illustrated in Fig. 7. Thus, the obtained profile closely follows the
load until the storage is fully discharged. The optimal storage operation
in this setup is capable of reducing the community cost of about
12%, while the incentive gained (and directly the community self-
consumption) is more than doubled. Community costs and incentives
concerning both setups are summarized in Table 1.

3.2. Realistic example

In this example, a large energy community is simulated over 10
days. The investigated setup involves:

* 30 consumers,

» 10 prosumers with storage system,

» 10 prosumers without storage system,
+ 7 producers with storage system,

+ 3 producers without storage system.

Load profiles are derived from real-world data involving both residen-
tial and commercial entities. For renewable generation, a unique profile
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Fig. 8. Realistic example. Normalized generation profile in the simulation
period.
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Fig. 9. Realistic example. Load (blue) and generation (red) profiles at com-
munity level.

obtained from real recordings of a PV plant is utilized. If a prosumer
is considered, the corresponding generation profile is scaled according
to the user load profile. On the other hand, for a producer, the peak
power production is randomly set to 50, 75 or 100 kW. The normalized
PV profile is depicted in Fig. 8.

To assess the performance of the proposed approach, first the opti-
mal solution related to the deterministic setting is investigated, where
no uncertainties are considered. Then, the sensitivity of the solution is
evaluated according to different magnitudes of uncertainty.

3.2.1. Deterministic results

After performing the load balancing operation and aggregating
at community level, L(r) and R(f) profiles are obtained. Time plots
concerning these profiles are depicted in Fig. 9.

Similarly to the previous setup, for most of the days the generation
is exceeding the energy demand of the community in the mid hours of
the day. Therefore, for each day, the optimal strategy is such that the
renewable energy generation is shifted by the storage facilities during
evening hours. This behavior can be also noted in Fig. 10, where the
optimal self-consumption profile A*(r) is compared with its counterpart
AO(t). In fact, the storage facilities are operated so as to increase the
community self-consumption during the last periods of the day. As
shown in Table 1, the optimal solution is capable of reducing the
community cost by about 9%, while the community self-consumption
is increased by almost 47%.

Finally, the optimal solution involves storage quantities that are
feasible for real-world settings. To support this statement, for each
storage system, the maximum capacity s, = max, s,(f) and the maximum
charging/discharging power p, are analyzed, where p, can be roughly
approximated as

_ 1 p
Pu= D max (eli(t) +e (t)) s
where ]]—2 is the sampling time expressed in hours.

Storage capacities are compared with the daily energy surplus

(i.e., X ,er €,(r)), while power rates are validated by considering the
ratio between s, and p,.
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Fig. 10. Realistic example. Self-consumption profiles A°(¢) (yellow) and A*(r)
(purple).

In the investigated scenario, storage capacities are at most 3%
higher than the average daily energy surplus, while they are smaller
than 40% of the maximum daily surplus. Concerning power rates, the
ratio between the capacity and the maximum charging/discharging
power is always above 2 h, which is consistent with the state-of-the-art
technologies [35].

3.2.2. Uncertainty analysis

To show how the problem solution is affected by uncertainty, the
profile of each user is perturbed by a random variable having sym-
metric support. For each user u € U, the maximum perturbation is
chosen according to @ max, |p,(f)|, where a denotes a given uncertainty
level. The nominal profile of a consumer, a prosumer, and a producer
compared with different levels of uncertainty is shown in Fig. 11.
Since the energy profiles of consumers and producers have fixed signs,
their uncertain profiles are constrained to be negative or positive,
respectively. Notice that the profile of the consumer reported in Fig.
11 refers to an entity which drastically reduces its consumption during
weekend, like, e.g., an administrative office. Clearly, by Corollary 2,
the worst-case uncertainty corresponds to its lowest value which is the
lower bound of the uncertainty band for all the depicted cases. So, the
self load balancing and the community operations are performed using
the lowest profiles obtained for different values of a.

Performance is evaluated by analyzing the percentage of savings
and the community self-consumption obtained by employing the worst-
case scenarios with and without storage systems. The graphical ten-
dency of savings for different values of a is depicted in Fig. 12. As
expected, the optimization performance deteriorates when the uncer-
tainty increases. In particular, for « > 0.17 the potential savings drop
below 1%, becoming negligible beyond a = 0.25. Focusing on self-
consumption, the energy self-consumed with and without storage at
REC level, according to different magnitudes of uncertainty, is shown
in Fig. 13. As one may notice, the role of the storage system becomes
increasingly marginal as the uncertainty affecting community profiles
grows.

3.3. Computational analysis

Regarding computational aspects, the overall procedure shows very
small computation times for the considered problem size. The analysis
has been carried out by considering communities involving 10, 100,
1000, and 10000 entities. For each of these configurations, 40% of
entities are supposed to be equipped with storage systems. Perfor-
mance indicators investigated are: i) optimization time, defined as the
time required to solve a single optimization problem instance; and
ii) operation time, which represents the time needed to perform load
balancing, optimize community operation, and generate a distributed
optimal solution. The figure representing optimization and operation
times as functions of the community size are reported in Fig. 14. Thanks
to the closed-form solution for optimal storage operation derived in
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Section 2.2, even for the largest community size involving 10000
entities, the average optimization time is below 600 ps, and also the
operation time remains negligible compared to a daily time scale.'

3.4. Discussion

Simulation results show how storage facilities can contribute to the
effective operation of an energy community. The illustrative example
highlights the key aspects of the optimal solution, which exploits the
energy surplus of the community to increase the self-consumption later
in the day. On the other hand, the realistic example demonstrates
the potential benefits by considering a community configuration that
is closer to real-world settings. Moreover, the uncertainty analysis
showed how the optimal solution behaves in more realistic settings. By
optimally operating the storage facilities, both the reported examples
show that it is possible to provide economic savings and substantially
increase the community self-consumption. From the computational
viewpoint, the devised technique shows high scalability with respect
to the REC size. The proposed technical results provides further tools
to analyze the role of energy storage systems in energy communities,
by providing insights into their potential benefits.

4. Conclusions

In this work, the contribution of storage facilities for enhancing
the REC operation is analyzed. The load/generation profiles of the
community entities are merged on the basis of member typology. Then,
the problem is formulated as a linear program where the objective is
the minimization of the community cost by exploiting the storage units
installed within the REC entities. To this purpose, the minimum value
of the self-consumption incentive for triggering the storage operation
is derived. Successively, necessary conditions for the optimal storage
scheduling are devised. Specifically, the optimal storage operation turns
out to be the energy schedule that maximizes the community self-
consumption. Next, the overall procedure is adapted to an uncertain
framework where load and generation profiles are affected by additive
uncertainties.

Numerical results show a consistent cost reduction with respect
to scenarios not involving storage units. Most notably, in both the
considered examples, the community self-consumption is considerably
increased when the proposed method is employed, leading to several
environmental benefits. Focusing on the uncertain setup, the optimal
storage operation is analyzed according to different levels of uncer-
tainty. The optimal solution shows good performance for limited values
of uncertainty, while the presence of a storage system is no longer
useful when dealing with high perturbations.

Future research directions will be focused on adapting the optimal
operation in real-time settings through receding horizon techniques,
as well as enriching the proposed framework with more complex el-
ements such as electric vehicles, shiftable loads, and demand response
programs.
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Appendix A. Proof of Theorem 1

In order to prove Theorem 1, the following lemmas are introduced.

Lemma 2. The self load balancing control strategy in (7)—(10) enjoys the
following properties

&N =0 vieT, (A1)
& 20 vieT, (A.2)
1
0<8,0<—= Y p, ) vieT, (A.3)
u ’1 122, u
TER,/
3,(T)=0. (A.4)



G.G. Zanvettor et al.

Proof. The lemma is proven by induction. At time ¢t = 0, by (10) one

has §,(0) = 0 and so e"(O) 0. Moreover,
min4e,(0), — & ¢ if p,0) >0,
0 = u(0), — ZO @) i p,(0)
reRy
0 else,

which is a non-negative quantity.
Now, assuming that at a given time ¢
e =0,
ed(n >0,
N 1
0<5,M< - Y (o),

Tt
TER,

(A.5)

it will be shown that the set of inequalities still hold at time 7 + 1.

Consider 3,(¢t+1). Since by (8) it holds that éd () < n8,(1), by (9) one
gets §,(r+ 1) > 0 and hence ed (t+ 1) > 0, which prove the left hand side
of (A.2) and (A.3), respectlvely To prove the right hand side of (A.3),
suppose that + € R, then &(f) = 0 and ¢(r) > 0. By (8), the energy
stored at time ¢ + 1 is

5,0+ 1) =38,(0— Zed(t) = max {o, 5,0+ %pu(r)}
and by (A.5) one gets
$,( + 1) < max 0,-+ Zpu(f) =

2141
TER,,

- me

r>1+l

reR

Now, consider the case r € R}, which implies &(r) > 0 and éff @ =0.
Then, by (7) one has

&m < ——s () = n— PN

™>1
T€ER,

which implies by (9)
Sut+1) <= Z @ ==1 Y p,0.

>t >t+1
157{’ T€R,

To prove (A.1), two cases are distinguished. If 7 + 1 € R,
Er+1)=0.1Ifr+1¢€ R;, by (A.3) one has

, it holds

50+ <2 p0=-23 5,1 (A.6)
>1+1 n ™>1+1
TE€R, TE€ER;

and hence,

- —su(t +1)— —2 E pu(7) > 0. (A7)

>t+1
T€R,

Due to (A.7) and since e, (1) >
é(t+1) > 0. Since Az € R, such that r > T, (A.3) implies T) =

0 for all + € 7, from (7) it holds
O

Lemma 3. Let & (1), é“j(t), §,(n) in (7)-(10) be given. IfE;(t) =0,VieT
then ¢4 "( =0, Vt € T. Otherwise, let

then
egl(t) =0 wvi<riteT (A.8)
&E@M=0 Vvi>threT. (A.9)

Proof. Consider the case ¢ (t) =0, Vt € T. By (13) it follows that for
all t e T one has ef ") = 0 and hence also s/ (1) = 0, which implies

eu (t) =

11
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Assume now there exists 7. Then, one has ¢ (t) =0, Vt < tf. By
repeating the same reasoning as above, one gets e (t) =0, Vt < tJr
Moreover, since s/(r) = 0 one has eu (t;) =0, Wthh proves (A.8).

Since E;(t;f) > 0, one has &(r}) < e,(r}) and by exploiting (7) one

gets
&h = ——s (== Z Pu(®). (A.10)
Thus, by (9)
1
5,0 +1)=—= (7). (A.11)
S+ D=— Zp @
TER,

By employing (9), the stored energy at time T can be written as

<,,éC(T) - —ed(f)>

Thanks to (A.4), and by combining (A.11)-(A.12), it must hold that

- Zpu(r>+n Z &) =

f>x+ =t +1
reR’

T-1

s(T)—s(I + 1)+ Z

7= t++l

(A.12)

Z HORE Z Pu(),

‘r h+1 1>r+
reR’

(A.13)

where the inequality in (A.13) holds if and only if &£(r) = 0, vt > ¢*. [0

Proof of Theorem 1. By (9) and (11) it holds that
s+ D) =8,¢+D+sc+1)

=§u(z)+s;(z)+n( (1) + e (r)) ( (1) + e (z))

= 5,(1) + ney (1) — Ze” ¢,

and hence (2) holds. Moreover, by using (10), (12) and (A.4), Eq. (3)
follows directly.
Concerning &¢(t) and ef"(t), by substituting (16) in (13), one has

e, (D +e, (1) <2, 0.

By (A.1) one has & () > 0, and then (4) holds.
By (8) and (A.2) one has 0 < &(t) < #3,(1). Thus, by exploiting (14),
it follows that

0 < el +ed (1) < n, (1) + s’ (1)

and hence (5) holds.

In order to prove (6), notice that by (7) and (8) one has & (t)‘éﬂ 1) =
0, whereas (15) states e;/(t) . eﬁ /(t) =0, for all t € T. So, it is sufficient
to show that

Em-el' =0 Ve, (A14)

e'(n-eln=0 VieT. (A.15)

Condition (A.14) follows directly from Lemma 3. If t € R;’, by (8) one
has é¢(r) = 0 and hence ¢¢ "(0)- -64(t) = 0. Consider r € R, that s p, (1) < 0.
By (1) and (7) one has ¢e,(t) = 0 and & (1) = 0, respectlvely. Then, by
(16), €,(t) = 0 which, by (13), implies ¢ (r) = 0. Thus, (A.15) holds
vieT. O

Appendix B. Proof of Theorem 2

To prove Theorem 2, the following lemmas are introduced.

Lemma 4. Let E€" (1) and E? (1), Vt € T be the optimal charging and dis-
charging control signals for Problem 2. Let t; € T be such that EC*(tl) >0
and set t, = min{t > 1, : E*"(t) > 0}. Let 0 < &€ < min{ E¢" @, ; LE 1y,
and let S be a charging/discharging policy composed by the followmg control
signals:

E¢(t)) = ES (1)) — &, Ec(ty=EC (), Vi #1,,
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E4(ty) = E (1) — e, El@ty= ET (), Vi #1,

Then, S is a feasible solution for Problem 2.

Proof. First, notice that 7, always exists. In fact, since S*(r; +1) > 0
and S*(T) = 0, there exists a time t = ¢, +1,...,T — 1 where the storage
is discharged.

Now, the feasibility of S is proved. For any time ¢ < 7, the two
solutions are identical. At time 7, one has 0 < Ec(tl) < EC*(t]) and
by Lemma 1 E?(1;) = E9°(t;) = 0. So, the charging control signal
at 1, is feasible. For any time ¢, < 7 < #, both solutions involve the
same charging control signals, while E4(r) = E4"(r) = 0. At time 1,,
the storage is discharged by E“(t,). In order to be feasible, it must
be guaranteed E?(1,) < nS(t,), according to (23). Since E?(r) = 0 for
t=t;+1,...,1, — 1, one has

t—1 th—1
S(t) = S*(t) +nE @) +n Y, ET(@)=S"(t)+n Y E () ne.
7=t +1 7=t}
So,
-1
Sty +1)= 5"t +n Y, E () —ne - %E"(zz)
7=l
-1
=S +n 3 E (@) = e — (B (1) — o)
T=1 n
-1
=S8t +n Y EC(0) - %Ed*(tz) =S¥ty + 1).
7=l
Since §(t2 +1) = S*(t, + 1), and because the two solutions are identical
from time #, + 1 onwards, S is a feasible solution for Problem 2. [J

Lemma 5. Let E<" (1) and E4" (1), Vt € T be the optimal charging and dis-
charging control signals for Problem 2. Let t, € T be such that E4"(t,) > 0
and set t; = max{t < t, : E< (1) > 0}. Let 0 < & < min{7>E*" (1)), E¥" (t,)}
and let S be a charging/discharging policy composed by the following control
signals:

~ ; 1 ~
E¢(t)=E° (1) — n—ze, E°(t)y=E° (1), Vt #£1,,
E(t) = EV (1)) — &, E{(ty= ET (1), Vi #1,,

Then, S is a feasible solution for Problem 2.
Proof. The proof follows the same reasoning as that of Lemma 4. []

Proof of Theorem 2. First, (33) is proven. Let t; € 7 be such that
L(t;) > R(t;). By contradiction assume E<"(¢,) > 0. Let S be defined as
in Lemma 4, so it is a feasible solution for Problem 2. Let J* be the
optimal cost of Problem 2, while J be the cost related to S. Notice that
J* and J differ only in the terms depending on , and 1,. Moreover, by
Lemma 1, E4"(t,) = E¢" (1,) = E9(1,) = E°(t,) = 0. Thus,

I T =k (AS‘(:I) - XS(zl)) +a (Ed‘(z2> - Ed(rz)) —k (AS*(:Z) - Xf(zz)) A
Since L(t,) > R(t,), by (26) one has
AT (1)) = R(ty) — E (1)),
AS(t) = R(ty) — E“(t)) = R(t)) — E (1)) +&.
and hence
T =T = ke + an’e —k (AS*(rz) - ZS(@) .
By definition
A(t)) = min{ L(t,), R(t,) + E%(t,)} = min{ L(t,), R(ty) + E¥" (t,) — ni°€)}
= min{ L(t,) + n%&, R(ty) + E¥ (15)} — iPe > A* (1) — n%e.
Then,

J* = T > ke + an’e — kne = ke(1 — n*) + ane > 0.

12
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Since J* > J a contradiction occurs. To prove (34), a specular reason-
ing can be repeated by exploiting Lemma 5.

Now, (35) is proven. Let 1; € T be such that L(r;) < R(r;). By
contradiction assume EC*(tl) > R(#;) — L(1)). Let S be defined as in
Lemma 4 and assume 0 < & < min{E¢ (1)), ”]—ZE"*(tz), E(t;) — R(t)) +
L(z))}. Since R(t;) > L(t;) one has E<"(1;) > E< (t;) — R(t;) + L(t;). So,
choosing & such that 0 < & < min{ ”%Ed*(tz), E"(t;)— R(t))+ L(t,)} leads
to a feasible solution to Problem 2.

Let J* be the optimal cost of Problem 2, while J be the cost related
to S. Notice that J* and J differ only in the terms depending on ¢, and
1,. Moreover, by Lemma 1, E4" (1)) = E<" (1) = E9(t;) = E(t,) = 0.
Thus,

I T =k (A“(tl) - Zﬁ(rl))w (E"*(zQ) - E‘f(z2))—k (AS*(;Z) - XA’(@)) .
Since E¢*(r;) > R(t;) — L(t;) one has
AY (1)) = min{L(1;), R(t) = E (1))}

=min{L(t;) — R(t,), —E" (1))} + R(t;) = R(t;) — E" (1,).
Recalling that £ < E€*(t)) — R(t,) + L(t,)

A%(t)) = min{ L(t)), R(t;) — E<¢t))} = min{L(t,) — R(1,), —E (1,) + €} + R(1,)
=min{E (1) - R(t;)) + L(t;), €} +R(t)) — E (1) = R(t)) — E< () +&.

Thus A" (1,) — A%(t;) = — and hence

T =T = ke +ante —k (AS* () - XS(tQ)) .

By definition

A%(t,) = min{ L(t,), R(ty) + E4(t,)} = min{ L(t), R(ty) + E¥" (t,) — n’e}
= min{L(t,) + %€, R(t) + E* (1)} — n?e > A (15) — n’e.

Then,

J* = T > ke + an’e — kne = ke(1 — n*) + an’e > 0.

Since J* > J a contradiction occurs. To prove (36), a specular rea-
soning can be repeated by exploiting Lemma 5 and by setting ¢ <
E¥ (1) - L(ty) + R(ty). [

Appendix C. Proof of Corollary 1

Proof. Consider the case L(r) < R(t). By (34), E4*(t) = 0, and by (35),
one has E () < R(t) — L(t). Thus,

A () = min{ L(r), R(t) — E€ ()} = L.

Analyze the case L(r) > R(1). By (33), E"(f) = 0 and hence

A%(t) = min{ L(t), R() + E* (1)}.

By (36), E?" (1) < L(t) — R(7) and hence A*(r) = R(t)+ E4" (r). [
Appendix D. Proof of Theorem 3
In order to prove Theorem 3, the following lemma is introduced.

Lemma 6. Let L5(t), RE(r) and Eé(t) be defined as in (55)-(57). Then,
they can be written as

L5(1) = L(t) — AR (0), (D.1)
RE(t) = R(t) + AR (), (D.2)
E (1) = E@) + A5 ), (D.3)

where AL(t), AR(t) and AL (1) are defined as in (58)-(60).

Proof. To prove (D.1), by exploiting (54) it is possible to write (55) as
L5 = ) max{0, -0, (0} = Y max{0,—p}(1) — &)}

uev” uevy
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> max{0, =g (1)} + max{~£,(1). pL,(1)} + min{0. —p! (1)}
uevy”

3 max(0, (1)) - min{&,(1). =4, (1)} + min{0, /1))
uel’

Concerning (D.2), a similar reasoning can be made. In particular, it is
possible to write

R = Y, max{0,0,(0) = D max{0. pl,(1) + &)

uel’ uel’

= Y, max{0, pl (0} + max{&,(1), —p}, ()} + min{0, p (1)}
uelr

= Y max{0, gl (0} + max{&, (1), =}, ()} — max{0, —p},(1)}.
uel’

By (17) and (58), the aggregated load under uncertainty can be written
as

L) = L) — A-(),
while, by (18) and (59), it holds that
RE(t) = R(t) + AR ).

Finally, the derivation of (D.3) follows the same reasoning of (D.2)
applied to the set V. [J

Proof of Theorem 3. By exploiting Lemma 6 and (62), it is possible
to write (61) as

Jé = z P L(z) — P AL (1) = S R() = * AR@) = S E4 (1) +
€T

¢S E¢(t) — kmin{ L(t) — AL (1), R(t) + AR(0) + E4(1) — E€(1)}.

Note that, R(#), L(t), E%(t) and E¢(t) do not involve any uncertainty.
So, the optimal solution £* will be the same achieved by removing the
terms independent on the uncertainty from J<. Then, one has

argmax J¢ = argmax J¢
J £ J I3
where

JE =Y (k=c )AL ()—c* AR )~k min{ L(1), R@O+A"O)+AR@O)+E*()—E*(1)).

el

Note that, since k < c,, the coefficients multiplying the uncertain terms
AL(t) and AR(r) are negative. Thus, the highest value of J¢ is attained
for the lowest values of AL(¢) and AR(), i.e., for AL(t) = AR() = 0, V1.
Moreover, by exploiting (58) and (59), it holds that

AL = AR =0, V1 = &) =0, V1, Vue V.

Finally, by using (60), constraint (63) can be written as
0<E)<E®+4F@0) VieT.

Since AF(f) > 0, V¢ € T, the worst-case realization of the uncertainty
is the one that provides the smallest feasible set. Such a condition is
obtained when A£(¢) = 0, V¢ € 7. Then, the worst-case realization is
again attained by imposing &,(r) =0, V€ T, Vu e U,. [

Appendix E. Proof of Corollary 2

Proof. By (54), for a given u € U" and ¢ € T, the perturbed profile is
w,(t) = pl(1) + &,(1).

Define the new variables

b0 =9, () +£ ),

V) = 6,0 = & (.

Clearly, v, (1) € [O,Eu(t) - éu(t)], and w,(1) = ¢,(t) + w,(). By Theorem
3, one has that y;(t) = 0 leads to the worst-case realization of the
uncertainty. Therefore, the associated perturbed profile is equal to

o (1) = ¢, (1) = p, () + & (),
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where the worst-case uncertainty corresponds to &¥(t) = ¢ (). [
~u
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