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Abstract

A new family of pursuit strategies is introduced for a multi-pursuer single-evader game. By

exploiting the optimal solution of the game involving two pursuers, conditions are derived under

which the multi-pursuer game becomes equivalent to the two-pursuer one. This opens the possibility

of designing a number of pursuit strategies in which the pursuers first try to enforce the satisfaction

of the aforementioned condition and then switch to a two-pursuer game as soon as it is verified. The

contribution is useful in two ways. First, new winning pursuit strategies can be devised starting from

simple plans, such as pure pursuit. Moreover, the performance of existing pursuit strategies, like

those based on Voronoi partitions, can be significantly improved by resorting to the corresponding

switching version.

Index Terms

Pursuit-evasion games; multi-agent systems; autonomous agents.

I. INTRODUCTION

Pursuit-evasion games provide a general framework for a number of problems in the broad

research area of multi-agent systems, with applications in mobile robotics [1], [2], optimal

robot control [3], space operations [4], [5], predator-prey interactions in living species [6],

and many other fields. In recent years, there has been a growing interest towards games

involving either multiple pursuers [7], [8], [9], multiple evaders [10], or both [11], with a

wide variety of alternative problem formulations and solutions.

The standard way to tackle pursuit-evasion problems is to formulate them as differential

games [12], [13]. However, finding an optimal solution within this setting is often challenging,

especially when multiple agents are involved. A notable exception is that of the game
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involving two pursuers and one evader, moving in simple motion within a two-dimensional

environment, for which a minimum-time solution is available [14], [15], [16]. Conversely,

for the three-pursuer single-evader game, only suboptimal solutions have been proposed [17].

Moreover, it has been observed that optimal strategies must involve switching among different

linear sub-paths [18], [19]. For games involving more than three pursuers, a minimum-time

open-loop solution is proposed in [20], showing that all agents have to travel along linear

paths. However, a closed-loop solution of the differential game has not been found yet.

Motivated by the above observations, a new family of pursuit strategies is proposed in

this paper, for a multi-pursuer single-evader game in which planar agents move in simple

motion with equal maximum speed. The main idea is to derive and exploit conditions under

which the multi-pursuer game becomes equivalent to a game involving only two pursuers,

and then devise strategies for the pursuer team in order to enforce such conditions and switch

to a two-pursuer game as soon as they are verified. The resulting switching pursuit strategies,

albeit suboptimal, always reduce the capture time with respect to the corresponding strategies

without switching. Therefore, they are able to improve the performance of existing pursuit

techniques and allow one to design new successful multi-pursuer strategies.

The contribution of the paper is threefold: i) all the agents configurations in which capture

of the evader can be achieved are characterized, thus providing a complete solution of the

game of kind; ii) conditions are derived under which the minimum-time pursuit strategy

boils down to that of a two-pursuer single-evader game; iii) by exploiting the aforementioned

conditions, new families of switching pursuit strategies guaranteeing capture are devised. In

particular, very simple pursuit strategies (like, e.g., pure pursuit), which in general may end

up with the evader escape, are transformed into winning pursuit strategies by switching to a

suitable two-pursuer game. Moreover, it is shown via numerical simulations that the switching

mechanism can remarkably reduce the capture time of techniques that are guaranteed to

achieve capture, like the one based on Voronoi partitions proposed in [7].

The paper is organized as follows. The considered multi-pursuer single-evader game is

formulated in Section II, which provides also a review of the optimal solution of the two-

pursuer game. The solution of the game of kind and the conditions for switching to the

two-pursuer game are derived in Section III. New switching pursuit strategies are proposed

in Section IV and analyzed via numerical simulations in Section V. Finally, some concluding

remarks are given in Section VI. Due to lack of space, the proofs of the results are omitted

and can be found in [21].



A. Notation and definitions

Given a vector V , its transpose is denoted by V ′, while ‖V ‖ is its Euclidean norm. For

V,W ∈ R
2, we denote by VW the segment with V and W as endpoints. C(P, r) = {Q ∈

R
2 : ‖Q− P‖ ≤ r} denotes a circle centered in P ∈ R

2 with radius r. For a closed set A,

∂A is the boundary of A, while H {A} denotes the convex hull of A. The interior of A is

represented by int {A} = A\∂A.

II. PROBLEM FORMULATION

In this paper, we consider a multi-pursuer one-evader game (hereafter referred to as

MP1EG) where p pursuers aim at capturing one evader. The positions of the pursuers and the

evader at time t are denoted by Pk(t) ∈ R
2, k = 1, . . . p, and E(t) ∈ R

2, respectively. The

players move in the plane in simple motion, that is






Ė(t) = vE(t) ,

Ṗk(t) = vPk
(t) , k = 1, . . . , p

where vE(t), vPk
(t) ∈ R

2 are the velocity vectors of the players. It is assumed that all

agents have the same maximum velocity, which w.l.o.g. is set to 1, that is ‖vE(t)‖ ≤ 1,

‖vPk
(t)‖ ≤ 1, k = 1, . . . , p, ∀t ≥ 0. At each time t, vE(t) and vPk

(t) are computed as

functions of the state of the game ξ(t) = [E ′(t) P ′
1
(t) . . . P ′

p(t)]
′. Notice that the agents do

not have information on the velocities of the other players. The strategies of the agents are

functions mapping the current state into their chosen velocity vector, vE = φ(ξ), vPk
= ψk(ξ)

(dependence on time is omitted when it is clear from the context).

The aim of the pursuers is to capture the evader, while the evader tries to avoid capture or

to protract the game as long as possible. Capture occurs when the distance between at least

one pursuer and the evader is equal to the radius of capture r > 0. Hereafter, only initial

conditions such that

‖Pk(0)−E(0)‖ > r, k = 1, . . . , p (1)

will be considered. A winning pursuit strategy is a strategy adopted by the pursuers which

guarantees that capture occurs in finite time whatever is the strategy adopted by the evader.

The capture time T is such that

‖Pk(T )− E(T )‖ = r, for some k ∈ {1, . . . , p}. (2)



A minimum time pursuit strategy is a strategy ψ = [ψ1, . . . , ψp] which is a solution of the

min-max problem

min
ψ

max
φ

T. (3)

For brevity, we will refer to functions ψ and φ solving problem (3) as optimal strategies.

To the best of our knowledge, (3) is still an open problem for p ≥ 3. Conversely, for p = 2

the problem has been fully solved [14], [15], [16]. In the following, the solution of the two-

pursuer one-evader game (2P1EG) given in [16] is recalled. It will play a key role in the

definition of the class of winning strategies for the MP1EG proposed in this work.

A. Minimum-time solution of the two-pursuer one-evader game

Consider two pursuers P1, P2 trying to capture one evader. Let us define the region

D12 = int {H {C(P1, r) ∪ C(P2, r)}} . (4)

First, a solution to the game of kind is provided [16].

Proposition 1: There exists a winning pursuit strategy for the 2P1EG if and only if E ∈
D12. �

Hence, set D12 is the 2-pursuer capture region associated to P1 and P2; if the evader

belongs to this region it will be captured by the pursuers in finite time. An example is

depicted in Fig. 1. To simplify the treatment, w.l.o.g. we will refer to the reference frame

reported in Fig. 1, where the origin is the midpoint of the pursuers, and they lie on the x-axis,

i.e., P1 = [−d, 0]′, P2 = [d, 0]′, E = [x, y]′. Let E ∈ D12\(C(P1, r) ∪ C(P2, r)) and define

T12 =
κr + |y|

√

κ2 − 4x2(r2 − y2)

2(r2 − y2)
(5)

where κ = d2 − x2 + y2 − r2. Now, let us define the point H12 satisfying

‖E −H12‖ = ‖P1 −H12‖ − r = ‖P2 −H12‖ − r = T12. (6)

Within the considered reference frame, one has H12 = [0, h12]
′ where

h12 =















y + sign(y)
√

T 2

12
− x2 if y 6= 0

√

T 2

12
− x2 if y = 0.

The following result provides a solution to the minimum-time 2P1EG [16].

Proposition 2: Let p = 2. The strategies solving problem (3) require each player to go

along a straight line to the point H12 defined by (6). Then, the evader will be captured in

H12, at time T12 given by (5). �
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Fig. 1. The 2-pursuer capture region for the 2P1EG.

III. MULTI-PURSUER GAMES: GAME OF KIND AND SWITCHING CONDITIONS

In this section, the solution of the game of kind for the MP1EG is presented. Then, a

condition is derived under which the MP1EG boils down to a 2P1EG.

For a pair of pursuers Pi, Pj , let Dij be the corresponding 2-pursuer capture region, given

by (4). If E ∈ Dij , let us denote by ψij the minimum-time pursuit strategy for the 2P1EG

played by Pi and Pj , and by φij the corresponding optimal evader strategy. Moreover, we

denote by Tij the time needed by Pi and Pj to capture E when the agents Pi, Pj and E

play the optimal 2P1EG strategies. The capture time Tij and capture point Hij are computed

according to (5)-(6), for each pair i, j.

Let us define the convex hull of the pursuer locations

P = H {P1, P2, . . . , Pp} (7)

and introduce the multi-pursuer capture region, defined as

M = int

{

H

{

p
⋃

i=1

C(Pi, r)
}}

. (8)

The following result provides the solution of the game of kind for the MP1EG.

Theorem 1: If E ∈ M in (8), then there exists a winning pursuit strategy. On the contrary,

if E /∈ M, then the evader can avoid capture indefinitely. �

Fig. 2 shows an example in which the evader does not belong to the capture region M,

and then it can escape from the pursuers by moving straight in the direction v.

The next theorem reports conditions under which the MP1EG reduces to the 2P1EG, in

the sense that only two pursuers can provide capture in minimum time, irrespectively of the

strategy played by the other pursuers.
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Fig. 2. Example of multi-pursuer capture region M for p = 3. Since E /∈ M, the evader can avoid capture by moving

along the direction v.

Theorem 2: Let E ∈ Dij for some i, j ∈ {1, 2, . . . , p}. If

‖Hij − Pk‖ ≥ Tij + r, k = 1, . . . , p (9)

then the optimal MP1EG strategies for Pi, Pj, E are ψij and φij , respectively, guaranteeing

capture at time Tij . The strategies adopted by the other pursuers are irrelevant to the game

duration. �

Notice that, if Pi, Pj and E play their optimal 2P1EG strategies, one has ‖Hij − Pi‖ =

‖Hij − Pj‖ = Tij + r and so (9) can be rewritten as

‖Hij − Pk‖ ≥ ‖Hij − Pi‖, k = 1, . . . , p. (10)

Such a condition states that if there is no pursuer closer to Hij than Pi (and Pj), then (9)

holds and the optimal MP1EG strategies for Pi, Pj, E are ψij and φij . This means that the

other pursuers cannot improve the capture time even if they go straight to Hij . As a direct

consequence of Theorem 2, if there exist two distinct pairs of pursuers (Pi, Pj) and (Ph, Pl)

satisfying the conditions of Theorem 2, then Tij = Thl.

Now, assume that condition (9) or (10) is satisfied by a pair of pursuers Pi, Pj at a certain

time t. Theorem 2 states that the strategies of these two pursuers must switch to ψij in

order to be optimal from time t onwards, irrespectively of what the other pursuers will do.

Similarly, the evader must switch to strategy φij in order to maximize its survival time. This

fact will be exploited in the next section to devise a new family of winning pursuit strategies

for the MP1EG.



IV. SWITCHING PURSUIT STRATEGIES

In this section, the concept of switching pursuit strategy is introduced. The aim of such

strategies is to guarantee that condition (9) holds at some finite time, and hence capture is

assured by switching to the appropriate 2P1EG strategies.

Definition 1: A pursuit strategy is a potential switching strategy if there exists a pair of

pursuers Pi, Pj for which condition (9) holds at some finite time, for any possible strategy of

the evader. A potential switching strategy is referred to as switching strategy if Pi, Pj play

the optimal 2P1EG strategy as soon as condition (9) holds. �

By the previous definition, a switching strategy leads to the evader capture in finite time,

and so it is a winning strategy. In fact, from the switching time onwards the pursuers will

play the optimal 2P1EG strategy, guaranteeing the evader capture.

It is easy to see that for every winning strategy, capture is achieved simultaneously by at

least two pursuers. The following result holds.

Theorem 3: Let the pursuers adopt a winning strategy and assume that capture occurs at

time t̄. Then, at time t̄ condition (9) is satisfied. �

Theorem 3 states that for a winning strategy condition (9) must be satisfied at least when

capture occurs. However, this turns out to be a very special case, as in most games such a

condition is satisfied long before capture occurs (it may be satisfied even when the game

starts). Since Theorem 2 guarantees that when condition (9) holds it is always advantageous

for the pursuers to switch to the 2P1EG strategy, it can be concluded that every winning

strategy is a potential switching strategy and its capture time cannot be increased by switching.

In general, it is not easy to design pursuit strategies that guarantee satisfaction of condition

(9). Therefore, it is useful to derive sufficient conditions under which (9) holds, that the

pursuers can enforce whatever is the strategy played by the evader. Hereafter, two such

conditions are presented.

Let us define the union of all the 2-pursuer capture regions as

“D =
⋃

i,j∈{1,...,p}

Dij.

An example of set “D is shown in Fig. 3-(a), while the corresponding set “D\int {P} is

depicted in Fig. 3-(b). The next theorem provides a sufficient condition for switching to

2P1EG.

Theorem 4: If E ∈ “D\int {P}, then there exists a pair of pursuers Pi, Pj for which

condition (9) holds. �
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Fig. 3. (a) Set “D denoting the union of all the 2-pursuer capture regions; (b) set “D\int {P}.

Notice that, in particular, Theorem 4 guarantees the satisfaction of (9) whenever E ∈ ∂P .

Moreover, Theorem 4 suggests that if the pursuers play a strategy which steadily reduces the

size (in some sense) of P over time, then (9) is eventually assured. Similarly, the following

result guarantees the satisfaction of (9) whenever the pursuers are sufficiently close to each

other.

Theorem 5: Let us consider a pursuit strategy such that

max
i,j=1,...,p

‖Pi(t̄)− Pj(t̄)‖ ≤
√
3r (11)

at a certain time t̄. Then, there exist a time t̂ < t̄ and a pair of pursuers Pi, Pj for which

condition (9) holds at t̂. Hence, the considered pursuit strategy is a potential switching

strategy. �

Notice that condition (11) in Theorem 5 is much simpler than (9), since it does not involve

the evader position. Therefore, it can be effectively employed in designing families of winning

switching strategies, starting from very simple pursuit strategies that would not be successful

without switching. An example is that of a Fixed-Point Pursuit Strategy (FPPS), in which

each pursuer Pk goes straight towards a fixed point M ∈ R
2, with speed ‖vPk

(t)‖ ≥ ε, for

some 0 < ε ≤ 1, and stops once it reaches M .

Theorem 6: Any FPPS is a potential switching strategy. �

An example of FPPS is the centroid-based strategy, where all pursuers move with the same

velocity towards the center of the minimum-radius circle which includes them.



Another simple pursuit strategy is the so-called pure pursuit. Such a strategy is defined as

the one in which all pursuers always point towards the evader at maximum velocity, i.e.

vPk
(t) =

E(t)− Pk(t)

‖E(t)− Pk(t)‖
, k = 1, . . . , p. (12)

It is well known that in general pure pursuit does not guarantee capture of the evader.

However, it becomes a winning strategy if switching to 2P1EG is adopted.

Theorem 7: The pure pursuit strategy is a potential switching strategy. �

Theorems 6 and 7 are just simple examples of winning pursuit strategies based on switch-

ing; it is apparent that many other switching strategies can be devised by exploiting the

geometric conditions in Theorems 4 and 5.

V. NUMERICAL SIMULATIONS

In this section, some simulations are reported to show the improvement (in terms of capture

time) when a pursuit switching strategy is adopted w.r.t. a non-switching one. Three pursuer

strategies are considered: pure pursuit strategy (PPS), centroid-based strategy (CS), and the

strategy proposed in [7], referred to as Voronoi-based strategy (VS), in which the pursuers

aim at minimizing the area of the evader Voronoi cell. All these strategies are simulated both

in their original form (non-switching) and in switching form, i.e. by applying the optimal

2P1EG strategy when condition of Theorem 2 holds. Switching strategies are denoted by the

prefix “S-”, e.g., S-PPS denotes the switching pure pursuit strategy.

In the following, simulated games will be graphically illustrated. In the figures, a square

denotes the initial condition of a player and a dot its final position. Blue and red lines

represent the trajectories of the pursuers and the evader, respectively. Capture occurs when

at least one pursuer reaches the circle of radius r centered at the evader, drawn in dashed

black. If the evader manages to avoid capture, the simulation is stopped as soon as it exits

from the capture region M.

Example 1: Three pursuers are initially located at the vertices of an equilateral triangle

centered at the origin with sides of length 20, that is P1(0) = [−10,−10/
√
3]′, P2(0) =

[10,−10/
√
3]′, P3(0) = [0, 20/

√
3]′. The capture radius is r = 1 and the maximum speed of

the agents is fixed to 1. The evader moves downwards with speed 1, i.e., vE(t) = [0,−1]′,

independently of the position of the pursuers.

Let the pursuers play PPS, and let the evader initial position be E(0) = [0, 0]′. In Fig. 4

(left), the trajectories of the players are depicted until time t = 5.59, when the evader goes

outside the capture region M. So, the evader can indefinitely escape by going downwards.



A different situation occurs when all the players switch to the 2P1EG strategy as soon as

condition (9) is satisfied. In fact, thanks to Theorem 7, capture in finite time is assured if

E(0) ∈ M(0). This game is reported in Fig. 4 (right). At time t = 4.47, condition (9) holds

and capture occurs at time t = 20.64.
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Fig. 4. Example 1. Pursuers play PPS (left) and S-PPS (right).

Example 2: Under the same setting of Example 1, the pursuers play CS, i.e., they point

towards their circumcenter, that is towards the origin. Without switching, the evader can

escape, see Fig. 5 (left). In fact, at t = 4.52 it holds E(t) /∈ M(t), and the evader can avoid

capture by going downwards. Assuming that the pursuers play S-CS, capture occurs at time

t = 25.57, as shown in Fig. 5 (right).

-10 -8 -6 -4 -2 0 2 4 6 8 10

-5

0

5

10
Pursuers
Evader

-20 -15 -10 -5 0 5 10 15 20

-25

-20

-15

-10

-5

0

5

10 Pursuers
Evader

Fig. 5. Example 2. Pursuers play CS (left) and S-CS (right).



Example 3: Consider the same setting as in Examples 1 and 2, and let the pursuers play

VS. In [7], it has been proved that capture occurs in finite time independently on the strategy

adopted by the evader. The result of such a game is reported in Fig. 6 (left), in which capture

occurs at time t = 16.98. If the pursuers play S-VS, when E ≃ [0,−9]′ condition (9) occurs

and the agents start playing the corresponding optimal 2P1EG strategy. The evader changes

its direction and starts moving upwards. Capture occurs simultaneously by the three pursuer

at t = 14.35. Hence, S-VS is able to achieve capture in a time about 15% less than VS.
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Fig. 6. Example 3, E(0) = [0, 0]′. Pursuers play VS (left) and S-VS (right).

It is worthwhile to note that the improvement of S-VS w.r.t. VS can be much larger, even

for simple games involving 3 pursuers. For instance, under the same setting, let us set the

initial evader position to E(0) = [0,−5.5]′. The capture time required by VS turns out to be

t = 169.28, while that needed by S-VS is t = 96.37 (see Fig. 7). In this case, switching to

the 2P1EG strategy leads to a capture time reduction of about 43%.

Example 4: Let us now consider games involving more than three pursuers. The initial

position of the evader is E(0) = [0, 0]′, while the initial position of the pursuers is randomly

chosen on a circumference centered at the origin with a radius Rp. The capture radius is fixed

to r = 1, and the maximum speed of the players is set to 1. We compare the capture time

obtained when pursuers play the Voronoi-based strategy (namely, T
V S

), with that obtained

when playing the switching version S-VS (T
S-V S

). In particular, we focus on the ratio between

these two quantities, i.e.,

ρ =
T

V S

T
S-V S

.

In all games, the evader strategy is to point towards the farthest vertex of its Voronoi cell
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Fig. 7. Example 3, E(0) = [0,−5.5]′ . Pursuers play VS (left) and S-VS (right).

at each time t. A total of N = 100 games are played for any combination of the number

of pursuers p ∈ {5, 8}, and of the radius of their initial condition Rp ∈ {10, 25, 50, 75, 100}.

The average and maximum values of ρ are reported in Table 4. Notice that, in general, the

average capture time when pursuers use the switching strategy is much less than that obtained

by adopting the original Voronoi-based strategy, with a maximum ratio ρ which is greater

than 1.6. Thus, it is apparent that the capture time can be significantly reduced if pursuers

switch to 2P1EG once condition (9) occurs.

TABLE I

EXAMPLE 4. MEAN AND MAXIMUM VALUE OF ρ FOR DIFFERENT GAME CONFIGURATIONS (OVER 100 GAMES)

p = 5 p = 8

mean(ρ) max(ρ) mean(ρ) max(ρ)

Rp = 10 1.180 1.405 1.074 1.320

Rp = 25 1.262 1.376 1.145 1.341

Rp = 50 1.317 1.488 1.193 1.346

Rp = 75 1.346 1.546 1.219 1.579

Rp = 100 1.365 1.587 1.236 1.620

VI. CONCLUSIONS

A new family of pursuit strategies for a multi-pursuer single-evader game has been in-

troduced. The main property that has been exploited is the fact that such a game must

eventually boil down to a two-pursuer single-evader game, for which a minimum-time solution

exists. Hence, conditions for the switching between the two game settings have been derived,



allowing one to define new winning pursuit strategies and to improve the performance of

existing ones. Future developments concern the investigation of pursuit strategies achieving

the switching condition in such a way that the overall capture time is minimized. The

extension of the proposed approach to the case of multi-pursuer multi-evader games will

also be addressed.
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