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Abstract— The increasing adoption of electric vehi-
cles (EVs) has left power network providers to deal
with new challenges in terms of grid stability and
electricity market design. On the latter direction, a
demanding problem is represented by the develop-
ment of probabilistic algorithms capable of computing
optimal time-varying price profiles for EVs charging
stations to induce a desired aggregative behavior.
Here, the inclusion of demand elasticity represents
a key feature to provide usable schemes for real-
world cases. In this paper, we propose an “estimate-
then-optimize” framework for optimal dynamic pric-
ing computation in the presence of price-sensitive
customers. It consists of an estimation step based
on nonparametric kernel methods to infer about the
demand elasticity, followed by an optimization step to
maximize the expected daily profit. We describe the
charging process via a probabilistic framework and
we show the benefits of the proposed formulation via
extensive numerical experiments.

Index Terms— EV charging stations, dynamic pric-
ing, stochastic optimization, kernel regression.

I. Introduction

Transportation sector is reported to contribute more
than 30% of the total carbon emissions in Europe in
2020 [1], making it a crucial target for decarbonization
strategies. Alternatives to fossil-based vehicles for private
transport are therefore on the urge. The most mature
technology serving as “green” alternative is represented
by electric vehicles (EVs).

Given the central role of EVs in the decarbonizing
transition, they have lately received a great attention
from the scientific community. Indeed, the integration of
an increasing number of EVs into the power grid rises
several challenges: on one side, it may compromise the
safety and reliability of the power grid; on the other
side, it opens new questions in terms of electricty market
design due to spikes in the electricity demand. Moreover,
these issues are complicated by the stochastic sources
arising from traffic conditions and user preferences.

Several works in the literature have focused on cost
minimization and peak shaving targets during EV charg-
ing stations operations, proposing smart charging strate-
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gies, like e.g., in [2], [3]. In [4], the optimal operations
of an EV charging station coupled with storage devices
and uncertain renewable generation is addressed, while
in [5] a parking lot energy management strategy is
developed considering different driving/parking patterns.
Peak load reduction problems have also been considered.
For instance, valley filling algorithms are proposed in [6]
and [7], while a peak shaving strategy accounting for
customers dissatisfaction is presented in [8] and [9].

A parallel research line is represented by pricing algo-
rithms for EV charging stations capable of maximizing
the social welfare or the charging station profit. In
particular, [10] designs a pricing scheme by exploiting
game theoretic frameworks based on time-of-use con-
cepts, while [11] considers a hierarchical two-layer model.
In [12], a pricing scheme ensuring a desired profit with
probabilistic guarantees is designed.

Building upon this literature, we address the problem
of computing an optimal time-varying price profile for
EV charging stations in the presence of price-sensitive
customers. This aspect represents a novel contribution
in the electricity pricing literature, especially when com-
petitive settings are considered. The inclusion of demand
elasticity ensures a more realistic description of the
charging process and allows the development of more
accurate optimization algorithms. On the other hand, the
inclusion of this feature introduces several challenges re-
lated to the difficulty of estimating the demand elasticity
from historical data. In the most general case it may be
time-varying and/or present spatial correlations.

Few works are present in literature in this direction.
In [13], the authors propose a conditional random field
model for online estimation and refinement of the de-
mand elasticity of EVs and link it to a profit maximiza-
tion problem. Similar works are found in [14], where
the parameters of the load elasticity model are assumed
to be known, and in [15], where the model reduces
to a typical deterministic load perturbed by a random
variable. In [16], a deterministic approach to model a
pricing game where the user propensity to charge is
inversely proportional to the energy price is considered.

In this paper, we propose a novel algorithm to maxi-
mize the expected daily profit of an EV charging station
considering price-sensitive customers. We formulate an
“estimate-then-optimize” probabilistic framework, where
the estimation task and the optimization task are split
in two different layers to reduce the problem complexity.
The contribution of this work is threefold:



1) full flexibility in characterizing the charging process
behavior, i.e., no specific structure on the probabil-
ity distributions concerning the EV uncertainties is
assumed.

2) privacy-oriented approach, i.e., only the aggregate
customers behavior is considered.

3) highly-scalable procedure with tractable runtimes
even in presence of a large vehicle populations.

The paper is organized as follows. Section II introduces
problem variables, constraints and probability distribu-
tions governing the charging process. In Section III, the
estimation algorithm is described, while in Section IV,
the stochastic profit maximization problem is formu-
lated. Numerical simulations are provided in Section V
to evaluate the effectiveness of the proposed procedure.
Finally, conclusions and future research lines are drawn
in Section VI.

Notation

The set of real numbers, non-negative real num-
bers, and natural numbers are denoted by R, R

+, and
N, respectively. We denote an n-dimensional vector as
x ∈ R

n. The i-th component of vector x is denoted by
x(i), whereas its mean value over the set of indexes
{t, ..., t + τ − 1} is defined as x̃(t, τ) := 1

τ

∑t+τ−1
l=t x(l).

Estimated quantities are referred to with symbol
ˆ to distinguish them from the true (possibly un-
known) quantity. We define the indicator function as
1X (x) := 1 if x ∈ X , 0 otherwise. Given an event E we
define the probability associated to the occurrence of
such event as P(E), while P(E | D) denotes the con-
ditional probability of E given D. A random variable is
denoted with bold notation w, while a realization of such
variable is denoted with plain notation w. The expected
value of a random variable w is denoted by E[w], whereas
the expected value of w conditioned to the event D is
denoted by E[w|D].

II. Problem formulation

In this work an EV charging station that serves a
large pool of price-sensitive customers is considered.
Customers can decide whether to accept the selling
price offered by the charging station and thus recharge
there, or decline it and consequently recharge in other
facilities. We restrict the treatment to the case where the
EV charging station competes against home charging.
However, the framework can be extended to handle
competition against other players, i.e., other EV charging
stations. We envision the following setting for the charg-
ing process: at a given time step a vehicle arrives at the
charging station and it decides whether or not to accept
the charging offer. Given its own energy requirement,
the customer takes a decision by comparing the charging
station selling price with the cost of home charging. In
case of acceptance, the amount of energy to be charged
will be available to the charging station and could be
used to derive a dynamic pricing strategy; in case of

refuse, only the time instant at which the user declines
the charging offer will be available.

In such a setting, we aim at determining the optimal
daily selling price profile to maximize the expected profit
of the charging station. It is evident that a trade-off
emerges in a price-sensitive customer scenario: in gen-
eral, high selling prices are expected to lead to lower
acceptance ratio (and thus fewer vehicles recharging),
but higher “per-vehicle” profit. Vice versa, low selling
prices are expected to lead to higher acceptance ratio,
but lower “per-vehicle” profit.

The problem is formulated in discrete time setting,
with sampling time ∆. The reference day is divided into
T time slots, t ∈ {0, . . . , T − 1}. We assume that the
number of charging units is enough to provide charging
to all incoming vehicles, and that the day-ahead price
profile of the grid is available. This profile is assumed to
correspond to both the price associated to home charging
as well as the cost incurred by the charging station
to purchase the required energy from the distribution
system operator.

Given a vehicle v, let ta
v and tc

v be its arrival and
charging time, respectively. Let us denote by t

a
v and

t
c
v the random variables associated to the arrival and

charging time, respectively. Moreover, we denote by N

the random variable associated to the daily number of
incoming vehicles (both accepting and non-accepting the
charging). We assume that t

c
v and N have a bounded

support with lower limits tc
v and N and upper limits

t
c

v and N , respectively. We denote by Av the Bernoulli
random variable associated to the accepting event, where
Av = 1 refers to the acceptance and Av = 0 to the
refusal. Note that the probability distribution of Av is
assumed to be independent w.r.t. N, but it depends
on the selling price as reported in the next section.
Finally, the quantities related to EVs are assumed to
be independent and identically distributed (i.i.d.), i.e.,
for each vehicle one can consider the tuple (ta, t

c, A)
independently from v.

We suppose to have at our disposal a historical dataset
where EV charging data are gathered. Specifically, let G

denote the number of days recorded in the dataset. For
each day g ∈ {1, . . . , G}, the following data are available:

• Grid daily price profile, cg(t) for t ∈ {0, . . . , T − 1}.
• Daily selling price profile pg(t) for t ∈ {0, . . . , T − 1}.
• Number of incoming vehicles (both accepting and non-

accepting ones) throughout the day Ng.
• For every vehicle vg ∈ {1, . . . , Ng} we assume to know

its arrival time ta
vg

, and if the customer has accepted
or not the charging offer. We use Avg

∈ {0, 1} to model
the two cases, i.e., Avg

= 1 if the accepting event
occurred and Avg

= 0 otherwise.
• If the vg-th vehicle is flagged with Avg

= 1, then its
charging time tc

vg
is available, otherwise this informa-

tion is censored.

In the following, for ease of notation, the dependence on
g will be omitted when considering a single day.



The following assumptions are enforced:

A1 Vehicles are charged at constant charging power P0.
A2 The underlying distributions governing the daily EV

charging process are day-invariant, i.e., they do not
change from day to day.

A3 The probability of accepting the charging offer as a
function of the selling price is time-invariant over the
day.

A4 For each day, vehicles starting the charging process
at time t will incur a constant price equal to p(t)
throughout the entire charging process.

A5 For each day, the probability of accepting the charg-
ing offer decreases monotonically as a function of
the selling price p according to the following index
referred to as discriminant:

dv(ta
v, tc

v) :=
p(ta

v) − c̃(ta
v , tc

v)

c̃(ta
v , tc

v)
. (1)

Hereafter, dependencies on ta
v and tc

v of the discrimi-
nant will be omitted when clear from the context.

Assumption A1 and A2 are common in the context of
EV literature; A3 is used to streamline the presentation,
but is in general not restrictive. A4 is motivated by a
“fairness” concept, i.e., connected vehicles are assured
not to incur in a sudden price increase during the charg-
ing process. Finally, A5 introduces the function modeling
the acceptance behavior of the users, similarly to that
reported in [16].

Remark 1 It is clear that in real settings the accep-
tance behavior depends on several variables rather than
the selling price alone. However, such dependencies can
be effectively embedded while computing the acceptance
probability. For example, suppose that each incoming cus-
tomer has his/her own urgency function (e.g., depending
on battery size, user habits, etc.) characterizing the re-
lated acceptance probability together with the selling price.
Then, assuming that the urgency probability distribution
is known, the total probability rule can be exploited to
derive an aggregate acceptance probability function which
depends on the selling price only.

III. Estimation

The goal of the estimation step is to infer about
the customer sensitivity to price, i.e., the probability
of accepting the recharge offer depending on the price.
First, the estimation of the charging process quantities
is described. Successively, the proposed nonparametric
kernel-based estimation algorithm is reported.

Remark 2 The demand behavior does not depend on the
specific acceptance probability distribution of the single
customers, but rather on the aggregated behavior of the
pool of vehicles. Thus, the aggregated probability of ac-
cepting the charging offer will be estimated. This in turn
leads to a formulation which only refers to aggregated
quantities, ensuring a privacy-preserving scheme.

A. Estimate of charging process probability distributions

In a first step, we are interested in estimating the rel-
evant probability distributions characterizing the vehicle
charging process from the available historical data.

Since the daily number of incoming vehicles (both
accepting and not accepting ones) Ng is known, an
estimate of the arrival time distribution of a generic
vehicle v to the charging station is given by

P̂(ta = t) =

∑G

g=1

∑Ng

vg=1 1t(t
a
vg

)
∑G

g=1 Ng

. (2)

Concerning the daily number of incoming vehicles, an
estimate can be derived as follows

P̂(N = n) =

∑G

g=1 (1n (Ng))

G
. (3)

In general, when only few data are available, (3) may
provide a rough estimation. As it will become clear in
the following, this will not impact the accuracy of the
proposed method.

By dataset construction, we do not have any infor-
mation on the charging process (i.e., duration of the
recharge or amount of energy recharged) for a vehicle
v that does not accept the charging offer. Consequently,
the estimate of the charging time distribution is based
solely on those vehicles which accepted the charging
offer, whose data are available. Since, the charging time
depends on the arrival time, one has

P̂(tc = τ | t
a = t) =

∑G

g=1

∑Ng

vg=1 Avg
1t(t

a
vg

)1τ (tc
vg

)
∑G

g=1

∑Ng

vg=1 Avg
1t(ta

vg
)

.

(4)

B. Estimate of the demand elasticity

We now illustrate the proposed method to estimate
the probability of accepting the charging offer.

Definition 1 Let n ∈ N be the number of samples
available and h(n) : N → R

+\{0} be an increasing
function w.r.t. n denoted as bandwidth function. A kernel
function K defined as

K(x, x0) = κ

(

‖x − x0‖

h(n)

)

, κ : R → R
+

is a weighting function which is monotonically decreasing
with respect to ‖x − x0‖.

Examples of kernel functions are reported in Fig. 1.
The bandwidth function h in Definition 1 plays a

critical role in the accuracy of the kernel regression as it
regulates the smoothness of the estimate. Several works
investigate the optimal selection of such parameter based
on the size of the dataset (see [18] and reference therein).

Since the charging time of vehicles that have declined
the charging offer is not available, an estimate of the cor-
responding discriminant is needed to derive an estimate
of the accepting probability. In particular, we infer about



Fig. 1. Examples of popular kernel functions K where ∆x := x−x0

and h(n) = 1, ∀n.

the aggregated probability of accepting the charging offer
given the value of the discriminant d as

P̂(A = 1 | d = d) =
∑G

g=1

∑Ng

vg=1
Avg

K(dvg
, d)

∑G

g=1

∑Ng

vg=1
Avg

K(dvg
, d) + (1 − Avg

)Ê
[

K(dvg
, d)

] ,
(5)

where K(·, ·) is a kernel satisfying Definition 1. Con-
cerning vehicles that have declined the charging offer,
their contribution is estimated by taking into account
the expected value of their kernel function. Since the
charging time distribution of these vehicles is the same
of the accepting ones, the expectation can be computed
as

Ê

[

K
(

dvg
(ta

vg
, t

c
vg

), d
)]

=

t
c

∑

τ=1

K
(

dvg
(ta

vg
, τ), d

)

· P̂(tc = τ | t
a = ta

vg
).

(6)

Remark 3 In general, local kernel methods produce esti-
mators characterized by regions with “dips” and “bumps”
compromising the monotonicity of the estimate, as re-
quired by Assumption A5. To this end, the monotonicity
constraint can be enforced by post-filtering the estimated
function as explained in [17, Theorem 1].

IV. Optimization

Once the estimates of the EV probability distributions
described in the previous section are available, the next
step focuses on deriving an algorithm for the compu-
tation of the optimal time-varying daily selling price
p(t), ∀ t ∈ {0, . . . , T } to maximize the daily profit of the
charging station.

The random variable related to the net cumulative
profit of the charging station during a day is given by

R =

T −1
∑

t=0

r(t), (7)

where r(t) is the net profit related to vehicles arriving at
time t. In turn, r(t) is defined as

r(t) =

N
∑

v=1

∆P0 (p(t) − c̃(ta
v, t

c
v)) t

c
v1t(t

a
v)Av. (8)

Actually, the cost incurred by the EV charging station
to purchase the required energy from the distribution
system operator (see (8)) is a wholesale price tailored for
industrial customers, i.e., the charging station electricity
price is a fraction of the residential one. However, this
aspect does not impact either the optimization routine
or the interpretation of the results in Section V, since the
resulting optimization will differ only by a scaling factor.

Notice that in (8) only vehicles arriving at time t

concur in determining the net profit at time t due to
the presence of the term 1t(t

a
v). The objective function

is the expected value of the cumulative net profit R, i.e.,

E [R] =

T −1
∑

t=0

E [r(t)]

= ∆P0

T −1
∑

t=0

E

[

N
∑

v=1

(p(t) − c̃(ta
v, t

c
v)) t

c
v1t(t

a
v)Av

]

.

(9)

The last expectation in (9) is equivalent to

E

[

N
∑

v=1

(p(t) − c̃(ta
v, t

c
v)) t

c
v1t(t

a
v)Av

]

=
N

∑

n=N

nE [(p(t) − c̃(ta, t
c)) t

c
1t(t

a)A]P(N = n)

= E [(p(t) − c̃(ta, t
c)) t

c
1t(t

a)A]

N
∑

n=N

nP(N = n)

= E [(p(t) − c̃(ta, t
c)) t

c
1t(t

a)A]E [N] ,

(10)

where the total probability theorem has been used in the
derivation. Two main observations can be made concern-
ing (10). First, subscript v has been removed since the
EV random variables are i.i.d. and the accepting event is
independent from N, so it is sufficient to consider n times
the expected value of the net profit from a single vehicle.
Second, the net profit at time t can be written as the
product of the expectation of the net profit provided by a
single vehicle and the expectation of the daily number of
incoming vehicles. Therefore, an accurate estimate of the
expected daily profit strictly depends on the accuracy of
E [N], which can be better estimated than its probability
distribution, especially when scarce data are available.

The expectation on the net profit of a single vehicle is
computed as

E [(p(t) − c̃(ta
, tc)) tcA1t(t

a)]

= E [(p(t) − c̃(t, tc)) tcA|ta = t]P (ta = t)

=

t
c

∑

τ=1

(p(t) − c̃(t, τ )) τP(tc=τ |ta= t)P(ta= t)E [A|ta= t, tc=τ ]

(11)

where

E [A|ta = t, t
c = τ ] = P

(

A = 1

∣

∣

∣

∣

d =
p(t) − c̃(t, τ)

c̃(t, τ)

)

.

(12)



The conditional probability in (12) can be estimated in
a data-driven fashion as reported in (5).

Let P := {p ∈ R
+ | p ≤ p ≤ p}, where p and p denote

the lower and the upper bound on the selling price,
respectively. We are interested in determining an optimal
time-varying daily selling price profile which maximizes
E [R] with p(t) ∈ P , ∀ t = {0, . . . , T − 1}.

In general, the expected net profit E[R] may be a
nonconcave function with respect to the selling price p.
Indeed, the EV accepting probability in (12) may assume
any shape. Thus, the optimization procedure cannot be
solved by relying on standard convex optimization tools.
However, thanks to Assumption A5, the net profit at
time t depends exclusively on selling price at same time
step, i.e., p(t). Therefore, the cumulative net profit can
be maximized by optimizing the selling price at each
time step separately. As a result, by exploiting (7), the
optimization problem can be written as

max
p(t)∈P,

∀t∈{0,...,T −1}

E [R] =
T −1
∑

t=0

max
p(t)∈P

E [r(t)] , (13)

Notice that, at each time step only one optimization
variable is involved, allowing the use of a gridding tech-
nique for the computation of (13). This allows to find
the global optimum up to a given quantization error.
The overall complexity of such approach depends linearly
on the total number of time steps, guaranteeing low
computational burden.

V. Numerical simulations

Numerical simulations have been performed to validate
the proposed method. The sampling time is set to 10
minutes, while the nominal charging power for electric
vehicles is 22 kW. The number of daily incoming vehi-
cles has been modeled by a Gaussian distribution with
mean 150 vehicles and standard deviation of 25. Both
the arrival time distribution (Fig. 2) and the charging
time distributions (Fig. 3) are modeled by means of
Gaussian mixture models. Concerning customer side, the
probability of accepting the charging offer as a function
of the discriminant is modeled through a “decreasing-
step” function, see black line in Fig. 4. This setup has
been used to generate a synthetic dataset of G = 90
days. For each day g ∈ {1, . . . , G}, the corresponding grid
price cg has been randomly sampled from the Italian
electricity market [19]. Instead, the selling price pg has
been considered constant throughout the day and its
value has been randomly chosen on the basis of the
energy cost to guarantee a discriminant range lying in
[−1, 4], resulting in a sufficiently rich dataset.

The estimated arrival time distribution is compared
with the true distribution in Fig. 2, while Fig. 3 reports
the same comparison for a charging time distribution.

In general, the estimated probability distributions re-
semble the true unknown ones even for few recorded days.
On the other hand, according to (10), the distribution of

Fig. 2. True (left) vs estimated (right) arrival time distribution.

Fig. 3. True (left) vs estimated (right) charging time distribution
for fixed arrival time ta = 47.

the daily number of incoming vehicles does not influence
the optimization as the cost function only depends on
its mean. Therefore, accurate results can be obtained
with few historical data; for instance, the considered
small-sized dataset leads to an estimated mean of 148
incoming vehicles a day, with a relative error around
1%. Concerning the acceptance probability, Fig. 4 reports
the performance of different kernel estimations w.r.t.
the true function. The standard kernel regression tends
to produce non-monotone estimates. However, the post-
filtering procedure mentioned in Remark 3 leads to a
monotone function which is in line with Assumption A5.
Therefore, the latter estimator has been considered in
the subsequent computations.

To validate the proposed procedure, a comparison
between the optimal solution obtained with the real dis-
tributions (benchmark) and the estimated ones has been
carried out. In particular, a simulation over 1000 days
has been performed. For each day, the same grid price
profile c has been taken into account, while different EV
realizations have been considered. The optimal price pro-
file obtained by the proposed technique is compared with
the benchmark in Fig. 5. The general behavior shows a
good match between the two curves. The statistics in

True
Estimated - Gaussian Kernel
Estimated - Gaussian kernel
 with enforced monotonicity

Fig. 4. True vs estimated accepting probability (h(n)∝1/
√

n).



Fig. 5. Optimal price profile for one day of simulation. Black curve
is the solution based on estimated probabilities, red dotted curve
is the benchmark based on real distributions, blue curve is the grid
price.

Fig. 6. Boxplot of the daily net profit over 1000 days of simulation.

terms of daily net return R over the 1000 simulated days
are reported in Fig. 6. In this setup, the price profile
computed from the estimated distributions leads to an
average net profit of 372.62e in contrast to the average
daily profit of 378.29e obtained by the benchmark.
Finally, the proposed approach results tractable from a
computational point of view. In fact, for each time step,
the gridding exploration took on average 0.85 seconds
to compute the optimal selling price over a grid of 500
prices with resolution of 10−3 e/kWh.

VI. Conclusions

In this paper an “estimate-then-optimize” probabilistic
framework has been adopted to maximize the expected
daily profit of an EV charging station with price-sensitive
customers. First, a data-driven kernel-based procedure
has been established to infer about the probability of
accepting the charging offer given a price. Next, this
information has been incorporated into a stochastic op-
timization program. Numerical simulations show that
the proposed approach produces results showing good
performance even in the presence of small datasets.

Ongoing work focuses on the extension of the frame-
work for power signal tracking to accommodate for peak
shaving/valley filling objectives, and the integration of
online learning for continuous refinement of the esti-
mated probabilities. Moreover, the proposed framework
is intended to be validated in real scenarios.
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