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a b s t r a c t

This paper addresses the problem of state estimation for discrete-time linear systems, based on
measurements provided by an output binary sensor. The problem is formulated and solved in a set
theoretic framework. Two algorithms are devised for recursively computing outer approximations of
the set of state vectors compatible with the information provided by the binary sensor. This allows one
to obtain a nominal state estimate and to characterize the associated uncertainty. The procedures can
be tuned to suitably trade off the quality of set approximations and the required computational load.
An input design technique based on the computed feasible state sets, which is aimed at promoting
uncertainty reduction, is provided. The case of time-varying sensor threshold is also considered and
a strategy for selecting online the value of the threshold is formulated. All the proposed methods are
validated in simulations on two numerical examples.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Binary and quantized sensors are employed in a number of
ifferent engineering contexts. In particular, binary or threshold
ensors find application in chemical processes, communication
hannels, automotive systems, traffic control, presence sensing
nd many others, mainly due to their relatively low cost and
implicity of use. Clearly, the amount of information provided by
uch sensors is quite limited, thus calling for tailored estimation
echniques and algorithms.

In the last two decades, a large body of research has been de-
oted to system identification based on binary or quantized mea-
urements, see e.g. Bottegal, Hjalmarsson, and Pillonetto (2017),
asini, Garulli, and Vicino (2011, 2012), Clinet and Juillard (2010),
uo and Zhao (2013), Leong, Weyer, and Nair (2020), Pouliquen,
igeon, Gehan, and Goudjil (2020) and Wang, Zhang, and Yin
2003) for specific contributions and the book (Wang, Yin, Zhang,
Zhao, 2010) for an overview on the subject. On the other

and, relatively less attention has been dedicated to the problem
f state estimation in the presence of binary sensor measure-
ents. In Wang, Li, Yin, Guo, and Xu (2011) and Wang, Xu, and
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Yin (2008), continuous-time linear systems are considered. It is
shown that the problem is equivalent to state estimation under
irregularly sampled output measurements. In fact, every time the
output signal crosses the sensor threshold, a new measurement
becomes available. Observability, observer design and conver-
gence properties have been studied, assuming stochastic output
noise models.

The problem is significantly different in the discrete-time set-
ting. In such a case, at each time instant the information provided
by the sensor measurement just says if the output signal is above
or below the sensor threshold. This results in a deterministic
uncertainty associated to each measurement, which is present
even if the sensor is noiseless. The discrete-time state estimation
problem in the presence of binary sensors has been studied in
various contexts, including distributed target tracking in wireless
sensor networks (see, e.g., Ribeiro, Giannakis, and Roumeliotis
(2006) and Teng, Snoussi, and Richard (2010)), security of cyber–
physical systems (Song, Wang, Wang, Alsaadi, & Shan, 2021) and
nonlinear systems (Hu, Chen, Zhang, & Yu, 2022). These works
usually model the disturbances affecting the systems as stochas-
tic processes and propose state estimation techniques based on
probabilistic uncertainty description, such as Kalman or particle
filtering. A different approach is taken in Battistelli, Chisci, and
Gherardini (2017), where linear discrete-time systems affected
by unknown-but-bounded (UBB) disturbances are considered. A
moving horizon state estimator is devised, whose stability is
proven under suitable observability assumptions, and a recursive
bound on the state estimation error is provided. An alternative

way to deal with the deterministic error associated to the binary

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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easurements is proposed in Zhang, Chen, and Yu (2020). It
hould be also pointed out that in the discrete-time setting the
hoice of a suitable input signal may be crucial to ensure that the
utput crosses the sensor threshold a sufficient number of times,
hus making it possible to gather sufficient information on the
tate evolution.
A key observation when dealing with binary sensors is that

he uncertainty associated to the measurements provides a set-
alued information on the state vector to be estimated. In fact, the
tate vectors compatible with a single binary measurement define
half-space in the state domain. If also process disturbances and
easurement noise are described using set-theoretic models, like

n the UBB setting, the state estimation problem can be natu-
ally cast in a set membership estimation framework (Milanese
Vicino, 1991). Set membership state estimation has a long

istory, now spanning more than five decades, starting from the
ioneering works (Bertsekas & Rhodes, 1971; Schweppe, 1968).
ince then, a number of alternative approaches have been pro-
osed (see, e.g., Alamo, Bravo, and Camacho (2005), Althoff and
ath (2021), Chisci, Garulli, and Zappa (1996), Combastel (2015),
urieu, Walter, and Polyak (2001), El Ghaoui and Calafiore (2001),
ollamudi, Nagaraj, Kapoor, and Huang (1996), Kieffer, Jaulin, and
alter (2002), Scott, Raimondo, Marseglia, and Braatz (2016),
ang, Wang, Puig, and Cembrano (2019) and references therein),
hich have been employed in a wide variety of application do-
ains. The main advantage of such techniques is that they allow

o compute, at each time instant, the set of all the state vectors
ompatible with the entire sequence of measurements collected
p to that time, thus providing a full geometric characterization of
he uncertainty associated to the state estimate. However, to the
est of the authors’ knowledge, set membership state estimation
echniques have not been considered so far in the case of binary
r quantized measurements.
In this paper, the state estimation problem for linear discrete-

ime systems with binary sensor measurements is addressed
n a set membership framework. Three main contributions are
rovided. First, two set membership state estimation algorithms,
ased on outer approximations of the exact feasible state set,
re proposed. They provide guaranteed bounds on the uncer-
ainty affecting the state estimates, by exploiting the information
ontained in the binary measurements. The number of past mea-
urements to be processed is used as a tuning knob to trade off
he quality of the feasible set approximations and the computa-
ional load. The second contribution is an input design technique
hich is aimed to promote uncertainty reduction. Finally, in the
ase in which the threshold of the binary sensor can be changed
ver time, a suitable strategy to select the threshold in order to
educe the estimation uncertainty is presented. All the proposed
ethods are validated in simulation, on two numerical examples.
The paper is organized as follows. Section 2 contains prelim-

nary material on set manipulations. The set membership state
stimation problem is formulated in Section 3. The two proposed
et approximation techniques are presented in Section 4. Active
tate estimation based on input design or on the use of a variable
hreshold is discussed in Section 5. In Section 6, the results of
umerical simulations on two case studies are presented, while
ome concluding remarks are reported in Section 7.

. Preliminaries

In this section, some useful definitions and results on set
anipulations are recalled. Given two sets S1 and S2, their sum

s defined as
= S1 + S2 = {z : z = x + y, x ∈ S1, y ∈ S2}.

2

When S2 contains a single element v, we write S1 + v with the
same meaning. Given a set S ⊂ Rn and a matrix A ∈ Rm×n, the
set AS is defined by

AS = {z ∈ Rm
: z = Ax, x ∈ S}.

We denote by B∞ the unit ball in the infinity norm, i.e. B∞ =

x : ∥x∥∞ ≤ 1}.
An orthotope (or axis aligned box) is defined by its center

∈ Rn and semi-sides vector d ∈ Rn, with di ≥ 0, i = 1, . . . , n,
according to

O(c, d) = {x : x = c + diag(d)α, ∥α∥∞ ≤ 1}

where diag(d) is a diagonal matrix with diagonal equal to d. The
volume of the orthotope is equal to 2n ∏n

i=1 di.
A parallelotope is defined by its center c ∈ Rn and shape matrix

T ∈ Rn×n, according to

P(c, T ) = {x : x = c + Tα, ∥α∥∞ ≤ 1}.

The volume of the parallelotope is equal to 2n
|det(T )|.

An m-parpolygon is defined by its center c ∈ Rn and shape
atrix T ∈ Rn×m, according to

(c, T ) = {x ∈ Rn
: x = c + Tα, ∥α∥∞ ≤ 1}.

hen m = n, the parpolygon boils down to a parallelotope. The
um of two parpolygons is a parpolygon itself and it is given by

(c1, T1) + T (c2, T2) = T (c1 + c2, [T1 T2]). (1)

A generic polytope V is defined through a set of h linear
nequalities

= {x ∈ Rn
: Mx ≤ q} (2)

here M ∈ Rh×n and q ∈ Rh (inequalities between vectors are
lways intended componentwise). Notice that a polytope can be
nbounded and boils down to a half-space when h = 1.
The minimum orthotope containing a bounded polytope V ⊂

n is denoted by Ō[V]. Similarly, P̄[V] denotes the minimum
volume parallelotope containing the polytope V . The following
result will be useful in the subsequent developments.

Proposition 1. Given a polytope V ⊂ Rn defined by (2), a vector
v ∈ Rn, a nonsingular matrix A ∈ Rn×n, a matrix G ∈ Rn×m, and a
constant γ > 0, the following properties hold:

AV + v = {x : MA−1x ≤ q + MA−1v} (3)

AV + γGB∞ ⊆ {x : MA−1x ≤ q + γ r} (4)

with r such that ri = ∥(MA−1G)i∥1, i = 1, . . . , h, and (M)i denotes
the ith row of matrix M. Moreover, if M ∈ R1×n (i.e, V is a
half-space), (4) holds with the equality sign.

Proof. Let us first prove (3). If x ∈ AV+v, one has that x = Ay+v,
for some y ∈ V . Then, using (2)

MA−1x = MA−1Ay + MA−1v ≤ q + MA−1v.

Conversely, let x be such that MA−1x ≤ q + MA−1v. Let ȳ =
−1(x−v). One hasMȳ ≤ q and hence ȳ ∈ V . Moreover, x = Aȳ+v

and therefore x ∈ AV + v.
Now, let us show (4). If x ∈ AV + γGB∞, there exist y ∈ V and

w ∈ B∞ such that x = Ay + γGw. Then,

MA−1x = MA−1Ay + MA−1γGw ≤ q + max
w∈B∞

MA−1γGw

where the max operator has to be intended componentwise.
Then, (4) follows from maxw∈B∞

v′w = ∥v∥1, for any v ∈ Rn.
inally, when h = 1, let x satisfy MA−1x ≤ q + γ r and choose
¯ ∈ B∞ such that MA−1Gw̄ = ∥MA−1G∥1 = r . If one sets ȳ =
−1(x−γGw̄), then Mȳ = MA−1x−γMA−1Gw̄ ≤ q+γ r−γ r = q,
.e., ȳ ∈ V . Hence, x = Aȳ+ γGw̄ ∈ AV + γGB∞, and therefore (4)
olds with the equality sign. □
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. Problem formulation

Consider the SISO discrete-time linear system

(k + 1) = Ax(k) + Bu(k) + Gw(k) (5)

z(k) = Cx(k) + v(k) (6)

here x(k) ∈ Rn is the state vector, u(k) ∈ R is the input,
(k) ∈ R is the (inaccessible) output signal, w(k) ∈ Rd is the
rocess disturbance and v(k) ∈ R is the output noise. At each
ime instant k, a binary sensor provides the measurement

(k) =

{
1, if z(k) ≥ τ

−1, if z(k) < τ
(7)

here τ is the sensor threshold.

ssumption 1. The process disturbance w(k) and the output
oise v(k) are UBB sequences, satisfying

w(k)∥∞ ≤ δw

v(k)| ≤ δv

or all k ≥ 0.

Matrices A, B, C , G and bounds δw , δv can be time-varying.
ereafter, we assume they are constant to keep the notation
imple, but the extension of the proposed approaches requires
ust minor amendments. Similarly, all the subsequent treatment
an be easily extended to the case of MIMO systems.
The information provided by the binary measurement (7),

long with the UBB assumption on the output noise v(k), allow
ne to define the feasible measurement set, i.e., the set of states
(k) which are compatible with the sensor measurement y(k). This
s given by

(k) =

{
x ∈ Rn

:

{
Cx ≥ τ − δv, if y(k) = 1
Cx < τ + δv, if y(k) = −1

}
(8)

hich, with a slight abuse of notation,1 can be rewritten as

(k) =
{
x ∈ Rn

: y(k)(Cx − τ ) + δv ≥ 0
}
. (9)

he set M(k) is a half-space in the state space, even if δv = 0
noiseless sensor). This motivates the adoption of a set member-
hip approach in the state estimation problem.
It is now possible to define recursively the feasible state set
(k|k), which is the set of all the state vectors x(k) which are
ompatible with all the binary measurements collected from the
nitial time k = 0 to the current time instant k. By letting Ξ (0|−1)
e the set of feasible initial states x(0) (the a priori information
n the initial state), one has

Ξ (k|k) = Ξ (k|k − 1)
⋂

M(k) (10)

(k + 1|k) = AΞ (k|k) + Bu(k) + δwGB∞ (11)

or k = 0, 1, 2, . . . . The set Ξ (k + 1|k) represents the set of
ll feasible predicted states x(k + 1), given the information up
o time k. It can be noticed that, if Ξ (0| − 1) is a (bounded)
olytope, then all the sets Ξ (k|k) and Ξ (k + 1|k) are (bounded)
olytopes in Rn (see, e.g., Chisci et al. (1996)). In order to prevent
he feasible state sets from degenerating into a linear subspace,
ereafter we will assume that the state transition matrix A is non-
ingular. This is not a restrictive assumption (in particular, when
he discrete-time system has been obtained via discretization of a

1 In (9) the strict inequality is replaced by a nonstrict one in the case
(k) = −1. This does not affect the development, as the condition z(k) = τ

s clearly singular.
3

ontinuous-time one), and anyway it can be removed at the price
f more involved set representations.
The exact computation of the feasible state sets is compu-

ationally intractable even for small state dimensions. In fact,
he number of vertices and facets of the polytopes Ξ (k|k) grows
xponentially in time. Therefore, the objective of the set member-
hip state estimation problem is to construct suitable approxima-
ions of the feasible state sets. In particular, outer approximations
re usually sought, so that they are guaranteed to contain all the
tate vectors which are compatible with the available information
nd hence to provide a reliable characterization of the uncertainty
ssociated to the estimates.

. Set approximation algorithms

In this section we present two alternative procedures for com-
uting an outer approximation of the feasible state set. The objec-
ive is to start from a set S(0| − 1) ⊇ Ξ (0|−1) and to recursively
ompute sets S(k|k) and S(k+1|k) such that they satisfy S(k|k) ⊇

(k|k) and S(k + 1|k) ⊇ Ξ (k + 1|k), ∀k ≥ 0.

.1. Block parallelotopic state estimator

The first algorithm is adapted from the recursive parallelotopic
ounding techniques proposed in Chisci, Garulli, Vicino, and
appa (1998) and Chisci et al. (1996). The approximating set
(k|k) is a parallelotope, defined as P(k|k) = P(c(k|k), T (k|k)),
here c(k|k) is the center and T (k|k) the shape matrix. Let
s assume that at time k − 1, an approximating parallelotope
(k|k − 1) ⊇ Ξ (k|k− 1) has been computed. In order to perform
he correction step (10), one needs to find a parallelotope P(k|k)
o that

(k|k) ⊇ P(k|k − 1)
⋂

M(k). (12)

he computation of the minimum volume P(k|k) satisfying (12)
as been solved in Vicino and Zappa (1996). However, when
ealing with binary measurements, the information provided by
single feasible measurement set M(k) may lead to a very

oarse approximation of the feasible state set Ξ (k|k). Therefore,
n order to reduce the conservatism, it may be beneficial to
rocess simultaneously a block of past measurements. This has
een observed also for continuous measurements, in the context
f set membership parameter identification (Chisci et al., 1998).
ere the problem is more involved, because past feasible mea-
urement sets are iteratively modified by the system dynamics
5). For example, the feasible measurement set M(k − 1) can be
ropagated to time k, to generate the set of feasible states x(k)
ompatible with the measurement y(k − 1), which is defined as

(k|k − 1) = AM(k − 1) + Bu(k − 1) + δwGB∞.

imilarly, one can compute a h-step ahead propagation of the
easible measurement set M(k − h), defining the set of states
(k) compatible with the measurement y(k − h). By using (5)
teratively, this is given by

(k|k − h) = AhM(k − h) +

h−1∑
i=0

Ah−1−iBu(k − h + i)

+δw

h−1∑
i=0

Ah−1−iGB∞. (13)

t is worth stressing that, being Ξ (k − h|k − h) ⊆ M(k − h) by
10), one also has Ξ (k|k) ⊆ M(k|k−h). Therefore, the propagated
easurement sets M(k|k − h), for h = 1, 2, . . . , do not provide
ny useful information when computing the exact feasible sets
ccording to the recursion (10)–(11). Conversely, when adopting
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recursive approximating procedure, such sets may be useful to
urther reduce the current approximated feasible sets. Motivated
y this idea, let us introduce the following characterization of the
ropagated measurement set M(k|k − h).

emma 1. Let the feasible measurement set at time k − h be given
y

(k − h) =
{
x ∈ Rn

: m(k − h) x ≤ q(k − h)
}
,

with m(k−h) = −y(k−h)C and q(k−h) = δv −τy(k−h). Then, for
any h ≥ 1 the h-step ahead propagated measurement set is given
by

M(k|k − h) = {x :m(k − h)A−hx ≤ q(k − h)

+m(k − h)
h−1∑
i=0

A−(i+1)Bu(k − h + i)

+δw

h−1∑
i=0

∥m(k − h)A−(i+1)G∥1}. (14)

Proof. By applying properties (3)–(4) to (13) with V = M(k−h),
and noticing that M(k − h) is a half-space, the result easily
follows. □

Let us adopt the notationM(k|k) = M(k) and setM(k|k−h) =

Rn for h > k. Then, following the above discussion, the correction
update (10) can be approximated by the block-correction step

P(k|k) = P̄

⎡⎣P(k|k − 1)
qp−1⋂
h=0

M(k|k − h)

⎤⎦ (15)

where qp is a tuning parameter that can be used to trade off
accuracy of the uncertainty estimate and computational load. The
computation of P(k|k) in (15) boils down to find the minimum
parallelotope containing the intersection of a parallelotope and qp
half-spaces. To this aim, the procedure proposed in Chisci et al.
(1998) can be employed.

As far as the prediction step (11) is concerned, one can obtain
a parallelotopic outer bound of Ξ (k + 1|k) by computing

P(k + 1|k) = P̄ [AP(k|k) + Bu(k) + δwGB∞] . (16)

Being P(k|k) = P(c(k|k), T (k|k)), using (1) it is easy to see that

P(k|k) + Bu(k) + δwGB∞ = T (Ac(k|k) + Bu(k), [AT (k|k) δwG])

which is an (n + d)-parpolygon. Hence, the computation of the
right hand side in (16) amounts to find the minimum volume
parallelotope containing a parpolygon. Several approximate solu-
tions can be found in the literature (see, e.g., Combastel (2015)
and Scott et al. (2016)). The optimal solution is derived next.
Let n,m be integers, such that n ≤ m. Let Im

n denote the set
of tuples of n integers that can be extracted from {1, 2, . . . ,m}.
Given a matrix T ∈ Rn×m, denote by T (κ), κ ∈ Im

n , the matrix
obtained by selecting from matrix T the n columns whose indexes
belong to the tuple κ . Hereafter, only full rank matrices T (κ) are
considered.2 Let P (κ)

= [T (κ)
]
−1 and denote by p(κ)i , i = 1, . . . , n,

the rows of P (κ). The next result provides the minimum volume
parallelotope containing a parpolygon.

Theorem 1. Let T (c, T ) be a m-parpolygon, with T ∈ Rn×m, m > n,
and T = [t1 t2 . . . tm] is full rank. Then,

P̄[T (c, T )] = P(c, T̄ ∗)

2 Rank-deficient matrices T (κ) correspond to unbounded parallelotopes, which
clearly are not candidates for the minimum volume one.
4

where

T̄ ∗
= T (κ∗)

· diag(q∗)

with

q∗

i =

m∑
j=1

|p(κ
∗)

i tj| , i = 1, . . . , n

and

κ∗
= arg min

κ∈Im
n

⎧⎨⎩
n∏

i=1

m∑
j=1

|p(κ)i tj|

⎫⎬⎭ · | det T (κ)
|.

Proof. It is easy to see that T (c, T ) can be written as the
intersection of

( m
n−1

)
strips in Rn. In fact, each (n − 1)-tuple of

vectors tih , h = 1, . . . , n − 1, defines two opposite facets of
T (c, T ), whose hyperplanes bound the strip |p(x − c)| ≤ 1, with
he row vector p ∈ Rn such that p tih = 0, h = 1, . . . , n − 1.
By exploiting (Vicino & Zappa, 1996), one has that the n strips of
he minimum bounding parallelotope P̄[T (c, T )] must be chosen
mong the

( m
n−1

)
ones.

Being T full rank, there is at least one full-rank matrix T (κ).
ow, for each full-rank matrix T (κ), κ ∈ Im

n , consider the inverse
(κ)

= [T (κ)
]
−1 and its rows p(κ)i , i = 1, . . . , n. Clearly, each

vector p(κ)i is orthogonal to n− 1 columns ti of T (κ), and therefore
it is a candidate to define one of the n strips of P̄[T (c, T )].
Hence, it turns out that P̄[T (c, T )] must be selected among the
parallelotopes P(c, T̄ (κ)), where T̄ (κ)

= T (κ)
· diag(q(κ)) and q(κ)

is chosen so that P(c, T̄ (κ)) ⊇ T (c, T ). The latter condition is
satisfied by imposing that

min
q(κ)∈Rn

max
x∈T (c,T )

∥[T̄ (κ)
]
−1(x − c)∥∞ = 1 ,

which corresponds to

min
q(κ)i

max
x∈T (c,T )

⏐⏐⏐⏐⏐ 1

q(κ)i

p(κ)i (x − c)

⏐⏐⏐⏐⏐ = 1 , i = 1, . . . , n,

thus leading to q(κ)i =
∑m

j=1 |p(κ)i tj| = 1, for i = 1, . . . , n.
Finally, among all the parallelotopes P(c, T̄ (κ)) one has to select
the one with minimum volume. Being the volume proportional
to | det T̄ (κ)

|, one has to find

κ∗
= argminκ∈Im

n | det T̄ (κ)
|

= argminκ∈Im
n

{∏n
i=1 q

(κ)
i

}
· | det T (κ)

|

= argminκ∈Im
n

{∏n
i=1

∑m
j=1 |p(κ)i tj|

}
· | det T (κ)

|

which concludes the proof. □

The overall Block Parallelotopic State Estimation (BPSE) proce-
dure is summarized in Algorithm 1. An example of one iteration
of the procedure, in a case with n = 2 and qp = 2, is depicted
in Fig. 1. The following result states that the BPSE procedure is
guaranteed to provide an outer approximation of the true feasible
state set at every time k.

Theorem 2. Let P(0| − 1) ⊇ Ξ (0| − 1). Then, the sequence of
parallelotopes P(k|k), P(k+1|k), k = 0, 1, . . . , computed according
to the BPSE procedure in Algorithm 1, satisfies the inclusions

P(k|k) ⊇ Ξ (k|k) (17)

P(k + 1|k) ⊇ Ξ (k + 1|k) (18)

for all k = 0, 1, . . . .
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Fig. 1. Example of one iteration of the BPSE procedure, for a case with n = 2
nd qp = 2. Left: correction step (15); right: prediction step (16).

Algorithm 1 Block Parallelotopic State Estimator (BPSE)
1: Input: model A, B, C , G, δw , δv; input–output data u(k), y(k);

number of measurements qp to be processed at each time
instant.

2: Initialize: parallelotope P(0| − 1) ⊇ Ξ (0| − 1).
3: for k = 0, 1, . . . ,N do
4: Correction Step
5: for h = 1, . . . ,min{qp, k} do
6: Compute M(k|k − h) in (14)
7: end for
8: Compute P(k|k) according to (15)
9: Prediction Step
0: Compute P(k + 1|k) according to (16)
1: end for

Proof. The result can be proven by induction. For k = 0, one has
(0| − 1) ⊇ Ξ (0| − 1) by assumption. Then, according to (15),
(0|0) = P̄

[
P(0| − 1)

⋂
M(0)

]
⊇ Ξ (0| − 1)

⋂
M(0) = Ξ (0|0).

For a generic k, let P(k|k − 1) ⊇ Ξ (k|k − 1). By using (15),
Lemma 1 and (10), one gets

P(k|k) = P̄

⎡⎣P(k|k − 1)
qp−1⋂
h=0

M(k|k − h)

⎤⎦
⊇

⎧⎨⎩Ξ (k|k − 1)
⋂

M(k)
qp−1⋂
h=1

M(k|k − h)

⎫⎬⎭ = Ξ (k|k)

(19)

where the last equality stems from Ξ (k|k) ⊆ M(k|k − h), for
h ≥ 1. Finally, by exploiting the set inclusion (19), together with
(11) and (16), one has

P(k + 1|k) = P̄ [AP(k|k) + Bu(k) + δwGB∞]
{AΞ (k|k) + Bu(k) + δwGB∞} = Ξ (k + 1|k)

hich proves (18). □

.2. Block orthotopic state estimator

In the second algorithm proposed hereafter, the approximat-
ng sets S are orthotopes. The main difference with the parallelo-
opic approach is that the shape of the approximating region is
ow fixed and defined by a diagonal matrix (i.e., T = diag(d)).
learly, one possibility is to replicate exactly the same recursive
pproximating scheme proposed in Section 4.1. However, this
ould require to solve 4n linear programs (LPs) at each time

teration: 2n for computing the corrected orthotope O(k|k) and 2n
or the predicted one O(k+ 1|k). A possible alternative to reduce
5

he computational load consists in replacing the computation
f the predicted orthotope O(k + 1|k) with that of a suitable
arallelotope. One option is to use the same approach based on
heorem 1 adopted for the BPSE procedure. A computationally
heaper solution is explained next.
Let an orthotope O(k|k) = O(c(k|k), d(k|k)), with center c(k|k)

nd semi-sides vector d(k|k), be given and assume that O(k|k) ⊇

(k|k). This means that all feasible states x(k) must satisfy the
onstraints

I
−I

]
x(k) ≤

[
c(k|k) + d(k|k)

−c(k|k) + d(k|k)

]
. (20)

he next result provides an outer approximation of the predicted
easible set Ξ (k + 1|k).

emma 2. Let Ξ (k|k) ⊆ O(k|k) = O(c(k|k), d(k|k)). Then, the
arallelotope

(̂k + 1|k) = P(Ac(k|k) + Bu(k), AD) (21)

here D = diag(δwa + d(k|k)), with a ∈ Rn such that ai =

(A−1G)i∥1 for i = 1, . . . , n, satisfies

(̂k + 1|k) ⊇ Ξ (k + 1|k).

roof. From (11), one has

(k + 1|k) ⊆ AO(k|k) + Bu(k) + δwGB∞.

y applying properties (3)–(4) with V given by (20), one gets

O(k|k) + Bu(k) + δwGB∞ ⊆

x(k + 1) :

[
I

−I

]
A−1x(k + 1) ≤

[
c(k|k) + d(k|k)

−c(k|k) + d(k|k)

]
+

[
I

−I

]
A−1Bu(k) + δw

[
a
a

]} (22)

here ai = ∥(A−1G)i∥1, i = 1, . . . , n. The constraints in the left
and side of (22) can be rewritten as

d(k|k) − δwa ≤ A−1(x(k + 1) − Ac(k|k) − Bu(k)) ≤ d(k|k) + δwa

hich are equivalent to the parallelotopic constraint x(k + 1) ∈

(Ac(k|k) + Bu(k), AD). □

In the correction step, the same block processing approach
llustrated in Section 4.1 is adopted. Hence, one can compute the
pproximating orthotope at time k as

(k|k) = Ō

[
P̂(k|k − 1)

qo−1⋂
h=0

M(k|k − h)

]
(23)

ith M(k|k − h) as in (14) and P̂(k|k − 1) given by (21) at time
. This requires to solve 2n LPs (i.e., 2 LPs for each dimension of
he orthotope).

The overall Block Orthotopic State Estimation (BOSE) proce-
ure is summarized in Algorithm 2. The bounding property of the
OSE procedure is established by the next result.

heorem 3. Let O(0| − 1) ⊇ Ξ (0| − 1). Then, the sequence of
rthotopes O(k|k), O(k+ 1|k), k = 0, 1, . . . , computed according to
he BOSE procedure in Algorithm 2, satisfies the inclusions

O(k|k) ⊇ Ξ (k|k)
(k + 1|k) ⊇ Ξ (k + 1|k)

or all k = 0, 1, . . . .

roof. The proof follows the same lines of that of Theorem 2, by
xploiting Lemma 2 and (23). □
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Algorithm 2 Block Orthotopic State Estimator (BOSE)
1: Input: model A, B, C , G, δw , δv; input–output data u(k), y(k);

number of measurements qo to be processed at each time
instant.

2: Initialize: parallelotope P̂(0| − 1) ⊇ Ξ (0| − 1).
3: for k = 0, 1, . . . ,N do
4: Correction Step
5: for h = 1, . . . ,min{qo, k} do
6: Compute M(k|k − h) in (14)
7: end for
8: Compute O(k|k) according to (23)
9: Prediction Step

10: Compute P̂(k + 1|k) according to (21)
11: end for

Remark 1. Besides the two procedures proposed in this section,
other similar approaches can be devised by exploiting alternative
set approximations techniques proposed in the literature. For
example, one can adapt set membership recursive state bounding
algorithms based on ellipsoids (Durieu et al., 2001; El Ghaoui &
Calafiore, 2001; Gollamudi et al., 1996), interval analysis (Kieffer
et al., 2002), zonotopes (Alamo et al., 2005; Combastel, 2015;
Scott et al., 2016; Wang et al., 2019) and others. The main focus
of this paper is not on the choice of the most effective set ap-
proximation technique, rather on showing that set membership
estimation is a viable approach to tackle state estimation based
on binary sensor measurements.

4.3. Computational load

In order to compare the proposed procedures from a computa-
ional viewpoint, we analyze the prediction and correction steps
eparately.
In the BPSE procedure, the correction step is performed by

omputing (15) through the approach proposed in Chisci et al.
1998). This requires a number of operations in the order of(

max
{(

n + qp
n + 1

)
n, n2

})
. Clearly, only relatively small values of

qp are feasible. This parameter can be used as a tuning knob
to trade off accuracy of the approximation and computational
burden. As it will be apparent from the numerical tests in Sec-
tion 6, small values of qp are typically sufficient to obtain a good
approximation of the true feasible state set.

In the prediction step, BPSE adopts the result in Theorem 1
to compute (16). This requires to perform O(n3) operations for
ach n-tuple in the set Im

n , thus leading to a complexity of the

rder O
((

n + d
n

)
n3

)
. Such a load is affordable when either n

r d are small. In particular, when d = 1 it boils down to
computing n scalar products, as detailed in Chisci et al. (1996).
An option for reducing the computational burden, possibly at the
price of a more conservative approximation, is to sequentially
compute the minimum parallelotope bounding the sum of the
current parallelotope and the segment T (0, δwgi), for i = 1, . . . , d,
where gi denotes the ith column of G. Another alternative is to
compute a suboptimal parallelotopic approximation, by using the
same idea as in Lemma 2. Notice that these relaxations do not
significantly affect the quality of the approximation when δw is
much smaller than the size of the current feasible set. From the
above discussion, one can conclude that the main computational
burden associated to the BPSE procedure is due to the correction
step and can be modulated by suitably choosing qp.

As far as the BOSE procedure is concerned, the correction step
is performed by computing (23), which requires the solution of
6

2n LPs with n variables and 2n + qo constraints. Similarly to qp
for BPSE, the parameter qo can be used to increase the quality
of the approximation of the feasible set, at the price of a higher
computational burden. Notice however that in this case even
values of qo much larger than n may be feasible (see the examples
in Section 6). The prediction step boils down to the computation
of the parallelotope P̂(k + 1|k) in (21), whose effort is negligible
with respect to that of the correction step.

Summing up, the computational burden of the proposed pro-
cedures depends on the tuning parameters qp and qo, which in
turn affect the quality of the feasible set approximations. It is
worth stressing that this is the main difference with respect
to using the BPSE or BOSE procedure for state estimation with
continuous measurements. In fact, in the latter case, one may
obtain a good quality of the feasible set approximations even
with qp or qo equal to 1. Conversely, due to the poor information
content of binary measurements, one has to increase the number
of past measurements processed at every time instant to obtain
tighter set approximations, which leads to a higher computational
load. Nevertheless, the numerical tests in Section 6 show that the
proposed procedures are computationally viable.

5. Active state estimation

In this section, two alternative ways to promote uncertainty
reduction are discussed: input design and variable threshold.

5.1. Input design

In Wang et al. (2011, 2008) it has been observed that the
input signal u(t) plays a key role in observability and state es-
timation, in the presence of binary sensor measurements. In-
deed, it is trivial to observe that even for a fully observable
autonomous linear system, binary measurements may not pro-
vide useful information for state estimation, as shown by the
following example.

Example 1. Consider system (5)–(6) with n = 1, A = 1, B = 1,
C = 1, G = 1. Assume δw = δv = 0 and u(k) = 0, ∀k ≥ 0. Let
τ = 1 be the threshold of the binary sensor. Then, if x(0) < 1,
one has M(k) = {x : x < 1}, ∀k ≥ 0, while if x(0) ≥ 1, one
has M(k) = {x : x ≥ 1}, ∀k ≥ 0. Hence, it turns out that
Ξ (k|k) = Ξ (0| − 1)

⋂
M(0) for all k ≥ 0, thus meaning that all

he measurements after the first one do not provide any useful
nformation to reduce the uncertainty on the state estimates.

Example 1 suggests that one may exploit the input u(t) to force
the output z(t) to cross the threshold of the binary sensor as many
imes as possible. In order to be able to achieve this objective, we
ake the following assumption.

ssumption 2. System (5)–(6) is fully reachable and fully ob-
ervable.

Under Assumption 2, it is possible to design u(t) in such a
ay to keep the output z(t) as close as possible to the threshold
, even in the presence of state and output disturbances. The
ollowing example motivates the set membership input design
roposed in this section.

xample 2. Consider the same nominal system as in Example 1.
et τ = 1, δw > 0, δv > 0. Let the feasible state set at the generic
ime k be the interval Ξ (k|k) = [l(k), r(k)]. The predicted feasible
et turns out to be Ξ (k+1|k) = [l(k)+u(k)−δw, r(k)+u(k)+δw].
ow, let us choose the input signal u(k) in such a way that the
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hreshold τ be the center of the interval Ξ (k+ 1|k). This is given
y

(k) = τ −
l(k) + r(k)

2
(24)

nd leads to

(k + 1|k) =

[
τ −

d(k)
2

− δw, τ +
d(k)
2

+ δw

]
here d(k) = r(k)− l(k) is the size of the feasible interval Ξ (k|k).
sing (8), one can write the corrected feasible set at time k + 1
s
(k + 1|k + 1) = [l(k + 1), r(k + 1)] =[
max

{
τ − δv, τ −

d(k)
2 − δw

}
, τ +

d(k)
2 + δw

]
if y(k + 1) = 1,[

τ −
d(k)
2 − δw, min

{
τ + δv, τ +

d(k)
2 + δw

}]
if y(k + 1) = −1,

rom which one gets

(k + 1) = r(k + 1) − l(k + 1)

= min
{
d(k) + 2δw, 1

2d(k) + δw + δv

}
.

(25)

t easy to show that for any d(0) > 0, the system (25) converges
o

lim
→+∞

d(k) = 2(δw + δv).

In particular, in the noiseless case δw = δv = 0, the size of the
easible state interval Ξ (k|k) converges asymptotically to zero.
herefore, the choice of the input signal (24) allows the binary
ensor to provide indefinitely useful information for the reduction
f the state uncertainty, which will converge to the minimum
alue compatible with the amplitude of the state and output
isturbances. It is worth noticing that the selection of a random
nput, even if persistently exciting, would not lead to the same
esult. Fig. 2 reports the sizes of Ξ (k|k), averaged over 1000 runs,
or the noiseless scenario (top) and for the case δw = 0.01, δv =

.1 (bottom). The random input signal is a white process with
niform distribution in [−umax, umax]. The initial state x(0) is uni-
ormly distributed in Ξ (0|−1) = [−5, 5]. The disturbances w(k)
nd v(k) are white processes, uniformly distributed in [−δw, δw]

nd [−δv, δv], respectively. As expected, the designed input u(k)
n (24) achieves the asymptotic uncertainty value 2(δw+δv), while
andom inputs provide much larger uncertainties.

Motivated by Example 2, a way for designing the input signal
n order to promote reduction of the state estimate uncertainty
s proposed next. Under Assumption 2, if z(k) were available, it
ould be possible to design an output feedback regulator that
rives the system towards the threshold value τ . In fact, one can
hoose

(k) = F x̂(k) +
τ

g
(26)

where F ∈ R1×n is such that the eigenvalues of A + BF are all
inside the unit circle, g = C(I −A−BF )−1B be the stationary gain
of the closed-loop system, and x̂(k) is a state estimate generated
by a Luenberger-type observer. In the noiseless case (w(k) =

v(k) = 0), it is well known that the input signal (26) drives
asymptotically the output z(k) to τ . In particular, if one chooses
the dead-beat controller, such that the eigenvalues of A + BF are
all equal to zero, one has that z(k+h) = τ , ∀h ≥ n and ∀x(k) ∈ Rn.

In the case of binary measurements, the output signal z(k)
is not known. As we have seen, the set-valued uncertainty as-
sociated to the measurement y(k) and to the UBB disturbances
w(k) and v(k), leads to a set membership state observer, whose
7

Fig. 2. Example 2. Size of feasible state sets for u(k) as in (24) and for random
input signals with amplitude umax: noiseless case (top); δw = 0.01, δv = 0.1
bottom). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

stimate takes the form of the feasible state set Ξ (k|k), or one
f its approximations S(k|k) presented in Section 4. In turn, this
mplies that, according to the measurements collected up to time
, the signal z(k + 1) belongs to the predicted output feasible set
(k + 1|k), defined as

(k + 1|k) = CΞ (k + 1|k) + δvB∞[
minx∈S(k+1|k) Cx − δv, maxx∈S(k+1|k) Cx + δv

]
.

(27)

n the spirit of Example 2, the idea is to choose the input u(k)
n such a way to drive the center of the uncertainty interval
n the right hand side of (27) towards the threshold τ , so that
ne may expect that the binary sequence y(k) will often change
ign, thus resulting in more informative measurement sets M(k),
.e., measurement sets which provide a reduction of the feasible
tate set, through the intersection in (10). In particular, if the
pproximating set S(k|k) has a center of symmetry c(k|k), by
imicking the input design (26), the natural choice is to set

(k) = Fc(k|k) +
τ

g
. (28)

In particular, one can choose c(k|k) as the center of the paral-
lelotope P(k|k) or the orthotope O(k|k), provided respectively by
the BPSE or the BOSE algorithm. The following result shows that
a suitable choice of F guarantees that the desired property is
satisfied within a finite number of steps.

Theorem 4. Let Assumptions 1–2 hold and assume F is the dead-
beat state feedback matrix (i.e., the eigenvalues of A + BF are all
equal to zero). Let S(k|k) be a symmetric outer approximation of the
feasible state set Ξ (k|k), such that S(k|k) = c(k|k) + S̃(k|k) and

∈ S̃(k|k) if and only if −x ∈ S̃(k|k). Then, if the input signal (28)
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a

s chosen, one has that for all k ≥ n, the outer approximation of the
utput feasible set Z(k + 1|k) given by CS(k + 1|k) + δvB∞ is an
nterval centered at the threshold value τ .

roof. Let x̃(k) = x(k) − c(k|k). Clearly, x̃(k) ∈ S̃(k|k), ∀k. By
ubstituting (28) into (5) one gets

(k + 1) = (A + BF ) x(k) − BF x̃(k) + B
τ

g
+ Gw(k). (29)

ow, by exploiting the fact that (A+ BF )i = 0, for i ≥ n, from (6)
and (29) one gets

z(k) =

k−1∑
i=k−n

C(A + BF )k−1−i
{
B
τ

g
− BF x̃(i) + Gw(i)

}
+ v(k) (30)

or all k ≥ n. Since g =
∑n−1

i=0 C(A + BF )iB, (30) boils down to

z(k) = τ +

k−1∑
i=k−n

C(A + BF )k−1−i {
−BF x̃(i) + Gw(i)

}
+ v(k). (31)

Being x̃(i) ∈ S̃(i|i) and using Assumption 1, from (31) one gets
that

z(k + 1) ∈ τ + Z̃(k + 1|k) (32)

where

Z̃(k+1|k) =

k∑
i=k−n+1

C(A+BF )k−i {BF S̃(i|i) + GδwB∞

}
+δvB∞ (33)

s a symmetric interval centered in the origin, due to the symme-
ry of all the sets in the right hand side of (33). Therefore, z(k+1)
n (32) belongs to an interval centered at τ . □

If the feedback matrix F in (28) is chosen so that the closed
oop system is asymptotically stable, a result similar to that of
heorem 4 can be established, but only in steady state (i.e., the
enter of the approximated output feasible set will approach τ

symptotically). The numerical examples in Section 6 will show
hat the input choice (28) is indeed effective in reducing the size
f the estimated uncertainty sets.

.2. Variable threshold

It should be remarked that, in several applications, the input
ignal u(k) cannot be freely designed to reduce the size of the
easible state sets, for example because it is used to achieve
ontrol objectives or to optimize other performance indexes. On
he other hand, in some binary sensors the value of the threshold
an be adjusted by the user. Therefore, when u(k) is given, one
ay attempt to reduce uncertainty by adopting a time-varying
ensor threshold τ (k).
By following a similar reasoning as in the input design, the

bjective is to choose τ (k) as close as possible to the output
ignal z(k). By exploiting again the predicted output feasible set
(k|k−1), one may select τ (k) equal to the center of the interval

n the right hand side of (27). For approximate feasible state sets
(k|k − 1) with symmetry center c(k|k − 1), this amounts to set

(k) = C c(k|k − 1) = CAc(k − 1|k − 1) + CBu(k − 1). (34)

he rationale behind (34) is that the threshold is kept at the
enter of the approximated uncertainty interval of the output
ignal, thus promoting the fact that such a signal may cross
he threshold itself many times, providing in turn more infor-
ative measurement uncertainty sets. This is confirmed by the
umerical simulations illustrated in Section 6.
8

.3. Asymptotic properties

A remarkable difference between state estimation with con-
inuous measurements and state estimation with binary mea-
urements lies in the asymptotic properties of the feasible state
et. When continuous measurements are available, it is known
hat the set Ξ (k|k) remains asymptotically bounded, under a
detectability assumption on system (5)–(6) (see, e.g., Combastel
(2015)). This can be seen as a set membership counterpart of
the classic results on the asymptotic properties of the Kalman
filter. However, such a property no longer holds in the case of
binary measurements, even if the input signal is designed to
minimize the size of the feasible state set. This is shown by the
next example.

Example 3. Consider system (5)–(6) with n = 1, A = a > 0,
= 1, C = 1. Assume δw = δv = 0 (noiseless case). As

in Example 2, let us denote the feasible state set at time k as
Ξ (k|k) = [l(k), r(k)], and its half size as d(k) = (r(k)− l(k))/2. We
ant to choose the input u(k) in order to minimize the worst-case
ize of Ξ (k + 1|k + 1), i.e.
∗(k) = arg min

u(k)∈R
sup

x(k+1)∈M(k+1)
d(k + 1).

t is easy to verify that u∗(k) = τ − a l(k)+r(k)
2 , which corresponds

to the choice (28), with F = −a (dead-beat control). By setting
u(k) = u∗(k), from (11) one obtains Ξ (k+ 1|k) = [τ − ad(k), τ +

d(k)]. Therefore, being z(k + 1) = x(k + 1), one gets

(k + 1|k + 1) =

{
[τ , τ + ad(k)], if y(k + 1) = 1,
[τ − ad(k), τ ], if y(k + 1) = −1.

ence, no matter the actual value of the measured binary output
(k+ 1), the half-size of the feasible set Ξ (k+ 1|k+ 1) turns out
o be

(k + 1) =
a
2
d(k)

which diverges for k → +∞ when a > 2.

It is worth remarking that the size of the feasible set in
Example 3 diverges despite the system is fully observable and
the input has been designed to minimize the size of the feasible
state set. Intuitively, this occurs because one binary measurement
can at most halve the worst-case uncertainty and therefore the
system dynamics has to at most double it in one time step, to
preserve stability of the filter. Therefore, this is a fundamental
limitation of state estimation with binary measurements.

On the other hand, it is easy to see that the above problem
does not arise if system (5) is asymptotically stable. Indeed, even
if all the measurement sets M(k) do not contribute to reduce
uncertainty, i.e., if M(k) ⊇ Ξ (k|k − 1), ∀k ≥ 0, one has (for
(k) = 0)

(k + 1|k + 1) = AΞ (k|k) + δwGB∞.

ence, it can be shown that if A is asymptotically stable, Ξ (k|k) is
symptotically included in the bounded set

∑
+∞

i=0 AiδwGB∞ (see,
.g., Blanchini and Miani (2008) and Kolmanovsky and Gilbert
1998)).

. Numerical simulations

The performance of the BPSE and BOSE algorithms are evalu-
ted on two numerical examples.
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Table 1
Double integrator. Iteration times of BPSE and BOSE over 100 runs (in
milliseconds).

mean std

BPSE 3.04 1.42
BOSE 2.00 0.37

6.1. Double integrator

Consider the perturbed double integrator

(k + 1) =

[
1 1
0 1

]
x(k) +

[
0
1

]
u(k) + w(k)

z(k) =
[
1 0

]
x(k) + v(k).

he system is simulated for T = 200 time instants, with w(k) and
(k) generated as uniformly distributed white processes satisfying

Assumption 1, with δw = 0.01 and δv = 0.05. Being the system
nstable, active state estimation via feedback design of u(k) is
ecessary to prevent the disturbance process w(k) from causing
ndefinite growth of the state estimation uncertainty. The input
(k) has been chosen as in (28), with the dead-beat state feedback
atrix F = [−1 − 2]. The size of blocks of past measurements
as been set to qp = 5 for the BPSE algorithm and to qo = 20 for
he BOSE one (higher values do not lead to significant uncertainty
eduction).

Fig. 3 shows the nominal estimation errors x̃i(k|k) = xi(k) −

i(k|k), for each state component, and the corresponding uncer-
ainty intervals (obtained from the approximations of the feasible
tate sets), provided by one run of the BPSE and BOSE algorithms.
ig. 4 reports results averaged over 100 different runs of the
lgorithms, with initial feasible state sets equal to S(0| − 1) =

B∞ and initial true state x(0) randomly selected within S(0|−1).
n top, the volumes of the approximating regions are shown
blue for the BPSE algorithm, red for the BOSE one). The black line
orresponds to the volume of the minimum orthotope containing
he true feasible set, i.e. Ō [Ξ (k|k)] (reported only for the sake
f comparison, as the number of constraints in Ξ (k|k) grows
ndefinitely with time). On bottom, the averaged absolute values
f the nominal state estimation errors are plotted. Table 1 reports
he mean and standard deviation of the times needed for a single
teration of the two approximating algorithms, over the 100 runs.
ll simulations have been performed in Matlab, by using IBM
LOG CPLEX for MATLAB toolbox (IBM, 2023) to solve the LPs, on
n Intel Core i7-3770 at 3.40 GHz.
It can be observed that both approximation algorithms are

ble to successfully bound the state estimation errors, notwith-
tanding the persistent uncertainty injection by the disturbance
rocess w(k) and the severely limited information provided by
he binary sensor. The estimate uncertainty is quite close to the
inimum one, corresponding to that provided by Ō [Ξ (k|k)],

hus confirming the effectiveness of the recursive approximation
rocedures. It can be observed that the BOSE algorithm has a
uch slower transient compared to that of the BPSE, but in

urn it provides slightly more accurate steady-state estimates.
he reason for the slower transient of BOSE is that in the first
teps only a number of predicted measurement sets M̂(k|k − h)
uch smaller than qo are available. Notice that, the orthotopic
pproximation usually requires a larger number of past measure-
ents with respect to the parallelotopic one, to achieve the same
pproximation quality, due to the fewer degrees of freedom in the
hape matrix. On the other hand, although the two procedures
how similar volumes of the approximating regions in steady
tate, the error in the single state component is slightly larger for
PSE, due to the fact that the approximating parallelotope tends
o stretch along some directions (thus providing some relevant
nformation about the relationship between the estimation errors
n different state components).
9

Fig. 3. Double integrator. State estimation errors (dashed) and uncertainty
bounds (solid): BPSE (top, blue); BOSE (bottom, red). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

6.2. Double oscillator

Let us consider a mechanical system taken from Battistelli
et al. (2017) consisting of two masses and two springs. The
continuous time equations of the system are

ẋ1(t) = x2(t)

ẋ2(t) = −
k1 + k2

m1
x1(t) +

k2
m1

x3(t) + w1(t)

˙3(t) = x4(t)

˙4(t) =
k2
m1

x1(t) −
k2
m2

x3(t) + w2(t)

z(t) = x3(t) + v(t)

where m1 = m2 = 1 [kg] are the masses and k1 = k2 = 10 [N/m]

are the stiffnesses of the springs. The disturbance process w(t)
represents unmodeled accelerations affecting the two masses.
The system is discretized with sampling time 0.1 [s]. The discrete
time process disturbance w(k) ∈ R2 and output noise v(k) are
generated as uniformly distributed white processes, satisfying
Assumption 1.

We first consider the same experiment performed in Battis-
telli et al. (2017), in which the system evolves from x(0) =

[0.618, 0, 1, 0]′, there is no process disturbance (δw = 0), the
output noise is bounded by δ = 0.05 and the binary sensor
v
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Fig. 4. Double integrator. Log-volumes of approximating regions (top) and
bsolute values of state estimation errors (bottom), averaged over 100 runs:
PSE (blue); BOSE (red); Ō [Ξ (k|k)] (black). (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this
rticle.)

hreshold is set to τ = 0.5. The selection of the number of mea-
urements to be processed has been performed by applying the
PSE and BOSE algorithms for different values of qp and qo. Fig. 5
hows the volumes of the final approximating region (averaged
ver 100 runs) as functions of qp and qo. Based on these plots,
he values qp = 5 and qo = 40 have been selected. Fig. 6 com-
pares the true state trajectories with the nominal state estimates
c(k|k) provided by one run of the BPSE and BOSE algorithm. The
corresponding estimation uncertainty intervals are also reported.
It can be seen that, after an initial transient, both algorithms are
able to effectively track the true state values. Fig. 7 shows the
volumes of the approximating regions compared to that of the
minimum orthotope Ō [Ξ (k|k)] containing the exact feasible state
set. Results are averaged over 100 runs with different realizations
of the noise v(k). Notice that the two approximating algorithms
reach a steady state volume very close to that of the minimum or-
thotope (the volume of BPSE can be even smaller than that of the
minimum orthotope, due to different shape of the parallelotope).
Once again, the BOSE algorithm shows a large initial transient,
due to the poor flexibility of the orthotopic approximation when
very few measurements, and hence much fewer than qo predicted
measurement sets M̂(k|k − h), are available.

Another set of simulations has been performed by adopting
a variable threshold τ (k), selected according to (34). In order to
make the estimation problem more challenging, a process distur-
bance w(k) with δ = 0.1 has been added and the initial state
w g

10
Fig. 5. Steady state log-volumes of approximating regions for different numbers
of processed measurements qp and qo: BPSE (top, blue); BOSE (bottom, red).

x(0) has been randomly selected within S(0| − 1) = 5B∞. Notice
hat this makes the problem harder, because the state trajectory
s strongly affected by the choice of the initial state. Fig. 8 reports
he state estimates and the corresponding uncertainties for a
ypical run. The volumes of the approximating regions, averaged
ver 100 runs with different realizations of w(k), v(k) and x(0),
re shown in Fig. 9 (top). The bottom of the same figure depicts
he volumes obtained in the same setting, but with δw = 0.

By comparing the results in Figs. 8–9 with those in Figs. 6–7,
t can be observed that convergence of the nominal estimates is
uch faster and the steady state uncertainties are significantly
maller, thus confirming the usefulness of adapting the threshold
ccording to the current set membership uncertainty set. In par-
icular, it can be appreciated that the steady state values in Fig. 9
bottom) are two orders of magnitude smaller than those in Fig. 7.
able 2 reports the mean and standard deviation of the iteration
imes. Comparison with Table 1 highlights that both BPSE and
OSE scale reasonably well with the number of state variables,
ith BOSE being slightly faster, notwithstanding the much higher
umber of measurements processed at each iteration. On the
ther hand, it is remarkable that the BPSE algorithm is able to
rovide a good approximation of the feasible state set by pro-
essing much less past measurements than BOSE. As a concluding
bservation, it is worth stressing that in all the simulations both
rocedures reach a steady state volume of the approximating re-
ion which is close to that of the minimum orthotope containing
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Fig. 6. Double oscillator. State estimates (dashed) and uncertainty bounds
(solid), compared with true states (black): BPSE (top, blue); BOSE (bottom, red).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Double oscillator. Log-volumes of approximating regions averaged over
100 runs: BPSE (blue); BOSE (red); Ō [Ξ (k|k)] (black). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
11
Fig. 8. Double oscillator with moving sensor threshold. State estimates (dashed)
and uncertainty bounds (solid), compared with true states (black): BPSE (top);
BOSE (bottom). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2
Double oscillator. Iteration times of BPSE and BOSE over 100 runs (in
milliseconds).

mean std

BPSE 17.13 6.73
BOSE 4.00 0.45

the true feasible state set. This demonstrates that both procedures
are able to provide quite tight set approximations. Therefore,
the choice of the procedure to employ may be driven by the
optimization of the transient behavior and by the limitations
imposed by the system bandwidth.

7. Conclusions

The problem of state estimation for discrete-time linear sys-
tems has been addressed in the challenging setting of binary
output measurements. Despite the limited information provided
by the sensor, the proposed set-membership state estimators are
able to provide both a reliable nominal estimate and a charac-
terization of the associated uncertainty. Active estimation tech-
niques, based either on a suitable design of the input signal or
on the selection of a time-varying threshold, have proven to be
effective in remarkably reducing the estimate uncertainty. The
extension of the approaches proposed in this work to the case of
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Fig. 9. Double oscillator with moving sensor threshold. Log-volumes of approx-
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uantized sensors and to state estimation for nonlinear systems,
ill be the subject of future research.
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