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Abstract

The increased penetration of plug-in electric vehicles asks for efficient algorithms to be adopted in parking lots equipped with
charging units. In this paper, the peak power minimization problem for a plug-in charging station is addressed. A chance
constraint approach is adopted in order to minimize the daily peak power, allowing for a tolerance on the charging service
customer satisfaction expressing the probability that a vehicle leaves the station violating the agreed level of charge. Numerical
simulations are provided to evaluate the performance of the proposed approach as well as to make a comparison with other
techniques.
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1 Introduction

Electric vehicles (EVs) are a promising technology to
overcome different kind of problems caused by carbon-
fossil technologies. Indeed, the combined action of EVs
with renewable generation makes it possible to reduce
pollution and green house effect [31]. Moreover, as a
byproduct, EV utilization moves gas emissions outside
living centers. Conversely, several issues may arise in the
presence of a huge EV penetration inside the power sys-
tem. In fact, uncontrolled EV charging can bring to sce-
narios where neither safety nor technical constraints can
be ensured, leading to low power quality service or insta-
bility issues. On the other hand, customer satisfaction
related to waiting time, charging time, charging profile,
etc., needs be taken into account, for obvious reasons.

Several solutions have been proposed in the literature
to handle properly the EV integration into electricity
systems. Using smart monitoring devices and design-
ing suitable optimization algorithms allow for manag-
ing fleets of vehicles without changing the grid struc-
ture [14]. In [4], a receding horizon algorithm aimed at
minimizing the electricity bill while guaranteeing proper
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working conditions of an industrial microgrid under high
EV penetration has been developed. In [22], a strategy
based on battery swapping has been devised to max-
imize the charging station profit while taking into ac-
count user waiting and charging time. On the other hand,
in [12] battery swapping has been proposed to minimize
the charging cost as well to lower power losses and volt-
age deviations in power networks. In [13], game theory
has been exploited to maximize the profit of a charg-
ing station, while in [19] the minimization of travel time
and charging cost has been studied. A decentralized EV
charging strategy has been proposed in [16], where each
vehicle aims at minimizing its charging cost while tak-
ing into account local grid and battery effects. An op-
timal power scheduling aimed at the maximization of
the profit of an airport parking lot has been provided in
[18], while in [26] the optimization strategy is focused on
minimizing the electricity cost of a residential smart mi-
crogrid. To model and guarantee an appropriate charg-
ing service, works aimed on sizing and siting of charging
stations have been proposed in [6] and [27].

Concerning peak load reduction, suitable strategies
have been developed, too. A hierarchical approach to
EV charging based on an offline coordination algorithm
has been proposed in [5]. In [17], the coordinated op-
eration of EVs with renewable sources and electrical
storage made it possible to reduce the household power
absorption. In [1] a peak shaving strategy has been



developed at power network level, while in [7] a decen-
tralized algorithm was devised to perform valley filling
of a load profile.

A further important topic when dealing with EV charg-
ing is related to uncertainty. Indeed, EVs are typically
stochastic loads due to the uncertainty associated to ar-
rival times, energy to be charged and/or departure times.
In this scenario, a deep study of uncertainty is needed
to predict properly the behavior of future loads. An al-
gorithm based on Markov decision processes aimed at
minimizing the mean waiting time of EVs has been de-
veloped in [30], whereas in [28] uncertainty of the arrival
time in a non-residential charging station is modeled in
the real-time charging algorithm. Uncertainty affecting
EVs is taken into account to properly manage a parking
lot participating to a demand response program in [24].
A distributionally chance constrained approach has been
developed to maximize the profit of a parking lot under
unknown charging time in [2], while in [9] the parking
lot profit was maximized under uncertainties on renew-
ables.

In this paper, the problem of minimizing the daily peak
power of an EV charging station is addressed. We sup-
pose that the considered parking lot is equipped with
several charging units able to perform EV charging. A
constraint on customer satisfaction requirement is con-
sidered. Such constraint is related to a nominal charg-
ing power rate that is promised to the customer. Arrival
time, departure time and desired level of charge (LOC) of
vehicles are assumed uncertain variables. Vehicle-to-grid
technology is not taken into account, that is plugged-in
EVs cannot be used as storages.

The contribution of this paper consists in the develop-
ment of a new algorithm for the solution of the problem
introduced above. A distinguished feature of the pro-
posed approach is to model the uncertainty affecting the
departure time of a vehicle after its arrival at the sta-
tion. In fact, several works available in the literature,
like, e.g., [28,21,11,25,29,8,20], assume that the depar-
ture time is known once a vehicle arrives at the station.
In this paper, to deal with the uncertainty on the de-
parture time, a suitable customer satisfaction criterion
has been devised. We assume the car park owner (CPO)
aims at minimizing the daily peak power while guaran-
teeing a given level of customer satisfaction, i.e., allow-
ing only an acceptable small fraction of vehicles to leave
the parking with a LOC less than that negotiated. The
proposed procedure is formulated in a receding horizon
framework, where some knowledge on the stochastic pro-
cesses is assumed to be available. As known, a possible
way to handle uncertainty in a moving horizon approach
is through the use of chance constraints [23]. Actually,
in the proposed procedure, customer satisfaction con-
straints have been expressed as chance constraints. The
resulting problem turns out to be a mixed integer linear
program (MILP), where binary variables are employed

to model the chance constraints. Numerical simulations
and suitable comparisons with other methods show the
effectiveness of the proposed approach in reducing the
daily peak power and its feasibility from a computa-
tional viewpoint, even in the presence of a large number
of electric vehicles.

The paper is structured as follows. In Section 2, the con-
sidered scenario is described and the problem formula-
tion is introduced. Section 3 is devoted to the description
of the proposed control algorithm and the related opti-
mization program. Numerical simulations are reported
in Section 4, while conclusions and future research are
drawn in Section 5.

Nomenclature

N Set of natural numbers

∆ Sampling time

t Generic time step

v Vehicle index

P0 Nominal charging power

P Maximum charging power

η Charging efficiency

tav Arrival time of vehicle v

tdv Departure time of vehicle v

τv Number of time slots needed to fulfill vehicle v

tfv Fulfillment time of vehicle v

t
c

Bound on the maximum charging time for all vehicles

t
d
v Bound on the maximum departure time for vehicle v

Ef
v Desired level of charge for vehicle v

V (t) Set of plugged-in vehicles at time t

Ev(t) Level of charge at time t for vehicle v

Pv(t) Mean charging power from t to t+ 1 for vehicle v

rv(t) Customer satisfaction profile for vehicle v at time t

γ̂ Daily peak power till the present time

γ̃ Power for charging parked vehicles at maximum rate

ε Dissatisfaction level

k Time index used in the optimization problem

P ∗

v (t) Optimal charging power schedule at time t

γp Predicted peak power

T (t) Time horizon used in optimization at time t

αv(t) Weights for cost function at time t

βv(k) Binary variables defining chance constraints at time t

Nm Average number of incoming vehicles at each time step

Em Mean value of the charged energy for each vehicle

Pa(k) Estimate of power consumption at time k of v /∈ V (t)
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2 Problem formulation

We consider a parking lot equipped with several charg-
ing units able to charge plug-in electric vehicles. We as-
sume that the number of charging units is sufficient to
satisfy all the incoming vehicles. When a vehicle arrives
at the station, the customer declares the amount of en-
ergy to be charged; after that the charging unit computes
the time needed to accomplish the request. This time is
computed assuming to charge the vehicle at a nominal
charging rate. Since the customer may decide to leave
the parking before such time, we assume that he/she
will be considered satisfied if at the departure time the
vehicle has been charged at least at the promised rate,
otherwise the customer will not be satisfied.

Before entering into technical details of the proposed so-
lution, a brief sketch of the overall procedure is reported
in Figure 1:

The problem is formulated in a discrete time setting,
where ∆ denotes the sampling time. Let v be the index
denoting vehicle v, P0 is the nominal charging power
promised to the customer, and η is the charging effi-
ciency. The level of charge (LOC) for vehicle v at time t
is denoted by Ev(t), while the required LOC is denoted
by Ef

v . We refer to tav and tdv as the arrival and depar-
ture time of vehicle v, respectively. So, the number of
time slots needed to satisfy the request by applying the
nominal charging rate is

τv =

⌈
Ef

v − Ev(t
a
v)

∆P0η

⌉
.

We define as fulfillment time the time at which the ve-
hicle will be fully charged assuming constant charging

Aim: minimize the daily peak power while guaranteeing
customer satisfaction at a fixed level

Receding horizon procedure:
At each time step the charging command for each
plugged-in vehicle is computed on the basis of:

- the peak occurred till the present time

- the overall charging power assuming to charge all the
connected vehicles at maximum rate

- the solution of a stochastic optimization problem
where:
- probability distributions assumed known

- time horizon large enough to allow charge of all
connected vehicles

- prediction of future peak is estimated

- physical constraints enforced

- chance constraints exploited to manage uncertainty

- optimal charging power for each vehicle computed.

Fig. 1. Outline of the proposed technique.

Ef
v

Satisfaction region

time

Level of charge

Ev(t
a
v)
tav tfv

Fig. 2. Customer satisfaction region for a generic vehicle v
(shaded area). tav : arrival time, tfv : fulfillment time, Ev(t

a
v) :

LOC at arrival, Ef
v : desired LOC at departure.

rate P0, i.e.,
tfv = tav + τv. (1)

Let t
c
be a bound on the maximum charging time for all

vehicles. So, a bound on the maximum departure time

for vehicle v is t
d

v = tav + t
c
, which implies

tdv ≤ t
d

v. (2)

Let Pv(t) denote the charging rate of vehicle v in the
interval [t− 1, t]. The battery LOC at a given time t can
be modeled as

Ev(t) = Ev(t− 1) + ∆ηPv(t− 1). (3)

A customer is considered satisfied if, at the departure
time tdv, the following inequalities hold

min{Ev(t
a
v)+∆ηP0(t

d
v − tav), E

f
v } ≤ Ev(t

d
v) ≤ Ef

v . (4)

In words, the LOC must be greater or equal to that ob-
tained by applying the nominal charging rate P0, while
it must not exceed the maximum LOC defined by the
customer, see Fig. 2. The lower boundary of the satis-
faction region depicted in Fig. 2 is defined as

rv(t) = min{Ev(t
a
v) + ∆ηP0(t− tav), E

f
v }. (5)

Since the departure time is unknown, to guarantee cus-
tomer satisfaction, at each step the LOC of a vehicle
must be comprised between rv(t) and the required LOC
Ef

v , i.e.,
rv(t) ≤ Ev(t) ≤ Ef

v . (6)

It is assumed that the charging rate is bounded as follows

0 ≤ Pv(t) ≤ P (7)

where P > P0 represents the maximum charging power
of a single charging unit.
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At a given time t, the set of all plugged-in vehicles is
denoted by

V (t) = {v : tav ≤ t < tdv}. (8)

The scope of this work is to provide an algorithm able to
dynamically define the charging rates in order to mini-
mize the daily peak power consumed by the parking lot.
To accomplish this task, we assume that the CPO be
willing to accept that a given fraction of users may leave
the parking lot unsatisfied, i.e., such that the energy
charged at departure be below the satisfaction bound
given in (4).

The reduction of the daily peak power can be related
to smaller electricity cost for the CPO, as well as to the
participation of the CPO to a demand response program.

3 Peak reduction charging algorithm

In this section, a procedure aimed to accomplish the peak
reduction target is illustrated. Since the arrival time, the
parking time and the amount of energy to be charged
are uncertain variables, some information regarding the
stochasticity of these variables need be considered. In
particular, we assume that the probability distribution
of such variables, or an estimate of them, are available
to the CPO.

Since the aim of this work is to reduce the daily peak
power, in the following we will choose a reference time
interval of one day. At a given time t, let γ̂ denote the
peak power occurred up to time t, while γ̃ is the power
consumed by charging all the connected vehicles at the
maximum rate., that is,

γ̃ =
∑

v∈V (t)

min

{
P ,

Ef
v − Ev(t)

∆η

}
. (9)

Let ε be the maximum fraction of customers which may
leave the parking unsatisfied, i.e., such that (4) does not
hold. Let us call this quantity as dissatisfaction level. For
instance, a dissatisfaction level ε = 0.05 means that at
most 5% of vehicles may leave the parking lot unsatis-
fied. Since the departure time of vehicles is uncertain, a
customer is unsatisfied whenever

Ev(t
d
v) < rv(t

d
v)

that is, the charged energy at departure is less than
promised. In other words, it occurs when the level of
charge at departure lies outside the satisfaction region
depicted in Fig. 2.

The rest of this section is divided in two parts. The first
one is related to the optimization problem to be solved
in order to compute the optimal charging rate at a given
time, while in the second part the overall receding hori-
zon algorithm is described.

3.1 Optimization program

The proposed method is formulated in a receding hori-
zon framework, and, at each time step, it is based on the
solution of the optimization program reported in Prob-
lem 1 (actually, there could exist time instants which do
not need the computation of this program, as explained
in Section 3.2). Let the superscript ∗ denote the optimal
solution of Problem 1 and let P(t) be the vector collect-
ing all the elements Pv(t).

Problem 1





[P∗(t), γ∗

p ] = arg inf
P(t),γp


γp −

∑

v∈V (t)

αv(t)Pv(t)




subject to:

βv(k) ∈ {0, 1}, v ∈ V (t), k = t+ 1, . . . , T (t)

0 ≤ Pv(k) ≤ P , v ∈ V (t), k = t, . . . , T (t)− 1

Ev(k + 1) = Ev(k) + ∆ηPv(k), v ∈ V (t), k = t, . . . , T (t)− 1

rv(k)βv(k) ≤ Ev(k) ≤ Ef
v , v ∈ V (t), k = t+ 1, . . . , T (t)

γ̂ ≤
∑

v∈V (t)

Pv(t) ≤ γp

∑

v∈V (t)

Pv(t) ≥
∑

v∈V (t)

Pv(k), k = t+ 1, . . . , T (t)− 1

∑

v∈V (t)

Pv(k)P
(
tdv > k|tdv > t

)
+ Pa(k) ≤ γp, k = t+ 1, . . . , T (t)− 1

ε̂v +

T (t)∑

k=t+1

(1− βv(k))P(tdv = k) ≤ ε, ∀v ∈ V (t)

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

(10g)

(10h)

(10i)
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In Problem 1,

T (t) = max{t
d

v : v ∈ V (t)} (11)

denotes the time horizon used for predictions. Notice
that, according to (2), at time T (t) none of the vehicles
belonging to V (t) will still be in charge.

Notation P(a|b) denotes the probability that event a
occurs conditioned to the fact that event b is occurred.
In (10h), Pa(k) represents the mean value of the power
needed to charge the incoming vehicles at the nominal
rate; it is defined as

Pa(k) = Nm P0 min

{
k − t,

Em

∆ηP0

}
, (12)

where Nm, Em denote the average number of incoming
vehicles at each time step and the mean value of the
charged energy, respectively.

It is worthwhile to notice that Problem 1 is a mixed-
integer linear programming (MILP) problem, where all
the optimization variables are real with the exception of
βv(k) which are binary variables. Although in the for-
mulation reported in Problem 1 the number of binary
variables may be large, from an implementation point of
view it can be greatly reduced by considering the max-
imum time a vehicle can stay in charge. Such an aspect
will be discussed in Section 4, where it will be shown the
computation feasibility of the optimization program.

In the following, a detailed description of Problem 1 is
reported, dividing the treatment into two parts: the ob-
jective function and the constraints.

Objective function

The output of the optimization problem is the vector
containing for each vehicle the charging rate to be ap-
plied during the t-th time slot, i.e., from t to t+ 1, and
the predicted peak over the time horizon T (t).

The cost function to be minimized is composed of two
terms: the former is the predicted peak γp, while the
latter is

−
∑

v∈V (t)

αv(t)Pv(t) (13)

whose aim is to distribute the total power consumed
at time t among the connected vehicles. The weights
αv(t) > 0 are chosen such that

∑

v∈V (t)

αv(t) = α ≪ 1 , (14)

where α is a fixed arbitrary constant much less than 1.
This condition is enforced to disregard the contribution

of (13) with respect to the predicted peak γp. In fact, by
(10f) and (14), one has

∑

v∈V (t)

αv(t)Pv(t) ≪
∑

v∈V (t)

Pv(t) ≤ γp ,

and then the contribution of (13) to the cost function
is negligible. So, hereafter, we can state that the aim of
Problem 1 is the minimization of the predicted peak γp.

How the term in (13) provides the assignment of the
overall power at time t among vehicles is explained be-
low.

Let γ∗

p be the optimal predicted peak. In absence of the
term (13), all the possible feasible combinations such
that ∑

v∈V (t)

Pv(t) = γ∗

p (15)

are optimal solutions. Since different choices of Pv(t) sat-
isfying (15) lead to different performance of the whole
algorithm, a smart choice of the weights αv(t) is rec-
ommended. A heuristic which provides good results (see
Section 4 for numerical simulations) consists in assigning
a greater charging rate to vehicles which are expected to
leave the parking lot later. A possible way to implement
this procedure is as follows. Let us define

α̂v(t) = (t
d

v − t).

So, by (11), α̂v(t) > 0 holds. Then, the weights to be
used in (10a) can be chosen as

αv(t) = α
α̂v(t)∑

v∈V (t)

α̂v(t)
. (16)

Constraints

Now, let us describe the constraints of Problem 1. In
(10b), the binary variables βv(k) are defined. Such vari-
ables are related to the fact that the satisfaction con-
straint involving the vehicle v at time k be surely satis-
fied (if βv(k) = 1), or it could be violated (if βv(k) = 0).
The bounds on the charging rate are enforced in (10c),
while the LOC dynamics are given in (10d), according
to (7) and (3), respectively. Constraints (10e) are simi-
lar to (6); if βv(k) = 1, it is imposed that the LOC at
time k belongs to the satisfaction region (see Fig. 2),
while if β = 0, the left inequality is surely satisfied even
if the LOC does not lie in the satisfaction region. In
(10f), the power consumption at time t is bounded be-
tween the peak occurred till time t and the predicted
peak over the optimization horizon. Constraints (10g)
enforce the power consumed at time t to be greater or
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equal than that absorbed at future time. In (10h), the
predicted power consumed at each step is bounded by
the predicted peak γp. The left-hand side is composed of
two terms: the former is related to the connected vehi-
cles, and each power is weighted by the probability that
the vehicle be in charge at a given time step; the latter
concerns the power consumed by incoming vehicles. Fi-
nally, the chance constraints (10i) allow a vehicle to leave
the parking lot unsatisfied with a probability no greater
than ε. Specifically, ε̂v denotes the probability that the
vehicle v had left the parking lot unsatisfied at past time
steps, while the second term represents the probability
that the vehicle departs unsatisfied at future time. The
sum of these two terms is enforced to be no greater than
ε, guaranteeing that the overall number of unsatisfied
vehicles do not exceed the prescribed threshold.

Remark 1 It is worthwhile to note that constraints
(10h) and (10i) include some probability computations.
Since the probability distribution of the parking time (or
an estimate of it) is assumed to be known, when a ve-
hicle arrives at the station also the distribution related
to the departure time is known. So, P(tdv = k) is known
for each v ∈ V (t) and the corresponding value can be
substituted in (10i). Regarding constraints (10h), the
conditional probability P

(
tdv > k|tdv > t

)
has to be com-

puted to solve Problem 1. However, it can be easily eval-
uated by discarding from the unconditional probability
mass function of the departure time, the mass account-
ing for vehicles such that tdv ≤ t, and normalizing the
obtained distribution. At this step, numerical values can
be directly substituted in (10h) and Problem 1 solved.

3.2 Receding horizon algorithm

The pseudo-code of the proposed charging policy is re-
ported in Algorithm 1. Such a procedure is based on a
receding horizon framework and it is related to a generic
day. The algorithm starts with the initialization to zero
of some variables and the setting of the dissatisfaction
level ε, after that the main loop begins. This loop goes on
for the entire day. At each iteration, the set V (t) and the
maximum permissible charging power γ̃ are computed
according to (8) and (9), respectively. If the power re-
quired to charge all the connected vehicles at the maxi-
mum rate is no greater than the peak occurred up to the
present time, the maximum rate is assigned to P ∗

v (t),
v ∈ V (t). Instead, if γ̃ > γ̂, then the optimization pro-
gram described in Problem 1 is solved and γ̂ is updated
accordingly. Afterwards, if the LOC of vehicle v at time
t + 1 is less than the corresponding customer satisfac-
tion level, then ε̂v is increased by the probability that
the considered vehicle will depart at time t+ 1. Finally,
for both cases, the computed charging power is applied
and the discrete time index is updated.

Algorithm 1 Overall control algorithm.

1: γ̂ = 0; t = 0
2: ε̂v = 0, for all possible v
3: set the dissatisfaction level ε
4: while day not over do
5: compute V (t)

6: γ̃ =
∑

v∈V (t)

min

{
P ,

Ef
v − Ev(t)

∆η

}

7: if γ̃ ≤ γ̂ then

8: P ∗

v (t) = min

{
P ,

Ef
v − Ev(t)

∆η

}
, ∀v ∈ V (t)

9: else
10: [P∗(t), γ∗

p ] = solve Problem 1(V (t), γ̂, ε̂, ε)

11: γ̂ =
∑

v∈V (t)

P ∗

v (t)

12: for v ∈ V (t) do
13: if (Ev(t) + ∆ηP ∗

v (t)) < rv(t+ 1) then
14: ε̂v = ε̂v + P(tdv = t+ 1|tdv > t)
15: end if
16: end for
17: end if
18: apply command P∗(t)
19: t = t+ 1
20: end while

4 Numerical simulations

A simulation environment aimed at validating the effec-
tiveness of the proposed algorithm has been developed.
We refer to a parking lot provided with a number of
charging units able to serve all incoming vehicles. The
sampling time has been set to 10 minutes. The desired
energy to be charged that each customer declares at ar-
rival has been drawn from a symmetric triangular prob-
ability distribution defined on the interval [10, 50] kWh.
The inter-arrival time of each vehicle has been supposed
to follow an exponential distribution with expected value
20minutes per vehicle, while the distribution of the park-
ing time has been drawn from a symmetric triangular
distribution centered in tfv with support±1.5 hours, i.e.,
on the interval [tfv − 9, tfv + 9]. The charging command
ranges in the interval [0, 22] kW, whereas the nominal
power P0 has been set to 11 kW. The weights used in the
cost function of Problem 1 have been chosen according to
(16) and the charging efficiency has been set to 0.9. Sim-
ulations have been performed on a 100 days scenario. In
this setup, arrivals are allowed from 6:00 to 24:00, while
departures can happen any time. For instance, in Fig. 3,
the number of plugged-in vehicles during the 61-st day
is depicted. It can be observed that from 6:00 onwards,
the number of vehicles starts to increase, while it quickly
decreases around 24:00.

According to Algorithm 1, the charging process differs
from vehicle to vehicle. As an example, the level of charge
of a given EV is reported in Fig. 4. During the first time
instants, the charge is performed using the maximum
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Fig. 3. Number of plugged-in vehicles during the 61-st day.
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Fig. 4. Level of charge Ev(t) of a single vehicle for ε = 0.1.

power probably because γ̃ ≤ γ̂ in Line 7 of Algorithm 1,
after that the charging power stops for 7 time steps;
in this period, priority is given to charging other vehi-
cles. Then, in order to lower the peak power, the level of
charge Ev(t) may remain under the satisfaction region
for a certain time interval. Finally, the vehicle leaves the
station after the LOC has reached its maximum value
Ef

v .

The proposed receding horizon strategy with dissatisfac-
tion level ε is denoted by chance constrained policy with ε
tolerance (CCP-ε), while that which guarantees the cus-
tomer satisfaction for sure is denoted by receding hori-
zon policy-prior (RHPP), in accordance with [3]. Notice
that RHPP coincides with the devised strategy when no
chance constraint is present, i.e., βv(k) = 1, v ∈ V (t),
k = t+1, . . . , T (t). Moreover, let the nominal uncoordi-
nated charging strategy be denoted by nominal charging
policy (NCP). Thus, NCP represents the trivial strategy
which charges all the vehicles at nominal rate P0 until
the required energy is attained or departure occurs.

In Fig. 5, the power consumption related to the 61-st
day is depicted. As it can be noticed, both RHPP and
CCP-1% outperform the NCP, with an improvement of
about 14% and 20%, respectively.
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Fig. 5. Power consumption of NCP (blue), RHPP (green),
and CCP-1% (red) in day 61.
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Fig. 6. Daily peak power of NCP (blue) and CCP-1% (red).

Concerning the overall simulation, the daily peak power
obtained by NCP and CCP-1% over 100 days is depicted
in Fig. 6. It can be noticed that the peaks provided by
CCP-1% are always no greater than those of NCP, with
an average peak power reduction of about 21.5%.

Performances of RHPP and CCP-1% are compared in
Fig. 7, where their daily peak power differences are de-
picted. It can be observed that CCP-1% performs on av-
erage better than RHPP, with an average improvement
of more than 4%.

Besides the peak reduction, a crucial aspect when deal-
ing with the chance constraint policy regards the num-
ber of vehicles which leaves the parking lot unsatisfied.
In Table 1, the fraction of unfulfilled vehicles and the
mean peak power improvements with respect to NCP
and RHPP are reported, for different values of ε. One
may notice that the actual number of unsatisfied cus-
tomer is in general much less than the fixed bound ε.
Moreover, the performance of the CCP-ε is on average
better than RHPP even for small values of ε. In fact,
in the considered scenario, CCP-1% is able to provide
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Fig. 7. Daily peak power difference between RHPP and
CCP-1%.

Table 1
CSS-ε performance for different values of ε

ε = 1% ε = 5% ε = 10%

Unsatisfied customers [%] 0.2 1.6 3.9

Peak reduction w.r.t. NCP [%] 21.4 22.3 24.0

Peak reduction w.r.t. RHPP [%] 4.3 5.1 6.9

a performance improvement of 4.3% in the face of 0.2%
unsatisfied customers.

Regarding the computational burden, although Prob-
lem 1 requires the solution of a MILP, the number of
binary variables which really affect the solution is quite
limited. To support this statement, 100 days have been
simulated for different arrival rates of EVs (the other pa-
rameters have been set as in the previous example). The
dissatisfaction level has been fixed to ε = 0.1. The aver-
age time needed to compute a single iteration of Prob-
lem 1 is reported in Fig. 8. Notice that the computation
time grows linearly with the vehicle arrival rates. More-
over, the reported time is that needed to solve Prob-
lem 1. If γ̃ ≤ γ̂ in Line 7 of Algorithm 1, the proposed
procedure does not require the solution of Problem 1,
and hence the mean computation time of a single iter-
ation is in general smaller than that reported in Fig. 8.
Since a single iteration can be computed in a fraction
of second, the procedure is feasible for real-time imple-
mentation, even for a large number of EVs. Numerical
simulations have been performed by using Matlab, the
Yalmip toolbox [15] and the Cplex solver [10], on an In-
tel Core i7-7700 CPU @3.60 GHz, 32 GB RAM.

5 Conclusions

A novel algorithm aimed at peak power minimization of
EV charging stations has been reported. Such an algo-
rithm is expressed in a receding horizon framework and
its core consists in an optimization program which can
be formulated as a MILP. Suitable chance constraints
are introduced to allow the car park owner to set a
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Fig. 8. Average computation time of the Problem 1 for dif-
ferent arrival rates of electric vehicles.

bound on the fraction of vehicles which may leave the
parking lot unsatisfied. Numerical simulations have been
provided to compare the proposed approach with other
techniques. It has been shown that even for low values of
the dissatisfaction level, good improvements in terms of
peak reduction may arise. Moreover, it has been shown
that the computational burden of the proposed approach
is acceptable, making the technique suitable for real-time
implementation, even in the presence of a large number
of electric vehicles.

Further studies will address the problem of peak power
minimization for parking lots equipped with distributed
generation facilities, where the presence of a PV plant
(or a wind turbine) can help the CPO to lower the
daily peak. A demand-response framework can also be
considered, where a monetary reward can be granted
to the CPO in the face of a power reduction at pre-
scribed time. Moreover, future studies may involve alter-
native approaches for dealing with uncertainty, like, e.g.,
scenario-based approaches, in order to get more confi-
dence in the level of quality, reliability and robustness
of the results provided by the proposed technique.
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[6] O. Erdinç, A. Taşcıkaraoǧlu, N. G. Paterakis, İ. Dursun,
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