
Inputdesign inworst-case system identification

withquantizedmeasurements

Marco Casini ⋆, Andrea Garulli, Antonio Vicino,

Dipartimento di Ingegneria dell’Informazione
Centro per lo Studio dei Sistemi Complessi

Università di Siena
Via Roma 56, 53100 Siena, Italy

Abstract

This paper addresses the problem of set membership system identification with quantized measurements. Following the work
developed for binary measurements, the problem of optimal input design with multiple sensor thresholds is tackled. For a
FIR model of order n, the problem is decomposed into n static gain problems. The one-step optimal input problem is solved
both for equispaced and generic sensor threshold distribution. Moreover, the N-step optimal input problem for the case of
equispaced thresholds is addressed, and a solution is provided under a suitable assumption on the sensor range and resolution.
The obtained results allow us to construct an upper bound on the time complexity of the FIR identification problem for the case
of equispaced thresholds. Numerical application examples are reported to show the effectiveness of the proposed algorithms.

Key words: Quantized measurements, FIR models, input design, set membership identification

1 Introduction

System identification with quantized measurements is
a research area which is receiving increasing attention.
This topic draws motivation from several engineering
fields. Communication systems show contexts like ATM
networks where traffic information, e.g., bit rate, queue
length, is measured through sensors characterized by ap-
propriate thresholds. Typical sensors used in monitor-
ing and control systems of industrial production plants
are binary or quantized devices, popular examples being
chemical process sensors in gas and oil industry, or sen-
sorsmonitoring liquid or pressure levels. Quantizedmea-
surements are usually found in a number of automotive
applications, including sensors for exhaust gas oxygen,
shift-by-wire and ignition systems, photoelectric sensors
for position detection, Hall-effect sensors for speed and
acceleration measurement, ABS (anti-lock braking sys-
tem), and others. More generally, all networked control
systems feature a quantized data flow in input and out-
put channels, and hence they call for system identifica-
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tion techniques taking into account the errors introduced
by the sensor quantization.

In [20], Wang, Zhang and Yin introduced a new frame-
work for addressing system identification problems with
binary sensors, both in a stochastic and in a determinis-
tic setting. Later on, they extended their approach to the
case of quantized measurements and gave several con-
tributions concerning space and time complexity [18],
consistency and asymptotic efficiency of identification
algorithms [16,17]. Least squares and instrumental vari-
able methods for quantized data have been analyzed
in [12]. Expectation maximization techniques have been
employed in [7]. Optimal quantization schemes have
been proposed in [1,15]. In [8], the use of dithering noise
has been suggested to improve the performance of iden-
tification algorithms tailored to quantized data. Non
asymptotic confidence sets for the estimated parameters
have been studied in [21]. An extensive collection of re-
sults on identification with binary or quantized sensors
can be found in [19].

Most contributions cited so far concern the stochastic
setting. However, since the quantization introduces an
error which is inherently unknown-but-bounded, it is
quite natural to formulate the identification problem in
a worst-case deterministic setting. In this context, the



optimal input design problem for binary sensors has been
studied in [5]. Preliminary results in the case of quantized
sensors have been presented in [3,4]. Recent attempts to
combine the stochastic and the deterministic approach
can be found in [14, 22].

In this paper, the problem of system identification
in presence of quantized measurements is addressed
in a worst-case setting, based on the set-membership
paradigm of uncertainty representation [6, 9, 10]. The
first contribution concerns the optimal input design
problem. The exact solution is provided for the case of
a static gain, over a time horizon of length 1, for both
generic and equally spaced quantization thresholds.
The case of a time horizon of length N is also treated:
although the complete solution remains an open prob-
lem, the optimal input sequence of length N is provided
in the case that the sensor range and resolution sat-
isfy a mild technical assumption. These results can be
employed to construct efficient algorithms for identifi-
cation of FIR models of arbitrary order, by choosing the
class of input signals proposed in [2]. A further contri-
bution of the paper concerns time complexity, i.e., the
minimum number of measurements to be collected to
reduce the estimation uncertainty below a given thresh-
old [11, 13]. An upper bound to the time complexity, in
the case of equally spaced thresholds, is provided for
both static gains and for generic FIR models.

The paper is organized as follows. In Section 2, the input
design problem is formulated in the worst-case deter-
ministic setting. The 1-step optimal design problemwith
generic thresholds is considered in Section 3. Section 4
addresses the special case of equally spaced thresholds
which is interesting both from a practical point of view
(in many sensors the discretization is uniform) and be-
cause it brings a remarkable simplification of the prob-
lem solution. Section 5 concerns the N -step optimal de-
sign problem. Time complexity of the identification pro-
cedure is studied in Section 6. Numerical examples show-
ing the performance of the proposed input design ap-
proach are reported in Section 7, while some concluding
remarks are given in Section 8. In order to streamline
the presentation, proofs of theorems and lemmas are re-
ported in Appendix B.

2 Problem formulation

Let R
N denote the N -dimensional Euclidean space. A

sequence of real numbers {x(t), t = 1, . . . , N} is iden-
tified by a vector x ∈ R

N and ||x||p is the standard ℓp
norm. Let Bp(c, r) = {x ∈ R

N : ||x − c||p ≤ r} be the
ball of radius r ≥ 0 and center c ∈ R

N in the ℓp norm.

Let us consider an n-th order FIR SISO linear time-

invariant model

y(t) =

n∑

i=1

θi u(t− i + 1) + d(t) (1)

where u(t) is the input signal, bounded in the max norm
||u||∞ ≤ U , and d(t) denotes the output disturbance.
The model parameters {θi, i = 1, . . . n} represent the
truncated system impulse response. The noise d(t) is as-
sumed to be bounded by a known quantity, i.e., |d(t)| ≤
δ, t = 1, 2, . . .. The true system generating the data is
assumed to be exponentially stable. Notice that due to
exponential stability of the system and boundedness of
the input u(t), unmodeled dynamics (i.e., the system
impulse response tail {θi, i = n + 1, . . .}) can be easily
accounted for by suitably tuning the noise bound δ.

Observations at the system output are taken by a multi-
valued sensor with P known thresholds C1, . . . , CP , such
that

s(t) = σ(y(t)) ,





0 if C0 < y(t) ≤ C1

1 if C1 < y(t) ≤ C2

...

P if CP < y(t) ≤ CP+1

(2)

where C0 , −∞, CP+1 , +∞. If the quantization is
uniform in the range [C1, CP ], i.e. the sensor thresholds
satisfy Ci = Ci−1 +Q, i = 2, . . . , P , for some Q > 0, we
will refer to this setting as equispaced thresholds.

Let θT = [θ1, . . . , θn] ∈ R
n denote the FIR parame-

ter vector and φT (t) = [u(t), . . . , u(t − n + 1)] the re-
gressor vector. Then, (1) can be expressed in regres-
sion form as y(t) = φT (t) θ + d(t). Let Θ0 represent
the prior information available on the FIR parameter
vector. Let us denote by u, s ∈ R

N the input signal
{u(t), t = 1, . . . , N} and the sequence of discrete mea-
surements {s(t), t = 1, . . . , N}, respectively. For a given
input-output realization {u, s} of lengthN , the problem
feasible parameter set is defined as:

FN =
N⋂

t=1

St

where

St = {θ ∈ Θ0 : φT (t) θ ≤ C1 + δ if s(t) = 0;

C1 − δ < φT (t) θ ≤ C2 + δ if s(t) = 1;
...

CP − δ < φT (t) θ if s(t) = P}.
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The worst-case local identification error is defined as

ep(N, u, s) = rad(FN ) , inf
c∈Rn

sup
θ∈FN

‖θ − c‖p . (3)

For a fixed input sequence u, the global worst-case error
with respect to the disturbance realization is defined as

ep(N, u) = sup
s

ep(N, u, s) .

The aim of the optimal input design problem is to com-
pute an input sequence providing the minimum worst-
case identification error [13], i.e.,

ep(N) = inf
u:‖u‖∞≤U

ep(N, u) . (4)

For a given level of accuracy ε, we define the time com-
plexity of Θ0 as the minimum time length of the experi-
ment such that the optimal worst-case error reaches the
accuracy ε, i.e. N(ε) = minep(N)≤ε N . The aim of the
input design problem (4) is to choose the optimal input
sequence u over a time horizon of length N . We will re-
fer to this problem as N -step optimal input design. This
is, in general, an intractable problem because it requires
the solution of a nested sequence of N min-max opti-
mizations. In fact, at each time t, one aims at minimiz-
ing with respect to the current input value u(t), which
is chosen as a function of the available information up
to time t− 1, i.e.

u(t) = η(Ft−1; t). (5)

However, this must be done with respect to the worst-
case Ft−1, i.e., by maximizing over all possible output
signals s(t − 1), and so on backwards, for t = N,N −
1, . . . , 1.

A relaxed version of problem (4) is the so-called 1-step
optimal input design, in which at each time t, one chooses
u(t) in order to minimize the worst-case parametric error
at time t, i.e.

u(t) = arg inf
u(t)=η(Ft−1;t)

sup
s(t)

rad
(
Ft−1

⋂
St

)
. (6)

In the literature on system identification with binary or
quantized measurements, it is common practice to con-
sider classes of input signals which excite each FIR pa-
rameter individually (see e.g., [2,20]). In [2], the shortest
input sequence exciting any FIR parameter individually
has been provided. More precisely, it has been proven
that to excite individually k times the n coefficients of a
FIR, one needs an input sequence of length N equal to:

N = k(n+ 1)
n

2
. (7)

An algorithm for constructing such an input sequence is
reported in Appendix A. In this paper, we will assume to
use this type of input sequence. This allows one to focus
on the optimal excitation of a single FIR parameter, in
order to build effective suboptimal procedures for FIR
models of arbitrary order. Hence, in the next sections,
the 1-step andN -step optimal input design problemswill
be addressed for FIR systems of order 1 (static gains),
for both generic and equispaced thresholds.

3 Input design with generic thresholds

Let us consider a FIR model of order n = 1, i.e.,

y(t) = au(t) + d(t) (8)

with prior information a ∈ [a0, a0] and |d(t)| ≤ δ. We
assume that the sign of a is known a priori (here a is
assumed positive, w.l.o.g., and hence a0 > 0). In fact,
the signs of the parameters θi of a generic FIR model
(1) can be detected by performing a suitable preliminary
identification experiment (see e.g. [20]). Moreover, let
CP > 0. The following assumption is enforced through-
out the paper:

a0 > CP /U (9)

Assumption (9) guarantees that, even with the smallest
admissible value of a, the input signal is able to excite
all the thresholds (otherwise, some thresholds are use-
less and the problem can be reformulated with a smaller
number of thresholds). Indeed, if a0U < CP , then for
a = a0 and d(t) = 0 ∀t, the sensor output can never be
s(t) = P , no matter which input u(t) is chosen. Given
the above discussion, in order to simplify the treatment
we assume C1 > 0, and hence one can assume without
loss of generality 0 < u(t) ≤ U .

We start by addressing the 1-step optimal input design
problem in the noise-free case. Let us denote by Ft =
[at, at] the feasible parameter set at time t. The aim of
the 1-step optimal design problem (6) is to find the input
signal u(t) such that

u∗(t) = arg inf
0<u≤U

Dt(u) (10)

where
Dt(u) = sup

s : s=σ(a u)
a∈Ft−1

(at − at) (11)

andD∗
t =Dt(u

∗) is the optimal diameter of the feasible
set.

Remark 1 In [20] it has been shown that the 1-step op-
timal input at each time t in presence of binary measure-
ments is

u∗(t) =
2C

at−1 + at−1
(12)
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where C denotes the binary threshold value. By applying
such an input, the feasible set size is reduced by a factor
1/2 at each time t, i.e., at − at =

1
2 (at−1 − at−1). The

above input sequence is clearly alsoN -step optimal in the
noise-free case, while this is not true in the noisy setting,
as it has been shown in [5].

Let us define

v(t) ,
1

u(t)
(13)

and let the sensor output corresponding to the input
u(t) be s(t) = i. This means that Ci < y(t) ≤ Ci+1, i.e.,
since u(t) > 0,

Ci v(t) < a ≤ Ci+1 v(t). (14)

Thus, the posterior feasible set will be 1

Ft =Ft−1 ∩ [Ci v(t), Ci+1 v(t)]

= [at−1, at−1] ∩ [Ci v(t), Ci+1 v(t)] , [at , at]. (15)

From (13)-(15), we can rewrite problem (10)-(11) as
u∗(t) = 1/v∗(t) where

v∗(t) = arg
{

inf
v≥1/U

max
i=0,...,P

(min{at−1, Ci+1 v}

−max{at−1, Ci v}
)}

.
(16)

Since we focus on the 1-step optimal input design at a
generic time t, for ease of notation the dependance on
time will be omitted when it is clear from the context.
So, the feasible set at time t − 1 will be denoted by
F = [a, a]. Let us define

vi ,
a

Ci
, vi ,

a

Ci
, i = 1, . . . , P. (17)

Thus, let V ∗ , [vP , v1] and Hi : a = Ci v , i = 1, . . . , P .
In Fig. 1, the values vi, vi and the functions Hi are
depicted for an example with P = 3.
We can now state the following lemma.

v1v2v3 v1v2v3 v

a

a

a
H1H2H3

Fig. 1. Example of vi, vi and functions Hi for P = 3.

1 With a slight abuse of notation we will always denote
feasible sets by closed intervals.

Lemma 1 Let v∗ be an optimal solution of (16). Then,
v∗ ∈ V ∗.

By using Lemma 1, the optimal input is such that:

u∗(t) ≤ sup
v∗∈[v

P
, v1]

1

v∗
=

1

vP
=

CP

a0
.

From (9), one has U ≥ CP

a
0

. This guarantess that the

optimal input is always feasible, i.e. u∗(t) ≤ U .
Let us sort the values vi, vi, i = 1, . . . , P , in increasing
order and rename them as v̂1 ≤ v̂2 ≤ . . . ≤ v̂2P . By
construction one has v̂1 = vP and v̂2P = v1. Let us
define the intervals

W1 = [v̂1, v̂2], . . . , W2P−1 = [v̂2P−1, v̂2P ]. (18)

By construction
⋃2P−1

j=1 Wj = V ∗. For j = 1, . . . , 2P −1,
let us define

D(j) = inf
v∈Wj

max
i=0,...,P

(min{a, Ci+1 v} −max{a, Ci v})

(19)
and v(j) be the argument where the infimum in (19) is
achieved.
Let us now analyze problem (19), i.e., the original prob-
lem (16) whose admissible solution set is restricted to an
interval Wj . To simplify notation, let us drop the index
j and denote the left and right bounds of the interval by
vL and vR, respectively, i.e.,Wj = [vL, vR]. Let us define

m= arg min
i=1,...,P

{i : vi ≤ vL} (20)

M = arg max
i=1,...,P

{i : vi ≥ vR}. (21)

The following lemma holds.

Lemma 2 Let v ∈ [vL, vR]. For each k < m one has
Ckv ≤ a, while for each k > M one has Ckv ≥ a.

According to (19), Lemma 2 states that for v ∈ [vL, vR],
the only thresholds that are able to reduce the size of
the feasible set are Ci such that m ≤ i ≤M . The other
thresholds do not provide any additional information
and so can be neglected when addressing problem (19).
For instance, referring to Fig. 1, let us suppose vL =
v3 and vR = v2. Then, one has m = 1 and M = 2.
In fact, only the functions H1 and H2 take on values
in the interval [a, a], for v ∈ [vL, vR]. Notice that, by
Lemma 2, if m > M it follows that no reduction of F
can be obtained by choosing u such that v ∈ [vL, vR].

Lemma 2 allows us to compute the feasible set F at
time t as a function of the measurements s(t), when
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v ∈ [vL, vR]:

F =





[a , Cm v] if s = m− 1

[Cs v , Cs+1 v] if m ≤ s ≤M − 1

[CM v , a] if s = M.

Let us define the functions Fi(v), i = m− 1, . . . ,M , as
follows

Fm−1(v) =Cm v − a

Fi(v) = (Ci+1 − Ci) v , i = m, . . . ,M − 1 (22)

FM (v) = a− CM v .

Notice that functions Fi represent the size of F depend-
ing on s and on the input applied at time t such that
v ∈ [vL, vR]. Then, (19) can be rewritten as

D(j) = inf
v∈[vL, vR]

max
i=m−1,...,M

Fi(v). (23)

The next lemma provides the explicit solution of prob-
lem (23).

Lemma 3 Let Q = max
i∈{m,m+1,...,M−1}

(Ci+1 − Ci), and

vc = min

{
a+ a

Cm + CM
,

a

Q+ CM

}
.

Then, the solution of (23) is given by

D(j) =





max{Cm vL − a, Q vL} if vc ≤ vL

max
{

aCm−aCM

Cm+CM
, Qa

Q+CM

}
if vL < vc < vR

a− CM vR if vc ≥ vR.

(24)
Moreover, the optimal solution of (23) is attained at

v(j) =





vL if vc ≤ vL

vc if vL < vc < vR

vR if vc ≥ vR.

(25)

For any fixed j, Lemma 3 gives the solution of problem
(19). The following theorem providing the optimal solu-
tion of the original problem (10) is a direct consequence
of the above reasoning.

Theorem 1 Let D(j) and v(j) be given by (24)-(25), re-
spectively. At a given time t, the 1-step optimal solution

u∗(t) in (10) is given by u∗(t) =
1

v∗
, where v∗ = v(j

∗),

and
j∗ = arg min

j=1,...,2P−1
D(j).

The corresponding size of the feasible set turns out to be
D∗ = D(j∗).

Remark 2 Note that in the case P = 1, i.e., binary
measurements, V ∗ = W1 = [v1, v1], and so the optimal
solution of (10) coincides with that provided by Lemma 3.
In this case, one has m = M = 1, F0(v) = C1 v −
a and F1(v) = a − C1 v. The candidate minimizer is

vc =
a+a
2

1
C1

which by construction belongs to [vL, vR] =

[
a
C1

, a
C1

]. So, the optimal input is u∗ = 2C1

a+a , in accordance

with what reported in Remark 1.

Notice that the maximum reduction rate of the feasi-
ble set achievable in one step is 1

P+1 , i.e. diam(Ft) ≥
1

P+1 diam(Ft−1). In fact, for any fixed v, the P func-

tions Hi, i = 1, . . . , P , can divide the interval [a, a] at
most in P +1 subintervals. Since in a worst-case setting,
the output is such to choose the larger subinterval, one
has diam(Ft) ≥

1
P+1 diam(Ft−1). Based on the above

observation, we can now state the following result.

Theorem 2 There exists an input u∗ ≤ U such that
diam(Ft) =

1
P+1 diam(Ft−1) if and only if there exists

û ≤ U such that

û = Ci

[
P + 1− i

P + 1
a+

i

P + 1
a

]−1

, i = 1, . . . , P. (26)

Moreover, if (26) holds, then u∗ = û.

The result of Theorem 2 will be instrumental to define
a specific set of thresholds Ci for which the time com-
plexity can be computed exactly (see Section 6).

Now, let us consider the noisy case, i.e. model (8). The
optimal input procedure can be formulated in a similar
manner w.r.t. the noise-free case, by suitably amending
the previous treatment. Due to the presence of noise,
(14) becomes

(Ci − δ) v(t) < a ≤ (Ci+1 + δ) v(t).

Thus, the posterior feasible set is

Ft=Ft−1 ∩ [(Ci − δ) v(t) , (Ci+1 + δ) v(t)]

=[at−1, at−1]∩[(Ci − δ)v(t), (Ci+1 + δ)v(t)], [at, at].

Taking into account the presence of noise, let us rewrite
(17) as

vi ,
a

Ci − δ
, vi ,

a

Ci + δ
, i = 1, . . . , P

and define the functions

H+
i : a = (Ci + δ) v , H−

i : a = (Ci − δ) v , i = 1, . . . , P.
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The 1-step optimal input design problem can be refor-
mulated as in (16)

v∗(t) = arg
{

inf
v≥1/U

max
i: i=0,...,P

(min{at−1, (Ci+1 + δ)v}

−max{at−1, (Ci − δ)v})
}
. (27)

Following the same reasoning as in the noise-free case,
one can introduce the restricted optimization problems

D(j) = inf
v∈Wj

max
i=0,...,P

(min{a, (Ci+1 + δ)v}

− max{a, (Ci−δ)v}) (28)

We can now state the following lemma, which is the
counterpart of Lemma 3 in the presence of noisy mea-
surements.

Lemma 4 Letm andM be defined as in (20)-(21), Q =
max

i∈{m,m+1,...,M−1}
(Ci+1 − Ci + 2 δ) and

vc = min

{
a+ a

Cm + CM
,

a

Q+ CM − δ

}
.

Then, the solution of problem (28) is given by

D
(j)=























max{(Cm + δ) vL − a , Q vL} if vc≤vL

max
{

aCm−aCM+δ(a+a)
Cm+CM

, Qa

Q+CM−δ

}

if vL<vc<vR

a− (CM − δ) vR if vc≥vR.

(29)
Moreover, the optimal solution is attained at

v(j) =





vL if vc ≤ vL

vc if vL < vc < vR

vR if vc ≥ vR.

(30)

From (27)-(28) and Lemma 4, it is clear that Theorem 1
applies as well to the noisy case with D(j) and v(j) given
by (29) and (30), respectively. This result provides the
1-step optimal input u∗ at each time t, in the noisy case.

4 Input design with equispaced thresholds

In this section, we assume that the sensor thresholds are
equispaced, i.e., Ci = Ci−1 + Q, i = 2, . . . , P , Q > 0.
In this setting, the solution of the 1-step optimal design
problem turns out to be much simpler than that found in
Section 3 for the case of generic thresholds. In particular,
while the solution presented in Theorem 1 requires the
application of an algorithmic procedure to compute the

optimal input value, in the case of equispaced thresholds
an analytic solution depending only on the quantities a,
a, C1, CP and Q is provided. We start by considering
the noise-free case.

Let us address problem (10)-(11) in the setting of equi-
spaced thresholds. Let vi and vi be defined as in (17).
Let u∗ = 1/v∗ be the optimal input and define

m, arg min
i=1,...,P

{i : vi ≤ v∗} (31)

M , arg max
i=1,...,P

{i : vi ≥ v∗}. (32)

Notice that definitions (17), (31) and (32) imply that
at the considered time t, only the thresholds Ci, i =
m, . . . ,M , can contribute to the reduction of the feasible
set, since they satisfy a ≤ Ci v

∗ ≤ a. Clearly, M ≥ m
holds (otherwise, there would be no reduction of the
feasible set). It is worth remarking that (31)-(32) differ
from (20)-(21) because they do not depend on a specific
interval in v, but on the actual optimal solution v∗.

Lemma 5 At a given time t, let u∗ = 1/v∗ be the solu-
tion of problem (10)-(11). It follows that

• If m = M then

v∗ =
a+ a

2CM
(33)

and the resulting optimal diameter is

D∗ = a− CM v∗ = Cm v∗ − a =
a− a

2
.

• If m < M then

v∗ =





a

CM +Q
if

a

a
≥

Cm −Q

CM +Q

a+ a

Cm + CM
if

a

a
≤

Cm −Q

CM +Q

(34)

and

D∗ = a− CM v∗ = max {Qv∗, Cm v∗ − a}

=





Qa

CM +Q
if

a

a
≥

Cm −Q

CM +Q

aCm − aCM

Cm + CM
if

a

a
≤

Cm −Q

CM +Q
.

(35)

Notice that Lemma 5 does not provide a constructive
procedure for computing v∗, as the indexes m and M
depend on v∗ itself. Nevertheless, it will be exploited in
the following to derive analytic expressions for v∗ and
D∗. Observe also that when only one threshold is active
at the optimum, i.e. m = M , the feasible set is reduced
by 1/2 as in presence of binary sensors. The next lemma
bounds the range where the optimal solution lies.
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Lemma 6 An optimal solution u∗ = 1/v∗ of prob-

lem (10)-(11) satisfies v∗ ∈ V ∗ ,

[
v
P
+vP

2 , vP

]
=

[
a+a
2CP

, a
CP

]
.

The following theorem provides the solution of the 1-step
optimal input design problem for the case of equispaced
thresholds.

Theorem 3 Let C1, . . . , CP be equispaced thresholds.
At a given time t, the solution of problem (10)-(11) is
u∗(t) = 1/v∗ where

v∗ =





a+ a

2CP
if

a

a
≥

CP −Q

CP +Q

a

CP +Q
if

C1 −Q

CP +Q
≤

a

a
≤

CP −Q

CP +Q

a+ a

C1 + CP
if

a

a
≤

C1 −Q

CP +Q
.

The corresponding size of the feasible set turns out to be

D∗ =





a− a

2
if

a

a
≥

CP −Q

CP +Q

aQ

CP +Q
if

C1 −Q

CP +Q
≤

a

a
≤

CP −Q

CP +Q

C1 a− CP a

C1 + CP
if

a

a
≤

C1 −Q

CP +Q
.

Remark 3 For a binary sensor with threshold CP =
C1 = C, it is immediate to see that the 1-step optimal
input provided by Theorem 3 boils down to u∗ = 2C

a+a ,

which corresponds to (12) in Remark 1.

Let us now consider the case of noisy data. Then, prob-
lem (6) can be cast as (10) with

Dt(u) = sup
s : s=σ(au+d)
a∈Ft−1; |d|≤δ

(at − at). (36)

The solution of the 1-step optimal input design problem
in presence of noise is given by the next theorem.

Theorem 4 LetC1, . . . , CP be equispaced thresholds. At
a given time t, the solution of problem (10),(36) is u∗ =

1/v∗ where

v∗=





a+ a

2CP
if

CP−Q−δ

CP +Q+δ
≤

a

a
≤

CP− δ

CP + δ

a

CP +Q+ δ
if

C1−Q−δ

CP +Q+δ
≤

a

a
≤

CP−Q−δ

CP +Q+δ

a+ a

C1 + CP
if

a

a
≤

C1−Q−δ

CP +Q+δ
.

The corresponding size of the feasible set turns out to be

D
∗=







































a− a

2
+

δ (a+ a)

2CP

if
CP −Q− δ

CP +Q+ δ
≤

a

a
≤

CP− δ

CP + δ

(Q+ 2δ) a

CP +Q+ δ
if

C1−Q−δ

CP +Q+δ
≤

a

a
≤

CP−Q−δ

CP +Q+δ

aC1 − aCP + δ(a+ a)

C1 +CP

if
a

a
≤

C1 −Q− δ

CP +Q+ δ
.

5 N-step optimal input design

Let us now consider the N -step optimal input design
problem for equispaced thresholds, in the noise-free case.
According to (4) and (5), the aim is to choose the input
signal sequence u∗(t), t = 1, . . . , N such that

u∗ = arg inf
u: ‖u‖∞≤U

u(t)=η(Ft−1;t)

ep(N, u) (37)

Let us introduce a key concept that will be useful to
solve problem (37).

Definition 1 At a given time t, we say that the selec-
tion of the N -step optimal input u∗(t) is a binary design
problem if, for each v satisfying a ≤ Ci v ≤ a for some
i ∈ {1, . . . , P}, it holds Ci+1 v ≥ a and Ci−1 v ≤ a.

The name binary design comes from the fact that when
the corresponding condition holds, each input will gen-
erate at most two different sensor outputs (depending on
the value of a) and hence the maximum reduction rate
of the feasible set at time t will be 1/2, as it is always
the case in system identification with binary sensors (see
Remark 1). The next result provides a necessary and
sufficient condition for the input design problem to be a
binary design.

Lemma 7 At a given time t, the choice of u∗(t) is a
binary design problem if and only if vP ≤ vP−1.

According to Lemma 7, if the problem is a binary design
one has

a

a
≥

CP −Q

CP
>

CP −Q

CP +Q

7



and Theorem 3 states that the 1-step optimal input re-
duces the feasible set by 1/2. Moreover, since at is a non
decreasing function and at is a non increasing function,
it follows that

a
t

at
is a non decreasing function. There-

fore, if at time t one has a binary design problem, this
will hold also for any time t ≥ t. Since it is always possi-
ble to select an input that reduces the feasible set by 1/2
in one step, it can be concluded that the binary design
condition corresponds to the worst possible situation in
the N -step input design problem.

The theorems given next allow one to derive the solution
of problem (37), for different a priori information on the
uncertain parameter.

Theorem 5 Let C1, . . . , CP be equispaced thresholds.
Let N be the length of the input signal to be applied and
let

a
0

a0
≥ CP−Q

CP+Q . Then, the optimal input solving problem

(37) is given by u∗(t) = 1
v∗(t) where:

v∗(t) =
at−1 + at−1

2CP
, t = 1, 2, . . . , N. (38)

Moreover, the resulting diameter of the feasible set FN

at time N turns out to be

D∗
N = (a0 − a0)

(
1

2

)N

.

Theorem 6 Let C1, . . . , CP be equispaced thresholds.
Let N be the length of the input signal to be applied
and let C1−Q

CP+Q ≤
a
0

a0
≤ CP−Q

CP+Q . Then, the optimal input

solving problem (37) is given by u∗(t) = 1
v∗(t) where:

v∗(1) =
a0

CP +Q
(39)

and v∗(t) , t = 2, . . . , N , are chosen according to (38).
Moreover, the diameter of the resulting feasible set FN is

D∗
N =

Qa0
CP +Q

(
1

2

)N−1

. (40)

It is worth observing that the optimal input sequences
provided by Theorems 5 and 6 coincide with those given
by the 1-step optimal strategy in Theorem 3. In partic-
ular, the optimal input provided by Theorem 5 is simi-
lar to the optimal input for the case of noise-free binary
measurements. In fact, under the condition

a
0

a0
≥ CP−Q

CP+Q ,

only one threshold at a time can be used to reduce the
parameter uncertainty leading to the same uncertainty
reduction as in the binary case. Conversely, the solution
provided by Theorem 6 fully exploits all the available
quantization levels by choosing appropriately the first
input sample u∗(1).

The N -step optimal input design when
a
0

a0
< C1−Q

CP+Q re-

mains an open problem. In general, the N -step optimal
input sequence is different from the 1-step optimal one
given by Theorem 3, and it is possible to show that there
exist examples in which the binary design condition is
never reached. Nevertheless, Theorem 5 and 6 cover all
the cases when

a
0

a0
≥ C1−Q

CP+Q , which represents a condition

usually satisfied in practice. For instance, such a condi-
tion holds whenever the sensor range is large enough. In
fact, for any initial feasible set, there exists a sufficiently
large CP such that the condition is satisfied. Moreover,
the condition is always satisfied if C1 ≤ Q: this occurs,
e.g., whenever the lowest threshold of the quantized sen-
sor is zero or negative.

6 Time complexity

The next result concerns the evaluation of the time com-
plexity for problem (37), in the case when the thresholds
are equispaced and measurements are noise free.

Theorem 7 Let F0 = [a0, a0]. The time complexity
N(DN) required to reduce the diameter of the feasible set
from D0 to DN > 0 satisfies

N(DN )=





⌈
log2

(
D0

DN

)⌉
if

a
0

a0
≥ CP−Q

CP+Q

⌈
log2

(
2Qa0

(CP+Q)DN

)⌉
if C1−Q

CP+Q ≤
a
0

a0
≤ CP−Q

CP+Q

(41)

N(DN ) ≤

⌈
log2

(
2(C1a0−CPa

0
)

(C1+CP )DN

)⌉
if

a
0

a0
≤ C1−Q

CP+Q .

Notice that the time complexity is computed exactly
under the assumptions of Theorems 5 and 6, when the
solution of the N -step input design problem is available.
When these assumptions do not hold, Theorem 7 gives
an upper bound on N(DN ).

According to condition (26) in Theorem 2, let us choose
the thresholds so that they satisfy

Ci =

[
P + 1− i

P + 1
a+

i

P + 1
a

]
α i = 1, . . . , P (42)

for some α > 0. It is easy to check that the thresholds

(42) are equispaced, with Q =
a0−a

0

P+1 α. Moreover, one
has

C1 −Q

CP +Q
=

a0
a0

and by (41) one gets, after simple manipulations

N(DN )=

⌈

log2

(

2Qa0

(CP +Q)DN

)⌉

=

⌈

1+log2

(

D0

(P+1)DN

)⌉

.

(43)
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From (43) it can be concluded that, for the thresholds
chosen as in (42), N(DN ) = 1 whenever D0

DN
≤ P + 1,

as predicted by Theorem 2. Conversely, if D0

DN
> P + 1,

the time complexity is reduced by log2(P +1)− 1, with
respect to the binary case, in which the time complexity

is equal to log2

(
D0

DN

)
.

The following theorem, which follows directly by com-
bining the result in Theorem 7 with (7), provides upper
bounds on the time complexity for a generic FIR model
of order n.

Theorem 8 Consider a FIR model of order n and let

Θ0 = B∞

(
c0,

D0

2

)
= [θ1,0, θ1,0]×× . . .× [θn,0, θn,0]

represent the prior information available on the FIR pa-
rameter vector. The time complexity N(DN ) required to
reduce the ℓ∞ diameter of the feasible set from D0 to
DN > 0 satisfies

N(DN ) ≤
n(n+ 1)

2
max

i=1,...,n
{Ni(DN )}

where

Ni(DN )=























































⌈

log2

(

θi,0−θi,0
DN

)⌉

if
θi,0

θi,0
≥ CP −Q

CP +Q

⌈

log2

(

2Qθi,0
(CP +Q)DN

)⌉

if C1−Q

CP+Q
≤

θi,0

θi,0
≤ CP −Q

CP+Q

⌈

log2

(

2(C1θi,0−CP θi,0)

(C1+CP )DN

)⌉

if
θi,0

θi,0
≤ C1−Q

CP +Q
.

7 Examples

In this section, two numerical examples are presented
to illustrate the benefits of the proposed input design
technique.

7.1 Example 1

Let us consider a FIR of order 1, and let F0 = [1, 21],
U = 10, δ = 0 (noise-free case). Let us assume the sensor
has 4 thresholds C1=25, C2=45, C3=65, C4=85.

Notice that these thresholds satisfy (26) in Theorem 2
with û = 5. In Figure 2, the size of the feasible set for
different values of a ∈ [1, 21] and different input lengths
is reported for the optimal input u∗ given by Theorem 3.

The diameter obtained by assuming only one threshold
(binary case) is also reported in Figure 2. Notice that

in this case the feasible set size is independent from the
true parameter location. As expected, the information
provided by the 4-thresholds sensor allows a faster re-
duction of uncertainty.

1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

Number of samples (N)

F
ea
si
b
le

se
t
si
ze

a = a −→

←− a = a

Fig. 2. Example 1: Feasible set size of a 4-thresholds sensor
(solid) compared with a binary one (dashed) for different
values of the true parameters a.

7.2 Example 2

Let us consider a FIR of order n = 10 and let us assume
that the a priori information on the impulse response
coefficients is 1 ≤ θi ≤ Mρi, M = 100, ρ = 0.75, i =
1, . . . , 10. Moreover, let us assume U = 50, δ = 1 and
let the sensor have P = 5 equispaced thresholds, namely
Cj = 10 j, j = 1, . . . , 5.

Let us suppose we want to independently excite each
FIR coefficient 4 times. By applying the input strategy
provided in Appendix A, one needs N = 4n(n+1)/2 =
220 samples according to (7). Then, each FIR coefficient
is excited by the optimal input derived in Theorem 4.
The true parameters and the noise signal d(t) are chosen
to maximize the size of the final feasible sets, according
to the worst-case setting.

In Fig. 3, the feasible set bounds for each parameter after
applying the input signal of Theorem 4, are reported.
Such bounds are compared to that obtained by assuming
a uniformly distributed input in [0, 50]. Notice that the
true values of the parameters are chosen in a worst-case
setting, and hence they may vary between the two input
strategies applied.

Fig. 3 shows how the input choice reported in Theorem 4
outperforms that given by a uniformly distributed input.
To better emphasize such a behavior, in Table 1 the final
feasible set size obtained by applying the input signal
reported in Theorem 4 is compared with the mean value
obtained by a uniformly distributed input over 100000
realizations.

9
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←−Mρi

Fig. 3. Example 2: Feasible set bounds for an input signal
independently exciting each parameter 4 times. Blue inter-
vals denote feasible sets related to the input provided by
Theorem 4, while green intervals are related to a uniformly
distributed input.

Table 1
Comparison between the feasible set size obtained by apply-
ing the input provided in Theorem 4 (DTh. 4) and the mean
value obtained by a uniformly distributed input over 100000
realizations (Mean(Duniform)). The last column reports the
standard deviation of Duniform.

i DTh. 4 Mean(Duniform) STD(Duniform)

1 4.33 63.32 13.49

2 3.25 45.60 10.90

3 2.44 32.60 8.68

4 1.83 23.04 6.83

5 1.37 16.13 5.25

6 1.03 11.12 3.96

7 0.77 7.56 2.90

8 0.58 5.07 2.06

9 0.43 3.35 1.40

10 0.32 2.18 0.91

8 Conclusions

System identification with quantized measurements is a
challenging problem even for very simple models. In this
paper, the input design problem has been tackled in a
worst-case setting. Considering static gains, a complete
solution has been given for the one-step optimal design,
while the N -step optimal problem has been solved un-
der suitable technical assumptions. These results can be
used to devise suboptimal input sequences for generic
FIR models, by exploiting input signals which allow one
to excite individually each FIR parameter. Moreover,
the developed theory has led to the construction of an
upper bound to the time-complexity for the identifica-
tion of FIR models.

The worst-case approach adopted in the paper seems the
most natural choice when dealing with quantization er-
rors, which are unknown-but-bounded in nature. This
brings in a remarkable simplification, as the measure-

ment noise and the quantization error can be treated in
the same way. On the other hand, the classic stochas-
tic setting allows one to prove strong results such as
asymptotic efficiency of the estimates (see e.g. [16]).
From a practical point of view, one should see the two
approaches as complementary and choose the most ap-
propriate one depending on the a priori information on
the measurement noise and on the required level of con-
fidence on the parameter bounds during the transient
(which are usually more conservative in the worst-case
setting).

There are several open issues in worst-case system iden-
tification with quantized measurements, which deserve
future investigations. The N -step optimal design prob-
lem with noisy data has not been fully solved yet. Such
a result would allow one to devise upper bounds to the
time-complexity also in the noisy scenario. Another open
problem concerns the optimal selection of the sensor
thresholds. Choosing the quantization mechanism in or-
der to maximize the resultingmodel quality is an intrigu-
ing problem which has been addressed in the stochastic
setting, but not yet in the worst-case one. Finally, identi-
fication of models with different structure, such as ARX
or OE, is the subject of ongoing research.
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A Input sequence construction

Consider the FIR model (1). We want to excite each
FIR parameter individually, with a predefined value of
the input. In [2], a procedure for constructing an input
sequence u(t), t = 1, . . . , k(n(n+1)/2) which allows one
to individually excite the n FIR parameters k times is
reported. A pseudo-code implementing such a procedure
is reported in Algorithm 1 for the case of n even. Here, uj

i
denotes the input sample exciting the i-th coefficient for
the j-th time (i = 1, . . . , n, j = 1, . . . , k), and function
mod denotes the remainder after division. Algorithm 1
can be easily modified to consider the case of n odd.

Algorithm 1 Input sequence construction (n even)

1: Set n and k
2: for t← 1 : k(n(n+ 1)/2) do
3: i← ⌈(t− 1)/(k(n+ 1))⌉+ 1
4: j ← mod(⌈(t− 1)/(n+ 1)⌉, k) + 1
5: if mod(t, n+ 1) == 1 then

6: u(t)← uj
i

7: else if mod(t, n+ 1) == i+ 1 then

8: u(t)← uj
n+1−i

9: else
10: u(t)← 0
11: end if
12: end for

B Proofs of lemmas and theorems

Proof of Lemma 1: By contradiction, assume that v∗ 6∈
V ∗, e.g., v∗ < vP . One has

y = a u∗ =
a

v∗
>

a

a
CP ≥ CP .

So, the sensor output is s = P independently of the true
value of a, and being CP v

∗ < CP vP = a, one gets

min{a, CP+1v
∗} −max{a, CP v

∗} = a− a.

Therefore, v∗ does not cause any reduction of the feasible
set, which means that v∗ is not optimal, leading to a
contradiction. A similar reasoning can be repeated for
the case v∗ > v1. ✷

Proof of Lemma 2: Let us assume k < m. By (20) one
has vL < vk. Since by construction vk can only be an
extremal point of the interval [vL, vR], one has vk ≥ vR.
So, it follows that, for any v ∈ [vL, vR],

Ck v ≤ Ck vR ≤ Ck vk = Ck
a

Ck
= a.

Let us now consider k > M ; hence, one has vR > vk.
Following the same reasoning, one has vk ≤ vL, thus
giving

Ck v ≥ Ck vL ≥ Ck vk = Ck
a

Ck
= a.

✷

Proof of Lemma 3: Let

q = arg max
i∈{m,m+1,...,M−1}

(Ci+1 − Ci).

Since for any v ∈ [vL, vR] one has Fi(v) ≤ Fq(v) = Qv,
for any i = m, . . . ,M−1, it is possible to rewrite (23) as

D(j)= inf
v∈[vL, vR]

max {Fm−1(v), Fq(v), FM (v)}

= inf
v∈[vL, vR]

max {Cm v − a, Q v, a− CM v} . (B.1)
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Being Fi(v) linear in v, the v(j) at which the in-
fimum in (B.1) is achieved lies either at the ex-
tremes vL, vR, or at one of the intersections between
Fm−1(v), Fq(v), FM (v).
First, let us suppose that the optimum is achieved
at some ṽ ∈ (vL, vR). We want to show that ṽ can-
not be such that Fm−1(ṽ) = Fq(ṽ) > FM (ṽ). In-
deed, being Fm−1(v) and Fq(v) increasing functions
of v, there exists ε > 0 such that ṽ − ε ∈ (vL, vR),
FM (ṽ − ε) < Fm−1(ṽ − ε) < Fm−1(ṽ) and FM (ṽ − ε) <
Fq(ṽ−ε) < Fq(ṽ). This leads to a contradiction, because
one would have

max{Fm−1(ṽ − ε), Fq(ṽ − ε), FM (ṽ − ε)}

< max{Fm−1(ṽ), Fq(ṽ), FM (ṽ)}.

Now, let us define vm−1 and vq satisfying respectively
Fm−1(vm−1) = FM (vm−1), Fq(vq) = FM (vq). It is im-
mediate to check that

vm−1 =
a+ a

Cm + CM
, vq =

a

Q+ CM
.

According to the above reasoning the only candidate
solutions v(j) are vL, vR, vm−1, vq. By noticing that
vc = min{vm−1, vq}, one has that only the following
three cases can occur.
i) vc ≤ vL. Being Fm−1(v) and Fq(v) increasing
functions of v and FM (v) a decreasing function of
v, this means that max{Fm−1(v), Fq(v)} ≥ FM (v),
∀v ∈ [vL, vR]. Hence, the minimum is attained at vL
and takes on the value max{Fm−1(vL), Fq(vL)} =
max{Cm vL − a, Q vL}.
ii) vL < vc < vR. In this case the minimum is
attained at vc and the corresponding feasible set
size turns out to be max{FM (vm−1), FM (vq)} =

max
{

aCm−aCM

Cm+CM
, Qa

Q+CM

}
.

iii) vc ≥vR. This meansFM (v) ≥ max{Fm−1(v), Fq(v)},
∀v ∈ [vL, vR] and then the minimum is attained at vR
and takes on the value FM (vR) = a− CM vR. ✷

Proof of Theorem 2: Let us assume that (26) holds and
let v̂ = 1/û. Since

v1 =
a v̂

P
P+1a+

1
P+1a

≤ v̂

and

vP =
a v̂

1
P+1a+

P
P+1a

≥ v̂

one has v1 ≤ vP . By (17), there cannot be other break-
points v̂i in the interval [v1, vP ]. Hence, according to
(20) and (21), one has m = 1 and M = P . By (22) and

(26) one has

F0(v̂) =C1 v̂ − a =
a− a

P + 1

Fi(v̂) = (Ci+1 − Ci) v̂ =
a− a

P + 1
, i = 1, . . . , P−1 (B.2)

FP (v̂) = a− CP v̂ =
a− a

P + 1
.

Since the maximum possible reduction of the feasible set

is by a factor P + 1, one has D∗ =
a−a
P+1 and v∗ = v̂.

Conversely, assume that one can reduce the feasible set
size by a factor P + 1 with some û = 1

v̂ . Then, the
relationships (B.2) must hold and (26) easily follows. ✷

Proof of Lemma 5: Define the intervals Wj as in (18)

and D(j) as in (19). From (16), it turns out that v∗ =
v(j

∗), where j∗ = arg minj=1,...,2P−1 D
(j) and W ∗

j is
the interval where the optimum lies. Let us denote by vL
and vR the left and right bounds of such an interval, i.e.
Wj∗ = [vL, vR]. According to (B.1) and the definition of
m and M in (31)-(32), one has

D(j∗) = inf
v∈[vL, vR]

max {Cm v − a, Q v, a− CM v} .(B.3)

Moreover, it can be observed that m and M defined in
(31)-(32) are the same as those in (20)-(21) for the spe-
cific optimal interval Wj∗ . Therefore, Lemma 3 holds

within the interval Wj∗ , with D(j∗) and v(j
∗) given by

(24) and (25), respectively.
Let us first consider the case m = M . Then (B.3) sim-
plifies to

D(j∗) = inf
v∈[vL, vR]

max {CM v − a, a− CM v} .

and hence the solution satisfies CM v − a = a − CM v,
thus giving (33).

Now, let us consider the case m < M . First, we want to

prove that v∗ = vc , min
{

a+a
Cm+CM

, a
Q+CM

}
. It follows

that v∗ 6= vc may occur only when v∗ = vL or v∗ = vR.
By construction, both vL and vR are equal either to vh
or vh, for some h.
Let us consider the case v∗ = vh, which implies M = h.
By (B.3),D∗ = max{Qv∗, Cm v∗−a} since a−CM v∗ =
a− Ch v

∗ = 0. Thus, it is easy to see that ∃ε > 0: ṽ =

v∗−ε and D̃ = max{Q ṽ, Cm ṽ−a, a−Ci ṽ} < D∗, and
so v∗ is not optimal.
Let us now consider the case v∗ = vh, which implies
m = h. Then,D∗ = max{Qv∗, a−CM v∗} sinceCh v

∗−
a = Cm v∗ − a = 0. If Qv∗ = a − CM v∗, it follows

that v∗ = a
Q+CM

≤
a+a

Cm+CM
and hence v∗ = vc. Then,

let us assume Qv∗ 6= a − CM v∗. If Qv∗ < a − CM v∗,

there exists ε > 0: ṽ = v∗+ ε and D̃ = max{Q ṽ, Ci ṽ−
a, a−CM ṽ} < D∗. A similar reasoning can be repeated
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if Qv∗ > a− CM v∗.
Therefore v∗ = vc, and according to Lemma 3

D(j∗) = D∗ = max

{
aCm − aCM

Cm + CM
,

Q a

Q+ CM

}

and (34)-(35) follow by simple algebraic manipulations.
✷

Proof of Lemma 6: By contradiction, let us assume v∗ <
a+a
2CP

. Let s = P which leads to a feasible set F =

[CP v∗, a]. The diameter of such set is

D∗ = a− CP v∗ > a−
a+ a

2
=

a− a

2
.

Since the optimal worst-case diameter reduction rate is
at least 1/2, then v∗ cannot be optimal.
Let us now assume v∗ > vP , i.e., M < P . If m > M
no reduction can be achieved and hence v∗ cannot be
optimal. If m = M , then only one threshold contributes
to reducing the feasible set and the maximum reduction

rate is 1/2. By choosing ṽ =
a+a
2CP

∈ V ∗, one gets the

worst-case diameter D̃ = a − CP ṽ =
a−a
2 (for s = P )

and hence ṽ is optimal. Finally, let m < M < P . By
definition of M one has v∗ > vM+1. By (35), it follows
that

D∗ = a− CM v∗ ≥ Qv∗.

Since M < P , CM+1 is finite and then

D∗ = a− CM v∗ ≥ Qv∗ = (CM+1 − CM ) v∗.

So, v∗ ≤ a
CM+1

= vM+1 which leads to a contradiction.
✷

Proof of Theorem 3: By Lemma 6, since v∗ ∈ V ∗ =[
v
P
+vP

2 , vP

]
one has M = P .

First, let us consider the case m = P . By Lemma 5 it

follows that v∗ =
a+a
2CP

andD∗ =
a−a
2 . Moreover, by (31)

one has v∗ < vP−1 which is equivalent to
a+a
2CP

<
a

CP−Q ,

and hence
a
a > CP−Q

CP+Q .

Let us now consider the case m < P . By Lemma 5,
one has D∗ = max{Qv∗, Cm v∗ − a}. Let us suppose
D∗ = Cm v∗ − a ≥ Qv∗. Then, if m > 1 one can write

v∗ ≥
a

Cm −Q
=

a

Cm−1
= vm−1.

But this is in contradiction with the definition of m in
(31). Hence, it must bem = 1. FromLemma 5, by setting

a−CP v∗ = C1 v
∗ − a one gets v∗ =

a+a
C1+CP

. Moreover,

being v∗ ≥
a

C1−Q , one has
a
a ≤

C1−Q
CP+Q .

The remaining case D∗ = Qv∗ ≥ Cm v∗ − a, gives, by
Lemma 5, a−CP v∗ = Qv∗, which returns v∗ = a

CP+Q .

Moreover, one has
a
a ≥ Cm−Q

CP+Q ≥
C1−Q
CP+Q , and, since

v∗ ≥ vP−1,
a
a ≤

CP−Q
CP+Q . ✷

Proof of Theorem 4: The expressions of v∗ and D∗ can
be derived by following the same reasoning as in the
proof of Theorem 3. Finally, in order to guarantee that
the feasible set size does not increase, one has to impose
that D∗ ≤ a− a. Long but straightforward calculations
show that this is equivalent to

a
a ≤

CP−δ
CP+δ . ✷

Proof of Lemma 7: For i = 2, . . . , P one has

vi−1

vi
=

a

a

Ci−1 +Q

Ci−1
=

a

a

(
1 +

Q

Ci−1

)

≥
a

a

(
1 +

Q

CP−1

)
=

vP−1

vP
.

Therefore, vP ≤ vP−1 implies vi ≤ vi−1 for any i =
2, . . . , P . For any v ∈ R and any i, 1 ≤ i ≤ P , such that
a ≤ Ci v ≤ a one has:

Ci−1 v =
a

vi−1

v ≤
a

vi
v =

a

a
Ci v ≤ a

Ci+1 v =
a

vi+1
v ≥

a

vi
v =

a

a
Ci v ≥ a

which proves that the problem is binary design.
To prove necessity, let us assume that vP > vP−1. Let

us apply an input u = 1/v with v =
vP+v

P−1

2 . One has

a = CP vP > CP v > CP−1 v > CP−1 vP−1 = a.

Therefore, this is not a binary design problem. ✷

Proof of Theorem 5: Since
a
t

at
is a non decreasing function,

if
a
0

a0
≥ CP−Q

CP+Q then also
a
t

at
≥ CP−Q

CP+Q for any t ≥ 1.

From Theorem 3, one has that such a condition implies

D∗
t =

at−1−a
t−1

2 , i.e. the 1-step optimal input is the same
as in binary design problems. Since this holds for all
t ≥ 1, it follows immediately that (38) holds at any time
t. The expression of D∗

N follows directly. ✷

Proof of Theorem 6: In order to prove the theorem, we
first need to introduce two technical lemmas.

Lemma 8 At a given time t, if s = P−1, then the choice
of u∗(t) is a binary design problem.

Proof: Let u = 1/v and let s = P − 1. By defini-

tion, the feasible set at time t becomes F , [at, at] =
[at−1, at−1]

⋂
[CP−1 v, CP v]. Let us evaluate vP and

vP−1 at time t. One has

vP ,
at

CP

=min

{

v,
at−1

CP

}

, vP−1,
a

CP−1
=max

{

v,
at−1

CP−1

}

.

Therefore, one has vP ≤ v ≤ vP−1, and hence by
Lemma 7 we are facing a binary design problem. ✷
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Lemma 9 At each time t, an N -step optimal input
u∗(t) = 1/v∗(t) satisfies v∗(t) ≤ vP .

Proof:Without loss of generality, let us assume t = 1 and
drop the dependence on time. By contradiction, assume
that the optimal input is ũ = 1/ṽ, with ṽ > vP . Let

M̃ = argmax{i : vi ≥ ṽ}. By construction, M̃ < P .

Now, define v̂ =
C

M̃

CP
ṽ. One has

CP v̂ = C
M̃

ṽ ≤ C
M̃

v
M̃

= a

i.e., v̂ ≤ vP . We prove the lemma by showing that v̂
is always a choice at least as good as ṽ, in the N -step
optimal context.
If we set m̂ = argmin{i : vi ≤ v̂}, the admissible sensor
outputs for the input û = 1/v̂ are s ∈ {m̂− 1, . . . , P}.
Let us first assume m̂ > 1. If C

M̃−1
ṽ ≤ a, it is easy

to check that all the possible feasible sets resulting from
choosing v̂ are either equal to or strictly contained within
feasible sets resulting from the choice ṽ (and hence ṽ
cannot be optimal). So, let us assume C

M̃−1
ṽ > a. The

feasible set resulting from the choice v̂ is

F̂=





[CP v̂, a]=[C
M̃

ṽ, a] if s = P

[CP−1v̂, CP v̂]=[CP−1 v̂, CM̃
ṽ] if s = P−1

[max{a, Cs−1 v̂}, Cs v̂] if m̂−1≤s<P−1

By Lemma 8, if the sensor returns s = P−1 the problem
becomes a binary design. Since the size of the feasible
set for m̂ − 1 ≤ s < P − 1 is always less than or equal
to that corresponding to P − 1, it can be concluded that
the worst case sensor output corresponding to v̂ is either
P or P − 1. If the worst-case output for v̂ is s = P ,
the feasible set is exactly the same one would obtain by

choosing ṽ with a sensor output s = M̃ . Therefore, v̂ is a
choice at least as good as ṽ, in the N -step optimal sense.
Conversely, let s = P − 1 be the worst-case output for

v̂. If by applying ṽ the sensor would return s = M̃ − 1,

the feasible set would be F̃ = [C
M̃−1

ṽ, C
M̃

ṽ], which

strictly contains F̂ = [CP−1 v̂, CM̃
ṽ], being

CP−1 v̂ = CP−1

C
M̃

CP
ṽ > C

M̃−1
ṽ.

Hence, ṽ cannot be the optimal choice.
Finally, let us consider the case m̂ = 1. If the worst-
case sensor output for v̂ is s 6= 0, one can repeat the
same reasoning adopted in the case m̂ > 1. Otherwise,
if s = 0, the resulting feasible set is F̂ = [a, C1 v̂]. How-
ever, notice that s = 0 is a feasible output also for the
choice ṽ, since ṽ > v̂ ≥ v1 (being m̂ = 1). The resulting

feasible set [a, C1 ṽ] strictly contains F̂ and therefore ṽ
cannot be optimal. This concludes the proof. ✷

Now we are ready to proove Theorem 6.

Let us first show that for the considered sequence
v∗(t), the resulting worst-case diameter at time N is
given by (40). When applying v∗(1) in (39), by using
(15) it is easy to check that for both s(1) = P and

s(1) = P − 1 one gets D∗
1 = Qa0

CP+Q which corresponds

to the 1-step optimal feasible set diameter according
to Theorem 3. Moreover, the resulting feasible set is
such that

a
1

a1
≥ CP−Q

CP+Q . Hence, by using Theorem 5 for

t = 2, . . . , N , (40) holds.
Now, let us prove that v∗(t) is N -step optimal. For
input v∗(1), the worst-case sensor output is either
s(1) = P or s(1) = P − 1. In fact, any sensor out-
put s(1) < P − 1 returns a feasible set not larger
than that corresponding to s(1) = P − 1, which
is known to lead to a binary design problem by
Lemma 8. Let us denote by F∗

(P ) = [CP v
∗(1), a0] and

F∗
(P−1) = [CP−1v

∗(1), CP v
∗(1)] the feasible sets at time

1 for s(1) = P and s(1) = P − 1, respectively. Assume
by contradiction that the optimal input is such that
ṽ(1) < v∗(1). If s(1) = P , one gets the feasible set

F̃(P ) = [CP ṽ(1), a0]. Since F
∗
(P ) ⊂ F̃(P ), then ṽ(1) can-

not be N -step optimal. Then, let us assume the optimal
input is such that ṽ(1) > v∗(1). If s(1) = P − 1, the

feasible set is F̃(P−1) = [a0, a0]
⋂
[CP−1 ṽ(1), CP ṽ(1)].

By exploiting the assumption on
a
0

a0
, one has

CP−1 ṽ(1) = (CP −Q) ṽ(1) > (CP −Q)
a0

CP +Q
≥ a0.

Moreover, by Lemma 9, ṽ(1) ≤ vP and hence CP ṽ(1) ≤

a0. Therefore, F̃(P−1) = [CP−1 ṽ(1), CP ṽ(1)], whose di-
ameter is greater than that of F∗

(P−1). By Lemma 8 the

resulting problem is a binary design and therefore, for
any t > 1, the maximum diameter reduction provided by
any ṽ(t) will not exceed that given by v∗(t). Hence ṽ(1)
is not N -step optimal. Then, v∗(1) is N -step optimal,
and v∗(t), t ≥ 2, is N -step optimal by Theorem 5. ✷

Proof of Theorem 7: Equation (41) follows directly from

Theorems 5 and 6. Let
a
0

a0
≤ C1−Q

CP+Q . Suppose to apply

at time 1 the 1-step optimal input reported in Theo-

rem 3, thus obtaining D1 =
C1a0−CPa

0

C1+CP
. The worst-case

corresponds to a binary design problem for t ≥ 2 which

gives DN =
C1a0−CP a

0

C1+CP

(
1
2

)N−1
=

2(C1a0−CPa
0
)

C1+CP

(
1
2

)N

and then N =
⌈
log2

(
2(C1a0−CPa

0
)

(C1+CP )DN

)⌉
. This is an upper

bound, because it is not guaranteed that at time 1 one
gets a binary design problem. ✷

14


