
Efficient computationof ℓ1 uncertaintymodel

froman impulse response set

Marco Casini ⋆, Andrea Garulli, Antonio Vicino,

Dipartimento di Ingegneria dell’Informazione, Università di Siena
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Abstract

In this paper the problem of constructing the minimum ℓ1 uncertainty model containing a finite set of assigned models is
addressed. This problem is relevant to ℓ1 robust control design techniques, in order to minimize the size of the uncertainty set
associated to the nominal plant. The problem is formulated as a (conditional) Chebyshev center problem and an algorithm for
its solution is proposed. The algorithm converges in a finite number of steps showing computational efficiency for large size
problems.
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1 Introduction

The construction of uncertainty model sets is a key step
in robust control. A typical example is given by addi-
tive unstructured uncertainty models G + ∆, in which
G represents the nominal model, and ∆ is the uncer-
tainty block assumed bounded in some suitable norm.
The choice of the norm depends on the control objective
in terms of robust performances. The ℓ1 robust control
setup is motivated by robustness requirements with re-
spect to the peak-to-peak gain and has been widely in-
vestigated in the last twenty years (see e.g. [5,8,4] for a
thorough treatment).

When an uncertainty model set is not available, a possi-
ble approach is to estimate it from data. Robust identifi-
cation in the ℓ1 setting has been addressed by a number
of researchers, along different approaches (see e.g. [9] and
references therein). Recent contributions have concerned
ℓ1 identification withmixed stochastic/deterministic un-
certainty models [12] and the ℓ1 error quantification
problem, in which the nominal model G is given and the
aim is to estimate the ℓ1 uncertainty bound from data
[10].
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In this paper, it is assumed that the information avail-
able on the system is given as a collection of feasible
models. Such models are representative of the behavior
of the system under various operating conditions: for ex-
ample, they may be generated by identification exper-
iments performed under different conditions (e.g., dif-
ferent input signals), or they may originate from lin-
earization of a nonlinear system around several operat-
ing points. In this setting, the problem of constructing
the best uncertainty model set consists of estimating a
nominal model G and the minimum size of the uncer-
tainty ∆ so that all the given feasible models are con-
tained in the uncertainty model set. This uncertainty
measure is generally needed to apply classical robust
control techniques. Moreover, since the structure of the
nominal model is generally selected considering different
classes of restricted complexity approximating models
(see e.g. [11,13,14]), the solution of this problem may be
useful in choosing the most appropriate model structure
for representing the plant through a minimal size uncer-
tainty ball. As an example, consider the case when an
orthonormal basis function expansion is used to approx-
imate the plant transfer function and one has to choose
the optimal pole location of the basis functions (see e.g.
[2]).

In this paper, the above problem is addressed in the ℓ1
setup and an algorithm is proposed for computing the
best ℓ1 uncertainty model set containing a finite set of
assignedmodels. It is shown that the problem can be for-
mulated as the computation of the ℓ1 conditional Cheby-



shev center of a suitable set, i.e. the center of the mini-
mum ℓ1 ball containing the set, subject to some prede-
fined constraints. Conditional centers play a key role in
the set-membership estimation literature (see e.g. [6,3])
and their computation typically requires the solution of
min-max optimization problems. In the ℓ1 setting, the
problem can be cast as a Linear Program (LP), whose
dimension may make it untractable even for small size
problems. Conversely, the proposed algorithm computes
the ℓ1 conditional center by solving a finite sequence of
small linear programs, and it is shown to be computa-
tionally feasible even for large size problems.

The paper is organized as follows. Section 2 contains the
problem formulation and shows how the construction of
the best uncertainty model set can be cast as a condi-
tional Chebyshev center problem. In Section 3, an algo-
rithm for the computation of the Chebyshev center is
presented. Computational issues are treated in Section
4. An illustrative example is reported in Section 5 and
some conclusions are given in Section 6.

2 Problem formulation

In the following, SISO discrete-time LTI systems with
impulse responses bounded in the ℓ1 norm are consid-
ered. The problem addressed in this paper is that of con-
structing an ℓ1 uncertainty model set

G = {P : P = G+∆, G ∈ M, ‖∆‖1 ≤ γ} (1)

containing a given set of models H = {H1, . . . , Hn}, i.e.
such that H ⊆ G. In (1), M denotes the model class to
which the nominal model G must belong. In particular,
the aim is that of finding the nominal model G so that
the size γ of the ℓ1 uncertainty is minimized.
In the ℓ1 framework, it is convenient to cast the problem
in terms of impulse responses. Let us denote by g =
{g(k)}+∞

k=0 and hj = {hj(k)}
+∞

k=0 the impulse responses
ofG andHj , respectively. Therefore, the problem is that
of computing g∗ such that

g∗ = arg inf
g∈M

sup
h∈H

‖g − h‖1 (2)

and the corresponding ℓ1 uncertainty bound γ∗ =
suph∈H ‖g∗ − h‖1.

Let TN : ℓ1 → R
N denote the truncation operator

TNg = [g(0) g(1) . . . g(N − 1)]′, and RN be the cor-

responding remainder operator, such that g =

[
TNg

RNg

]
.

The following nominal model class will be considered

M = {g : TNg = Mθ, θ ∈ R
p; RNg = 0}. (3)

The matrix M can be chosen so that its columns form
a p-dimensional basis of truncated impulse responses of

linear filters. Typical examples are Laguerre or Kautz
functions [13,14] or generalized orthonormal basis func-
tions [11]. Clearly, the set M contains the class of FIR
filters as a special case (when M is the identity matrix
and p = N).

Problem (2) with the model class (3) boils down to a
min-max optimization problem in a finite dimensional
space. Indeed, for any g ∈ M one has ‖g−h‖1 = ‖Mθ−
TNh‖1 + ‖RNh‖1. By setting δj = ‖RNhj‖1, for j =
1, . . . , n, one gets

inf
g∈M

sup
h∈H

‖g−h‖1= inf
θ∈Rp

sup
j=1,...,n

∥∥∥∥∥

(
M

0

)
θ −

(
TNhj

δj

)∥∥∥∥∥
1

.

(4)
Problem (4) is an instance of the so-called conditional
Chebyshev center problem. For a set X , an ℓ1 Cheby-
shev center is defined as the center of a minimum ℓ1 ball
containing the set X , i.e.

c∗ = arg inf
c

sup
x∈X

‖x− c‖1, (5)

while the Chebyshev radius of X is

r∗ = sup
x∈X

‖x− c∗‖1. (6)

Notice that the Chebyshev center may not be unique,
while the Chebyshev radius is unique.
When the center is constrained to belong to a given set
C, it is denoted as conditional Chebyshev center (with
respect to C), i.e.

c∗C = arg inf
c∈C

sup
x∈X

‖x− c‖1, (7)

while the conditional radius of X is defined as

r∗C = sup
x∈X

‖x− c∗C‖1. (8)

If we define xj ∈ R
N+1 =

[
TNhj

δj

]
, j = 1, . . . , n, and

introduce the sets X = {x1, . . . , xn} and C = {c ∈
R

N+1 : TNc = Mθ, θ ∈ R
p; cN+1 = 0}, it immediately

turns out that problem (4) is equivalent to the compu-
tation of the ℓ1 conditional Chebyshev radius of X , with
respect to C.

In the literature, the computation of conditional Cheby-
shev centers has been addressed in the ℓ2 and ℓ∞ norm
([6,3]), while no efficient procedure is available for the
ℓ1 case. In fact, the known solution to the problem is in
general unfeasible from the computational point of view.
In the next section, an efficient algorithm for the com-
putation of the ℓ1 Chebyshev center and radius will be
introduced.
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3 Computation of the ℓ1 Chebyshev center

Let X = {x1, . . . , xn} ⊂ R
m. A natural way to solve

(5)–(6) is to write the equivalent problem

{
inf r

s.t. : ‖xj − c‖1 ≤ r , j = 1, . . . , n

which can be converted into the following LP problem





inf r

s.t. :

−qj,i ≤ (xj,i − ci) ≤ qj,i , j = 1, . . . , n, i = 1, . . . ,m
∑m

i=1 qj,i ≤ r , j = 1, . . . , n

(9)

where xj,i denotes the i-th component of vector xj . The
optimal c and r are the Chebyshev center and radius of
X , respectively. The LP (9) hasmn+m+1 variables and
2mn+n constraints and turns out to be computationally
unfeasible also for small size problems such as, e.g., n =
100, m = 100.

To overcome this issue, an efficient algorithm to solve
(5)–(6) will be presented. Let us firstly define the key
notion of improving direction.

Definition 1 Let c ∈ R
m. A vector d is said an im-

proving direction for c, if there exists ε > 0 such that
maxx∈X ‖x− (c+ ε d)‖1 < maxx∈X ‖x− c‖1.

Given any starting point c(0), the algorithm described in
the following returns a sequence of candidate centers c(k)

and of associated improving directions d(k), such that
c(k+1) = c(k) + d(k). It will be shown that there exists a
finite K such that maxx∈X ‖x− c(k)‖1 < maxx∈X ‖x −
c(k−1)‖1, for k = 1, . . . ,K, and c(K) = c∗. To simplify
the notation, we will denote by c and d the candidate
center and the improving direction at a generic step k,
omitting the superscripts when they are not necessary.

At a given step k, let us define, for any j = 1, . . . , n,

tj = (xj − c). (10)

Let us define d, d ∈ R
m, so that the elements of these

vectors are given by

di = max
j : tj,i<0

{tj,i} , i = 1, . . . ,m (11)

di = min
j : tj,i>0

{tj,i} , i = 1, . . . ,m (12)

where tj,i denotes the i-th component of vector tj . Given
i, if there does not exist a tj,i < 0, then it is assumed

di = −∞. Similarly, if there does not exist a tj,i > 0,

then it is assumed di = +∞. Define the hyperbox

D = {d ∈ R
m : di ≤ di ≤ di , i = 1, . . . ,m}. (13)

Let us introduce the notion of optimal Chebyshev step.

Definition 2 A vector d̃ ∈ R
m is an optimal Chebyshev

step for c on D if

d̃ = arg inf
d∈D

max
x∈X

‖x− (c+ d)‖1. (14)

Notice that c+ d̃ is a conditional Chebyshev center of X
with respect to the set c+D.

Let I = {i = 1, . . . ,m}, I+j = {i ∈ I : tj,i > 0}, I−j =

{i ∈ I : tj,i < 0}, and I0j = {i ∈ I : tj,i = 0}. The
computation of an optimal Chebyshev step is addressed
in the following lemma.

Lemma 1 Let X = {x1, . . . , xn} ⊂ R
m and c ∈ R

m.

LetD be defined as in (10)-(13). Let [γ̃, d̃, q̃]′ be a solution
of the LP problem





min γ

s.t. :∑

i∈I
−

j

di +
∑

i∈I
+
j

(−di)+
∑

i∈I0
j

qi −γ ≤ −‖tj‖1 , j=1, . . . , n

−qi ≤ di ≤ qi , di ≤ di ≤ di , i = 1, . . . ,m.

(15)

Then, d̃ is an optimal Chebyshev step for c on D. More-
over, c is a Chebyshev center of X if and only if γ̃ =
max
x∈X

‖x− c‖1.

Proof. Let us rewrite the optimization problem (14) as

inf
d∈D

max
j=1,...,n

‖tj − d‖1. (16)

By (11)-(13), it follows that

max
j=1,...,n

‖tj − d‖1 = max
j=1,...,n

m∑

i=1

|tj,i − di|

= max
j=1,...,n




∑

i∈I
+
j

(tj,i − di) +
∑

i∈I
−

j

(di − tj,i) +
∑

i∈I0
j

|di|





= max
j=1,...,n




∑

i∈I
+
j

tj,i+
∑

i∈I
−

j

(−tj,i)+
∑

i∈I
−

j

di+
∑

i∈I
+
j

(−di)+
∑

i∈I0
j

|di|





= max
j=1,...,n



‖tj‖1 +
∑

i∈I
−

j

di +
∑

i∈I
+
j

(−di) +
∑

i∈I0
j

|di|



 .
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Therefore, it is possible to rewrite (16) as

inf
d∈D

max
j=1,...,n


‖tj‖1+

∑

i∈I
−

j

di+
∑

i∈I
+
j

(−di)+
∑

i∈I0
j

|di|




which is equivalent to





min γ

s.t. :

‖tj‖1+
∑

i∈I
−

j

di+
∑

i∈I
+
j

(−di)+
∑

i∈I0
j

|di| ≤ γ , j=1, . . . , n

di ≤ di ≤ di , i = 1, . . . ,m.

(17)
It can be easily checked that (17) is equivalent to (15).

Finally, being γ̃ = maxx∈X ‖x− (c+ d̃)‖1, one has that
γ̃ ≤ maxx∈X ‖x− c‖1 (because D contains the null vec-
tor by definition). If γ̃ = maxx∈X ‖x − c‖1, than there
does not exist any improving direction for c on D. Since
problem (5) is convex in c, it turns out that c is the
Chebyshev center of X . Conversely, if c is a Chebyshev
center then, by definition, there are no improving direc-
tions for c on D, and hence γ̃ = maxx∈X ‖x− c‖1. ✷

Remark 1 Given any point c ∈ R
m, the LP (15) in

Lemma 1 can be used to test whether c is the Chebyshev
center of X . In fact, c is the center of X if and only if
γ̃ = maxx∈X ‖x− c‖1. Notice that this occurs whenever

the optimal Chebyshev step d̃ obtained by solving (15) is
not an improving direction for c.

Let us consider at a given iteration k, the candidate
center c(k) and the associated hyperbox D(k) defined by
(10)-(13). Let d̃(k) be an optimal Chebyshev step for c(k)

on D(k) and

γ̃(k) = inf
d∈D(k)

max
x∈X

‖x− (c(k) + d)‖1. (18)

By Lemma 1, if γ̃(k) = max
x∈X

‖x− c(k)‖1, then c(k) is the

Chebyshev center of X and the algorithm stops. Other-
wise, if γ̃(k) < max

x∈X
‖x−c(k)‖1, let us set the k-th improv-

ing direction d(k) equal to an optimal Chebyshev step
for c(k) on D(k), i.e. d(k) = d̃(k) and c(k+1) = c(k) + d̃(k).

Since d̃(k) ∈ D(k), it follows that c(k+1) ∈ D̂(k), where

D̂(k) = c(k) +D(k). Thus, one has

max
j: xj,i<c

(k)

i

{xj,i} ≤ c
(k+1)
i ≤ min

j: xj,i>c
(k)

i

{xj,i} , i=1, . . . ,m.

x1

x1

x2

x2

x3

x3

c(k)

c(k)

D̂(k)

D̂(k)

Fig. 1. Two examples of sets D̂(k) (m = 2, n = 3).

Two examples of sets D̂(k) with m = 2 and n = 3 are
reported in Figure 1.

The next result states that the algorithm described
above converges in a finite number of steps.

Theorem 1 Let X = {x1, . . . , xn}⊂R
m and c(0)∈R

m.
Define the sequence

c(k+1) = c(k) + d(k) , k = 0, 1, . . .

where d(k) is an optimal Chebyshev step for c(k) on D(k).
Then, there exists a finiteK such that c(K) is an ℓ1 Cheby-
shev center of X and γ̃(K) its corresponding radius.

Proof. Consider the sequence γ̃(k) defined in (18). If for

some K it occurs that γ̃(K) = max
x∈X

‖x − c(K)‖1, than

Lemma 1 guarantees that c(K) is an ℓ1 Chebyshev center
of X and γ̃(K) its corresponding radius. Let us assume
by contradiction that the above stopping condition is
never verified. Then, by construction, the sequence γ̃(K)

is strictly decreasing. This requires that at each iteration

k, the set D̂(k) contains portions of the space R
m that

were not included in any D̂(l), l < k. Since the number

of possible regions D̂ is finite, it can be concluded that
the stopping condition is satisfied after a finite number
of steps. ✷

The following pseudo-programming code summarizes
the proposed algorithm.

4



Algorithm 1
1. Choose c ∈ R

m

2. γold = maxx∈X ‖x− c‖1
3. exit = 0

4. while (exit == 0)

5. [~γ, ~d] = solveLP(X , c)
6. if (~γ == γold) then exit = 1

7. else γold = ~γ; c = c+ ~d; end if

8. end while

9. c
∗ = c; r

∗ = ~γ
where solveLP denotes a function which solves the LP
in (15) and returns γ̃ and d̃.

Remark 2 Note that the LP in (15) has 2m+1 variables
and 4m+ n constraints, i.e. its computational burden is
much lower than that of the LP (9) (see Section 4 for
further details).

In the following, a simple example is reported to show a
step-by-step execution of Algorithm 1.

Example 1

Let X =

{[
−8

−1

]
,

[
7

6

]
,

[
−1

8

]
,

[
−7

5

]
,

[
8

−3

]
,

[
−4

3

]
,

[
3

−6

]}
and

let c(0) = [−10, −10]′. By applying the procedure de-
scribed in Algorithm 1 it results, after 6 iterations, c∗ =
[0.5, 1]′ and r∗ = 11.5. The candidate center at each it-
eration is shown in Figure 2. The grey box corresponds

to D̂(2) = c(2) + D(2) and the vector d̃(2) is an opti-
mal Chebyshev step for c(2) on D(2), computed by solving
(15). Then, c(3) = c(2) + d̃(2) and the algorithm steps to
the next iteration. Numerical values for candidate cen-
ter, optimal Chebyshev step and corresponding radius are
reported in Table 1.

−10 −5 0 5 10

−10

−5

0

5

10

c
(0)

c
(1)

c
(2)

c
(3)

c(4)

c(5)=c(6)=c∗

x1

x2

x3

x4

x5

x6

x7

d̃(2)

Fig. 2. Elements of X (points) and candidate centers c(k)

(circles) in Example 1.

Table 1
Candidate center, optimal Chebyshev step and correspond-
ing radius for each iteration of Algorithm 1.

k c(k) d̃(k) γ̃(k)

0 [-10, -10]’ [2, 4]’ 33.0

1 [-8, -6]’ [1, 3]’ 27.0

2 [-7, -3]’ [3, 2]’ 23.0

3 [-4, -1]’ [3, 2]’ 18.0

4 [-1, 1]’ [1.5, 0]’ 13.0

5 [0.5, 1]’ [0, 0]’ 11.5

6 [0.5, 1]’ - 11.5

Let us now address the ℓ1 conditional Chebyshev center
problem (7)-(8). In particular, let us consider the case
in which the center is constrained to lie on a linear sub-
space, i.e.

C = {c ∈ R
m : c = Lθ; θ ∈ R

p} (19)

where L ∈ R
m×p is a given matrix.

It is easy to see that problem (7)-(8) can be solved by
adopting the same approach outlined above for problem
(5)-(6). In particular, since (19) is a linear constraint,
the LP (15) in Lemma 1 can be replaced by





min γ

s.t. :∑

i∈I
−

j

di +
∑

i∈I
+
j

(−di)+
∑

i∈I0
j

qi −γ ≤−‖tj‖1 , j=1, . . . , n

d− L θ = 0

−qi ≤ di ≤ qi , di ≤ di ≤ di , i = 1, . . . ,m.

(20)
Then, the conditional center problem can be solved by
using Algorithm 1, provided that the function solveLP

in step 5 is changed accordingly, and the initial condition
is chosen inside the set C (i.e., step 1 becomes: Choose
c ∈ C).

4 Computational issues

Algorithm 1 introduced in Section 3 proceeds by succes-

sively exploring regions (hyperboxes) D̂(k) of the space
R

m and computing the Chebyshev center ofX restricted

to such regions. In general, although D̂(0) ∪ D̂(1) ∪ . . . ∪

D̂(K) will usually cover only a small portion of the space
R

m, the number of regions to be explored can be in prin-
ciple very high, thus requiring long time for the algo-
rithm to reach the solution.

To overcome such issue, in this section amodified version
of Algorithm 1 is introduced. It is based on a heuristic
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which is expected to reduce the computational burden
when the cardinality of the set X is high. The modi-
fied algorithm is presented for the unconditional Cheby-
shev center problem; its extension to the conditional case
is straightforward. To describe the new algorithm, it is
firstly reported in a pseudo-programming code.

Algorithm 2
1. Choose w0 ∈ X
2. w1 = arg max

x∈X
‖x− w0‖1; w2 = arg max

x∈X
‖x− w1‖1

3. W = {w1, w2}; c = (w1 + w2)/2
4. γold = ‖w1 − c‖1
5. exit = 0

6. while (exit == 0)

7. ŵ = |W|
8. W = W ∪ {x̄ ∈ X : x̄ = maxx∈X ‖x− c‖1}
9. [~γ, ~d] = solveLP(W , c)
10. if ((~γ==γold) and (ŵ== |W|)) then exit = 1

11. else γold = ~γ; c = c+ ~d; end if

12. end while

13. c
∗ = c; r

∗ = ~γ

Steps 1-3 initialize the algorithm with a “smart” can-
didate center. At each iteration, Algorithm 2 is similar
to Algorithm 1, with the exception that the function
solveLP is computed on the set W rather than on the
whole setX . According to step 8, the setW is augmented
at each iteration by including the farthest points of X
with respect to the current candidate center c. Conver-
gence in a finite number of steps is still guaranteed, as
shown by the next result.

Theorem 2 For any set X = {x1, . . . , xn}, Algorithm 2
converges to an ℓ1 Chebyshev center of X in a finite num-
ber of steps.

Proof. Let us assume that, on step 10, at a given it-
eration, γ̃ = γold and ŵ = |W|, i.e., the candidate
radius γ and the set W are the same as in the pre-
vious iteration. This means that there does not exist
any improving direction for the current candidate cen-
ter c with respect to the set W , i.e. c is the Cheby-
shev center of W . Since by construction W ⊆ X and
W ⊇ {x̄ ∈ X : x̄ = argmaxx∈X ‖x − c‖1}, it follows
that maxx∈X ‖c− x‖1 = maxx∈W ‖c− x‖1 ≤ r∗, where
the inequality comes from the fact that c is a center of
W and W ⊆ X . Therefore c is also a center of X .
It remains to prove that the algorithm stops in a finite
number of steps. At any iteration, one has by construc-
tion W(k) ⊆ W(k+1). If at a given iteration W = X ,
then Theorem 1 applies and the algorithm converges in
a finite number of steps. Conversely, let us assume that
there does not exist any iteration for whichW = X , and
let us denote by W ⊂ X the set such that W ⊇ W(k)

for any k. Then, Theorem 1 applies to the set W , and
the algorithm converges in a finite number of steps to a
Chebyshev center of W, which is also, according to the
first part of the proof, a Chebyshev center of X . ✷

Remark 3 The main difference between Algorithm 1
and Algorithm 2 is that the latter solves LP problems on
the sets W, whose cardinality is generally much smaller
than the cardinality of X , with an obvious improvement
in terms of computational time.

In order to reduce the computational burden required by
the solveLP function, instead of solving (15), we solve
the following LP which has a simpler constraint struc-
ture:





min γ

s.t. :
∑

i∈I
−

j

(d+i − d−i ) +
∑

i∈I
+
j

(d−i − d+i )

+
∑

i∈I0
j
(d+i + d−i )− γ ≤ −‖tj‖1 , j=1, . . . , n

0 ≤ d+i ≤ di , 0 ≤ d−i ≤ −di , i = 1, . . . ,m.

(21)

Proposition 1 Let [γ̃, d̃+, d̃−] be a solution of (21), and

let d̃ , d̃+ − d̃− and q̃ , d̃+ + d̃−. Then, [γ̃, d̃, q̃] is a
solution of (15).

Proof. Let us rewrite (21) by substituting d = d+ − d−

and q = d+ + d−. One obtains





min γ

s.t. :∑

i∈I
−

j

di +
∑

i∈I
+
j

(−di)+
∑

i∈I0
j

qi −γ ≤−‖tj‖1 , j=1, . . . , n

0 ≤ qi+di

2 ≤ di , i = 1, . . . ,m

0 ≤ qi−di

2 ≤ −di , i = 1, . . . ,m

(22)
which can be easily rearranged into





min γ

s.t. :∑

i∈I
−

j

di +
∑

i∈I
+
j

(−di)+
∑

i∈I0
j

qi −γ ≤−‖tj‖1 , j=1, . . . , n

−qi ≤ di ≤ qi , i = 1, . . . ,m

−2 di + qi ≤ di ≤ 2 di − qi , i = 1, . . . ,m.

(23)
Since the constraints−qi≤ di≤ qi are equivalent to qi≥
|di|, it follows that the last constraints in (23) are more
restrictive than the constraints di ≤ di ≤ di in (15).

This means that any solution [γ̃, d̃, q̃] of (23) satisfies the

constraints in (15). Now, we prove that [γ̃, d̃, q̃] is also
a solution of (15). By contradiction, let us assume that

[γ̂, d̂, q̂] is a solution of (15) such that γ̂ < γ̃ and such that

q̂i = |d̂i| for i = 1, . . . ,m (notice that it can be easily
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checked by Lemma 1 that such a solution always exists).

By substituting [γ̂, d̂, q̂] into (23) one has that [γ̂, d̂, q̂] is
a feasible solution thus obtaining a contradiction. ✷

In Table 2, the number of iterations and the computa-
tion time of Algorithms 1 and 2 are reported for ran-
domly generated sets X with different m and n. More-
over, the maximum cardinality of the set W generated
by Algorithm 2 is shown, as well as the cardinality of
the so-called core-set of X , defined as Q = {x ∈ X :
‖x − c∗‖1 = r∗}. The computation time of (9) is also
reported (denoted by “1 LP”); “OUT” means “out of
memory”.

Computations have been performed under Matlab by
using CPLEX [7,1] to solve the LPs, on a Pentium 4 at
3.20 GHz with 2 GB of RAM. Time is expressed in sec-
onds. The results demonstrate that both algorithms are
computationally feasible for standard solvers and hard-
ware, and that the heuristic adopted in Algorithm 2 is
effective when the cardinality n of the set X grows.

It can be noticed that the cardinality of W is typically
slightly greater than the cardinality of Q. This means
that the total number of LPs solved by Algorithm 2 is
of the same order as the cardinality of Q, which is in
general much less than n.

5 Illustrative example

In order to show a typical behavior of the proposed al-
gorithm for constructing ℓ1 uncertainty model sets, let

Table 2
Number of iterations, cardinality of the set W and Q, and
computation time of Algorithms 1, 2 and (9).

Algorithm 1 Algorithm 2 1 LP

n m # iter. time # iter. |W| |Q| time time

10 10 8 0.02 4 5 3 0.02 0.02

10 100 6 0.04 9 10 10 0.06 0.52

10 500 6 0.17 9 10 10 0.21 OUT

10 1000 6 0.46 9 10 10 0.64 OUT

50 10 26 0.05 5 6 6 0.03 0.13

50 100 24 0.40 28 27 25 0.18 OUT

50 500 17 1.94 38 39 39 2.30 OUT

50 1000 13 4.95 46 47 47 9.59 OUT

100 10 46 0.11 13 14 4 0.03 0.58

100 100 39 1.05 34 35 33 0.29 OUT

100 500 29 8.21 60 61 61 6.41 OUT

100 1000 31 33.69 71 72 71 27.82 OUT

500 10 31 0.23 10 11 6 0.03 OUT

500 100 191 17.21 42 42 37 0.52 OUT

500 500 154 143.58 78 79 79 13.64 OUT

500 1000 126 529.34 111 112 112 112.02 OUT

1000 10 322 5.13 16 17 6 0.05 OUT

1000 100 307 67.97 47 48 47 0.90 OUT

1000 500 291 455.73 94 95 93 23.27 OUT

1000 1000 199 1173.88 139 140 138 230.93 OUT

us consider a set of models H = {H1, . . . , Hn}, where
Hj = H0 +∆j , j = 1, . . . , n. In this example, let H0 =
L1θ1 + L2θ2, where L1 and L2 are the first two fil-
ters of the Laguerre basis with pole equal to 0.9, and
θ = [1 − 0.6]′. Then, let n = 20 and

∆j(z) = α
1− |λj |

z − λj

, j = 1, . . . , 20,

where the poles λj have been randomly chosen in the
interval [−0.95, 0.95]. By construction, ‖∆j(z)‖1 = α,
∀j (in the following, we set α = 2).

First, let us consider the nominal model class of FIR fil-
ters of order N = 100. The aim is to compute the mini-
mum ℓ1 uncertainty model set containing the set H, i.e.
to solve the problem g∗ = arg infg∈FIR100 suph∈H ‖g−
h‖1. According to the treatment in Section 2, this boils
down to solve the conditional Chebyshev center problem
(4) with M = I100 and θ ∈ R

100. By applying the con-
ditional version of Algorithm 2, one obtains the impulse
response g∗ such that the corresponding ℓ1 uncertainty
bound is γ∗ = 1.68. In Figure 3, g∗ along with the 20
impulse responses hj are depicted.

Now, let us now consider as nominal model class the
truncated Laguerre expansion of order 2. Let us denote
by Ma the Laguerre basis of order 2 with pole a. The
problem to be solved is g∗ = arg infg∈Ma

suph∈H ‖g−
h‖1. Let us first choose the same Laguerre pole of H0,
i.e. a = 0.9. By applying the conditional version of Al-
gorithm 2, one obtains a g∗ such that g∗ = M θ∗ with
θ∗ = [1 − 0.6]′ and γ∗ = 2, as expected. Let us now
pick a = 0.85. In this case, one gets θ∗ = [1.21 − 0.70]′

and γ∗ = 2.92, where the increase of the ℓ1 uncertainty
bound is due to the different choice of the Laguerre
pole. The impulse responses g∗ obtained for a = 0.9 and
a = 0.85 are reported in Figure 4, together with those
of the models Hj ∈ H.

0 10 20 30 40 50 60 70
−0.5

0

0.5

1

1.5

2

2.5

k

Model class: FIR
100

Fig. 3. Impulse response g∗ for the model class FIR100

(dark), and impulse responses of models Hj , j = 1, . . . , 20
(light).
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Model class: 2nd order Laguerre basis

a = 0.85

a = 0.9

Fig. 4. Impulse response g∗ for the Laguerre model class with
two choices of the pole a, and impulse responses of models
Hj , j = 1, . . . , 20 (light).

6 Conclusions

An efficient algorithm for the computation of the ℓ1 con-
ditional Chebyshev center has been presented. The al-
gorithm can be employed to construct the minimum ℓ1
uncertainty model set containing a given set of impulse
responses. From a computational point of view, it boils
down to a sequence of small LP problems. The number
of LPs to be solved can be very high in principle, but
in practice the algorithm is computationally feasible for
large size problems.

The ongoing research concerns two main directions.
First, it would be interesting to analyze the compu-
tational complexity of the algorithm, for example by
establishing upper bounds to the number of steps it
requires to converge. On the other side, construction of
model sets for different structures of uncertainty could
be useful for wider application of ℓ1 control design
techniques.
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